High Speed Characterization Report

SEAM-XX-03.5-S-XX-2

Mates with

SEAF-XX-06.5-S-XX-2

Description:
Open Pin Field Array, 1.27mm x 1.27mm Pitch
10mm Stack Height
Table of Contents

Connector Overview .. 1
Connector System Speed Rating .. 1
Frequency Domain Data Summary ... 2
 Table 1 - Single-Ended 1:1 S/G Pattern Performance ... 2
 Table 2 - Single-Ended 2:1 S/G Pattern Performance ... 3
 Table 3 - Differential Optimal Horizontal Performance ... 4
 Table 4 - Differential Optimal Vertical Performance ... 5
 Table 5 - Differential High Density Vertical Performance 6
 Bandwidth Charts – Single-Ended & Differential Insertion Loss 7
Time Domain Data Summary ... 8
 Table 6 – Single-End Impedance (Ω) – 1:1 S/G Pattern ... 8
 Table 7 – Single-End Impedance (Ω) – 2:1 S/G Pattern ... 8
 Table 8 – Differential Impedance (Ω) – Optimal Horizontal 9
 Table 9 – Differential Impedance (Ω) – Optimal Vertical .. 9
 Table 10 – Differential Impedance (Ω) – High Density Vertical 10
 Table 11 - Single-Ended Crosstalk (%) – 1:1 S/G Pattern 11
 Table 12 - Single-Ended Crosstalk (%) – 2:1 S/G Pattern 12
 Table 13 - Differential Crosstalk (%) – Optimal Horizontal 13
 Table 14 - Differential Crosstalk (%) – Optimal Vertical 14
 Table 15 - Differential Crosstalk (%) – High Density Vertical 15
 Table 16 - Propagation Delay (Mated Connector) ... 16
Characterization Details .. 17
 Differential and Single-Ended Data ... 17
 Connector Signal to Ground Ratio ... 17
 Frequency Domain Data .. 21
 Time Domain Data ... 21
Appendix A – Frequency Domain Response Graphs .. 23
 Single-Ended Application – Insertion Loss .. 23
 Single-Ended Application – Return Loss .. 23
 Single-Ended 1:1 S/G Pattern Application – NEXT .. 24
 Single-Ended 1:1 S/G Pattern Application – FEXT .. 24
 Single-Ended 2:1 S/G Pattern Application – NEXT .. 25
 Single-Ended 2:1 S/G Pattern Application – FEXT .. 25
 Differential Application – Insertion Loss .. 26
 Differential Application – Return Loss ... 26
 Differential Optimal Horizontal Application – NEXT ... 27
 Differential Optimal Horizontal Application – FEXT ... 27
 Differential Optimal Vertical Application – NEXT .. 28
Series: SEAM/SEAF
Description: Open Pin Field Array, 1.27mm x 1.27mm Pitch, 10mm Stack Height

Differential Optimal Vertical Application – FEXT .. 28
Differential High Density Vertical Application – NEXT ... 29
Differential High Density Vertical Application – FEXT .. 29

Appendix B – Time Domain Response Graphs ... 30

Single-Ended Application – Input Pulse ... 30
Single-Ended 1:1 S/G Pattern Application – Impedance .. 31
Single-Ended 1:1 S/G Pattern Application – Propagation Delay 31
Single-Ended 2:1 S/G Pattern Application – Impedance .. 32
Single-Ended 2:1 S/G Pattern Application – Propagation Delay 32
Single-Ended 1:1 S/G Pattern Application – NEXT,SEAM167_SEAM147 33
Single-Ended 1:1 S/G Pattern Application – FEXT,SEAM167_SEAF147 33
Single-Ended 1:1 S/G Pattern Application – NEXT,SEAM167_SEAM165 34
Single-Ended 1:1 S/G Pattern Application – FEXT,SEAM167_SEAF165 34
Single-Ended 1:1 S/G Pattern Application – NEXT,SEAM167_SEAM176 35
Single-Ended 2:1 S/G Pattern Application – NEXT,SEAM156_SEAM146 36
Single-Ended 2:1 S/G Pattern Application – FEXT,SEAM156_SEAF146 36
Single-Ended 2:1 S/G Pattern Application – NEXT,SEAM156_SEAM155 37
Single-Ended 2:1 S/G Pattern Application – FEXT,SEAM156_SEAF155 37
Single-Ended 2:1 S/G Pattern Application – NEXT,SEAM156_SEAM165 38
Single-Ended 2:1 S/G Pattern Application – FEXT,SEAM156_SEAF165 38
Differential Application – Input Pulse ... 39
Differential Optimal Horizontal Application – Impedance ... 40
Differential Optimal Horizontal Application – Propagation Delay 40
Differential Optimal Vertical Application – Impedance ... 41
Differential Optimal Vertical Application – Propagation Delay 41
Differential High Density Vertical Application – Impedance 42
Differential High Density Vertical Application – Propagation Delay 42

Diff Optimal Horizontal Application – NEXT,SEAM147,157_SEAM107,117 43
Diff Optimal Horizontal Application – FEXT,SEAM147,157_SEAF107,117 43
Diff Optimal Horizontal Application – NEXT,SEAM147,157_SEAM126,136 44
Diff Optimal Horizontal Application – FEXT,SEAM147,157_SEAF126,136 44
Diff Optimal Horizontal Application – NEXT,SEAM147,157_SEAM145,155 45
Diff Optimal Horizontal Application – FEXT,SEAM147,157_SEAF145,155 45
Diff Optimal Vertical Application – NEXT,SEAM157,158_SEAM137,138 46
Diff Optimal Vertical Application – FEXT,SEAM157,158_SEAF137,138 46
Diff Optimal Vertical Application – NEXT,SEAM157,158_SEAM145,146 47
Diff Optimal Vertical Application – FEXT,SEAM157,158_SEAF145,146 47
Diff Optimal Vertical Application – NEXT,SEAM157,158_SEAM153,154 48
Diff Optimal Vertical Application – FEXT,SEAM157,158_SEAF153,154 48
Diff High Density Vertical Application – NEXT,SEAM156,157_SEAM136,137 49
Diff High Density Vertical Application – FEXT,SEAM156,157_SEAF136,137 49
Diff High Density Vertical Application – NEXT,SEAM156,157_SEAM145,146 50
Diff High Density Vertical Application – FEXT,SEAM156,157_SEAF145,146 50
Diff High Density Vertical Application – NEXT,SEAM156,157_SEAM153,154 51
Diff High Density Vertical Application – FEXT,SEAM156,157_SEAF153,154 51

Appendix C – Product and Test System Descriptions ... 52
 Product Description .. 52
 Test System Description .. 52
 PCB-103314-TST-XX Test Fixtures ... 52
 PCB-103314-TST-XX PCB Layout Panel ... 53
 PCB Fixtures .. 54
 Calibration Board ... 57

Appendix D – Test and Measurement Setup ... 59
 N5230C Measurement Setup ... 59
 Test Instruments ... 60
 Test Cables & Adapters ... 60

Appendix E - Frequency and Time Domain Measurements ... 61
 Frequency (S-Parameter) Domain Procedures .. 61
 Time Domain Procedures ... 61
 Impedance (TDR) ... 61
 Propagation Delay (TDT) ... 62
 Near-End Crosstalk (TDT) & Far End Crosstalk (TDT) ... 62

Appendix F – Glossary of Terms ... 63
Connector Overview

SEAM/SEAF is a 1.27mm x 1.27mm pitch interconnects system for elevated high-speed board-to-board applications. The open pin field design allows for both single-ended and differential pair signaling to be employed. The SEAM/SEAF Series is available in 4, 5, 6, 8, and 10 row open pin field arrays. Pins per row selections are 20, 30, 40, or 50. This report reflects only the hi-speed electrical characteristics specific to a mated 10mm stack height SEAM/SEAF test system.

Connector System Speed Rating

<table>
<thead>
<tr>
<th>Signaling</th>
<th>Speed Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Ended: 1:1 S/G</td>
<td>18.0 GHz/ 36Gbps</td>
</tr>
<tr>
<td>Single-Ended: 2:1 S/G</td>
<td>17.0 GHz/ 34Gbps</td>
</tr>
<tr>
<td>Differential: Optimal Horizontal</td>
<td>18.0 GHz/ 36Gbps</td>
</tr>
<tr>
<td>Differential: Optimal Vertical</td>
<td>17.5 GHz/ 35Gbps</td>
</tr>
<tr>
<td>Differential: High Density Vertical</td>
<td>17.0 GHz/ 34Gbps</td>
</tr>
</tbody>
</table>

The Speed Rating is based on the -3 dB insertion loss point of the connector system. The -3 dB point can be used to estimate usable system bandwidth in a typical, two-level signaling environment.

To calculate the Speed Rating, the measured -3 dB point is rounded up to the nearest half-GHz level. The up rounding corrects for a portion of the test board’s trace loss, since a short length of trace loss is included in the loss data in this report. The resulting loss value is then doubled to determine the approximate maximum data rate in Gigabits per second (Gbps).

For example, a connector with a -3 dB point of 7.8 GHz would have a Speed Rating of 8 GHz/ 16 Gbps. A connector with a -3 dB point of 7.2 GHz would have a Speed Rating of 7.5 GHz/15 Gbps.
Frequency Domain Data Summary

Table 1 - Single-Ended 1:1 S/G Pattern Performance

<table>
<thead>
<tr>
<th>Test Parameter</th>
<th>Driver</th>
<th>Receiver</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>SEAM_167</td>
<td>SEAF_167</td>
<td>-3dB@ 17.6 GHz</td>
</tr>
<tr>
<td>Return Loss</td>
<td>SEAM_167</td>
<td>SEAM_167</td>
<td>-10.0dB@ 17.6 GHz</td>
</tr>
<tr>
<td>Near-End Crosstalk</td>
<td>SEAM_167</td>
<td>SEAM_165</td>
<td>-31.2dB@ 17.6 GHz</td>
</tr>
<tr>
<td></td>
<td>SEAM_167</td>
<td>SEAM_176</td>
<td>-19.0dB@ 17.6 GHz</td>
</tr>
<tr>
<td>Far-End Crosstalk</td>
<td>SEAM_167</td>
<td>SEAF_147</td>
<td>-24.3dB@ 17.6 GHz</td>
</tr>
<tr>
<td></td>
<td>SEAM_167</td>
<td>SEAF_165</td>
<td>-26.9dB@ 17.6 GHz</td>
</tr>
<tr>
<td></td>
<td>SEAM_167</td>
<td>SEAF_176</td>
<td>-22.9dB@ 17.6 GHz</td>
</tr>
</tbody>
</table>

Single-Ended 1:1 S/G Pattern Pin Map
Table 2 - Single-Ended 2:1 S/G Pattern Performance

<table>
<thead>
<tr>
<th>Test Parameter</th>
<th>Driver</th>
<th>Receiver</th>
<th>Insertion Loss & Return Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>SEAM_156</td>
<td>SEAF_156</td>
<td>-3dB@ 16.6 GHz</td>
</tr>
<tr>
<td>Return Loss</td>
<td>SEAM_156</td>
<td>SEAM_156</td>
<td>-9.6dB@ 16.6 GHz</td>
</tr>
<tr>
<td>Near-End Crosstalk</td>
<td>SEAM_156</td>
<td>SEAM_146</td>
<td>-12.4dB@ 16.6 GHz</td>
</tr>
<tr>
<td></td>
<td>SEAM_156</td>
<td>SEAM_155</td>
<td>-18.3dB@ 16.6 GHz</td>
</tr>
<tr>
<td></td>
<td>SEAM_156</td>
<td>SEAM_165</td>
<td>-28.6dB@ 16.6 GHz</td>
</tr>
<tr>
<td>Far-End Crosstalk</td>
<td>SEAM_156</td>
<td>SEAF_146</td>
<td>-17.3dB@ 16.6 GHz</td>
</tr>
<tr>
<td></td>
<td>SEAM_156</td>
<td>SEAF_155</td>
<td>-18.4dB@ 16.6 GHz</td>
</tr>
<tr>
<td></td>
<td>SEAM_156</td>
<td>SEAF_165</td>
<td>-30.6dB@ 16.6 GHz</td>
</tr>
</tbody>
</table>
Table 3 - Differential Optimal Horizontal Performance

<table>
<thead>
<tr>
<th>Test Parameter</th>
<th>Driver</th>
<th>Receiver</th>
<th>Insertion Loss</th>
<th>Return Loss</th>
<th>Near-End Crosstalk</th>
<th>Far-End Crosstalk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>SEAM_147,157</td>
<td>SEAF_147,157</td>
<td>-3dB@ 17.6 GHz</td>
<td>-9.1dB@ 17.6 GHz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return Loss</td>
<td>SEAM_147,157</td>
<td>SEAM_147,157</td>
<td></td>
<td></td>
<td>-27.5dB@ 17.6 GHz</td>
<td></td>
</tr>
<tr>
<td>Near-End Crosstalk</td>
<td>SEAM_147,157</td>
<td>SEAM_107,117</td>
<td>-19.8dB@ 17.6 GHz</td>
<td></td>
<td>-26.4dB@ 17.6 GHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEAM_147,157</td>
<td>SEAM_126,136</td>
<td></td>
<td></td>
<td></td>
<td>-21dB@ 17.6 GHz</td>
</tr>
<tr>
<td></td>
<td>SEAM_147,157</td>
<td>SEAM_145,155</td>
<td></td>
<td></td>
<td></td>
<td>-25.0dB@ 17.6 GHz</td>
</tr>
<tr>
<td>Far-End Crosstalk</td>
<td>SEAM_147,157</td>
<td>SEAF_107,117</td>
<td>-27.4dB@ 17.6 GHz</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Differential Optimal Horizontal Pin Map

![Pin Map Diagram]

- Green: Insertion Loss & Return Loss
- Red: Crosstalk
Table 4 - Differential Optimal Vertical Performance

<table>
<thead>
<tr>
<th>Test Parameter</th>
<th>Driver</th>
<th>Receiver</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>SEAM_157,158</td>
<td>SEAF_157,158</td>
<td>-3dB@ 17.2 GHz</td>
</tr>
<tr>
<td>Return Loss</td>
<td>SEAM_157,158</td>
<td>SEAM_157,158</td>
<td>-11.2dB@ 17.2 GHz</td>
</tr>
<tr>
<td>Near-End Crosstalk</td>
<td>SEAM_157,158</td>
<td>SEAM_137,138</td>
<td>-32.6dB@ 17.2 GHz</td>
</tr>
<tr>
<td></td>
<td>SEAM_157,158</td>
<td>SEAM_145,146</td>
<td>-33.6dB@ 17.2 GHz</td>
</tr>
<tr>
<td></td>
<td>SEAM_157,158</td>
<td>SEAM_153,154</td>
<td>-28.1dB@ 17.2 GHz</td>
</tr>
<tr>
<td>Far-End Crosstalk</td>
<td>SEAM_157,158</td>
<td>SEAF_137,138</td>
<td>-36.6dB@ 17.2 GHz</td>
</tr>
<tr>
<td></td>
<td>SEAM_157,158</td>
<td>SEAF_145,146</td>
<td>-42.4dB@ 17.2 GHz</td>
</tr>
<tr>
<td></td>
<td>SEAM_157,158</td>
<td>SEAF_153,154</td>
<td>-25.4dB@ 17.2 GHz</td>
</tr>
</tbody>
</table>

Differential Optimal Vertical Pin Map

- Pin154
- Pin153
- Pin152
- Pin151
- Pin150
- Pin149
- Pin148
- Pin147
- Pin146
- Pin145
- Pin144
- Pin143
- Pin142
- Pin141
- Pin140
- Pin139
- Pin138
- Pin137
- Pin136
- Pin135
- Pin134
- Pin133
- Pin132
- Pin131
- Pin130
- Pin129
- Pin128
- Pin127
- Pin126
- Pin125
- Pin124
- Pin123
- Pin122
- Pin121
- Pin120
- Pin119
- Pin118
- Pin117
- Pin116
- Pin115
- Pin114
- Pin113
- Pin112
- Pin111
- Pin110
- Pin109
- Pin108
- Pin107
- Pin106
- Pin105
- Pin104
- Pin103
- Pin102
- Pin101
- Pin100
- Pin99
- Pin98
- Pin97
- Pin96
- Pin95
- Pin94
- Pin93
- Pin92
- Pin91
- Pin90
- Pin89
- Pin88
- Pin87
- Pin86
- Pin85
- Pin84
- Pin83
- Pin82
- Pin81
- Pin80
- Pin79
- Pin78
- Pin77
- Pin76
- Pin75
- Pin74
- Pin73
- Pin72
- Pin71
- Pin70
- Pin69
- Pin68
- Pin67
- Pin66
- Pin65
- Pin64
- Pin63
- Pin62
- Pin61
- Pin60
- Pin59
- Pin58
- Pin57
- Pin56
- Pin55
- Pin54
- Pin53
- Pin52
- Pin51
- Pin50
- Pin49
- Pin48
- Pin47
- Pin46
- Pin45
- Pin44
- Pin43
- Pin42
- Pin41
- Pin40
- Pin39
- Pin38
- Pin37
- Pin36
- Pin35
- Pin34
- Pin33
- Pin32
- Pin31
- Pin30
- Pin29
- Pin28
- Pin27
- Pin26
- Pin25
- Pin24
- Pin23
- Pin22
- Pin21
- Pin20
- Pin19
- Pin18
- Pin17
- Pin16
- Pin15
- Pin14
- Pin13
- Pin12
- Pin11
- Pin10
- Pin9
- Pin8
- Pin7
- Pin6
- Pin5
- Pin4
- Pin3
- Pin2
- Pin1

- Green circles: Insertion Loss & Return Loss
- Red circles: Crosstalk
Table 5 - Differential High Density Vertical Performance

<table>
<thead>
<tr>
<th>Test Parameter</th>
<th>Driver</th>
<th>Receiver</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>SEAM_156,157</td>
<td>SEAF_156,157</td>
<td>-3dB@ 16.9 GHz</td>
</tr>
<tr>
<td>Return Loss</td>
<td>SEAM_156,157</td>
<td>SEAM_156,157</td>
<td>-11.4dB@ 16.9 GHz</td>
</tr>
<tr>
<td>Near-End Crosstalk</td>
<td>SEAM_156,157</td>
<td>SEAM_136,137</td>
<td>-32.7dB@ 16.9 GHz</td>
</tr>
<tr>
<td></td>
<td>SEAM_156,157</td>
<td>SEAM_145,146</td>
<td>-21.6dB@ 16.9 GHz</td>
</tr>
<tr>
<td></td>
<td>SEAM_156,157</td>
<td>SEAM_153,154</td>
<td>-39.2dB@ 16.9 GHz</td>
</tr>
<tr>
<td>Far-End Crosstalk</td>
<td>SEAM_156,157</td>
<td>SEAF_136,137</td>
<td>-35.0dB@ 16.9 GHz</td>
</tr>
<tr>
<td></td>
<td>SEAM_156,157</td>
<td>SEAF_145,146</td>
<td>-53.6dB@ 16.9 GHz</td>
</tr>
<tr>
<td></td>
<td>SEAM_156,157</td>
<td>SEAF_153,154</td>
<td>-35.1dB@ 16.9 GHz</td>
</tr>
</tbody>
</table>

Differential High Density Vertical Pin Map

- **Insertion Loss & Return Loss**
- **Crosstalk**

Samtec Inc.
520 Park East Blvd.
New Albany IN 47151-1147 USA
©Samtec, Inc. 2005

WWWW.SAMTEC.COM
1-800-SAMTEC-9 (US & Canada)
SIG@samtec.com
Page:6

Phone: 812-944-6733
Fax: 812-948-5047
Report Revision: 2/28/2012
All Rights Reserved
Bandwidth Charts – Single-Ended & Differential Insertion Loss

SEAM/SEAF Array Series

Single-Ended Application - Insertion Loss

Differential Application - Insertion Loss
Time Domain Data Summary

Table 6 – Single-End Impedance (Ω) – 1:1 S/G Pattern

<table>
<thead>
<tr>
<th>Signal Risetime</th>
<th>30 ps</th>
<th>50 ps</th>
<th>100 ps</th>
<th>250 ps</th>
<th>500 ps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Impedance</td>
<td>72.3</td>
<td>68.4</td>
<td>62.5</td>
<td>55.4</td>
<td>52.9</td>
</tr>
<tr>
<td>Minimum Impedance</td>
<td>47.9</td>
<td>49.6</td>
<td>49.8</td>
<td>49.9</td>
<td>49.9</td>
</tr>
</tbody>
</table>

Table 7 – Single-End Impedance (Ω) – 2:1 S/G Pattern

<table>
<thead>
<tr>
<th>Signal Risetime</th>
<th>30 ps</th>
<th>50 ps</th>
<th>100 ps</th>
<th>250 ps</th>
<th>500 ps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Impedance</td>
<td>74.5</td>
<td>71.6</td>
<td>65.3</td>
<td>57.0</td>
<td>54</td>
</tr>
<tr>
<td>Minimum Impedance</td>
<td>48.8</td>
<td>49.8</td>
<td>49.8</td>
<td>49.8</td>
<td>49.9</td>
</tr>
</tbody>
</table>
Table 8 – Differential Impedance (Ω) – Optimal Horizontal

<table>
<thead>
<tr>
<th>Signal Risetime</th>
<th>30 ps</th>
<th>50 ps</th>
<th>100 ps</th>
<th>250 ps</th>
<th>500 ps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Impedance</td>
<td>118.5</td>
<td>114.2</td>
<td>109.8</td>
<td>104.8</td>
<td>104.1</td>
</tr>
<tr>
<td>Minimum Impedance</td>
<td>97.1</td>
<td>98.5</td>
<td>99.9</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Table 9 – Differential Impedance (Ω) – Optimal Vertical

<table>
<thead>
<tr>
<th>Signal Risetime</th>
<th>30 ps</th>
<th>50 ps</th>
<th>100 ps</th>
<th>250 ps</th>
<th>500 ps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Impedance</td>
<td>127.8</td>
<td>121.7</td>
<td>115.3</td>
<td>106.2</td>
<td>103.6</td>
</tr>
<tr>
<td>Minimum Impedance</td>
<td>96.5</td>
<td>97.0</td>
<td>98.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>
Table 10 – Differential Impedance (Ω) – High Density Vertical

<table>
<thead>
<tr>
<th>Signal Risetime</th>
<th>30 ps</th>
<th>50 ps</th>
<th>100 ps</th>
<th>250 ps</th>
<th>500 ps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Impedance</td>
<td>125.7</td>
<td>122.4</td>
<td>117.2</td>
<td>107.9</td>
<td>104.7</td>
</tr>
<tr>
<td>Minimum Impedance</td>
<td>97.4</td>
<td>99.4</td>
<td>99.8</td>
<td>99.9</td>
<td>99.9</td>
</tr>
</tbody>
</table>

Differential Application - Impedance vs. Risetime
Table 11 - Single-Ended Crosstalk (%) – 1:1 S/G Pattern

<table>
<thead>
<tr>
<th>Input(tr)</th>
<th>Driver</th>
<th>Receiver</th>
<th>30 ps</th>
<th>50 ps</th>
<th>100 ps</th>
<th>250 ps</th>
<th>500 ps</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEXT</td>
<td>SEAM_167</td>
<td>SEAM_147</td>
<td>0.74</td>
<td>0.49</td>
<td>0.40</td>
<td>0.24</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>SEAM_167</td>
<td>SEAM_165</td>
<td>0.32</td>
<td>0.29</td>
<td>0.23</td>
<td>0.13</td>
<td><0.1</td>
</tr>
<tr>
<td></td>
<td>SEAM_167</td>
<td>SEAM_176</td>
<td>2.97</td>
<td>2.42</td>
<td>1.89</td>
<td>0.96</td>
<td>0.51</td>
</tr>
<tr>
<td>FEXT</td>
<td>SEAM_167</td>
<td>SEAF_147</td>
<td>0.80</td>
<td>0.49</td>
<td>0.30</td>
<td>0.16</td>
<td><0.1</td>
</tr>
<tr>
<td></td>
<td>SEAM_167</td>
<td>SEAF_165</td>
<td>0.37</td>
<td>0.25</td>
<td>0.18</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td></td>
<td>SEAM_167</td>
<td>SEAF_176</td>
<td>1.47</td>
<td>1.05</td>
<td>0.75</td>
<td>0.34</td>
<td>0.19</td>
</tr>
</tbody>
</table>

Single-Ended 1:1 S/G Pattern Crosstalk Pin Map
Table 12 - Single-Ended Crosstalk (%) – 2:1 S/G Pattern

<table>
<thead>
<tr>
<th>Input(tr)</th>
<th>Driver</th>
<th>Receiver</th>
<th>30 ps</th>
<th>50 ps</th>
<th>100 ps</th>
<th>250 ps</th>
<th>500 ps</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEXT</td>
<td>SEAM_156</td>
<td>SEAM_146</td>
<td>11.70</td>
<td>10.28</td>
<td>8.56</td>
<td>4.55</td>
<td>2.48</td>
</tr>
<tr>
<td></td>
<td>SEAM_156</td>
<td>SEAM_155</td>
<td>8.02</td>
<td>7.07</td>
<td>5.87</td>
<td>3.19</td>
<td>1.76</td>
</tr>
<tr>
<td></td>
<td>SEAM_156</td>
<td>SEAM_165</td>
<td>3.44</td>
<td>3.21</td>
<td>2.72</td>
<td>1.59</td>
<td>0.91</td>
</tr>
<tr>
<td>FEXT</td>
<td>SEAM_156</td>
<td>SEAF_146</td>
<td>6.35</td>
<td>4.93</td>
<td>3.86</td>
<td>2.00</td>
<td>1.15</td>
</tr>
<tr>
<td></td>
<td>SEAM_156</td>
<td>SEAF_155</td>
<td>5.44</td>
<td>4.14</td>
<td>3.18</td>
<td>1.68</td>
<td>0.95</td>
</tr>
<tr>
<td></td>
<td>SEAM_156</td>
<td>SEAF_165</td>
<td>2.62</td>
<td>2.29</td>
<td>1.87</td>
<td>1.04</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Single-Ended 2:1 S/G Pattern Crosstalk Pin Map
Table 13 - Differential Crosstalk (%) – Optimal Horizontal

<table>
<thead>
<tr>
<th>Input(tr)</th>
<th>Driver</th>
<th>Receiver</th>
<th>30 ps</th>
<th>50 ps</th>
<th>100 ps</th>
<th>250 ps</th>
<th>500 ps</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEXT</td>
<td>SEAM_147,157</td>
<td>SEAM_107,117</td>
<td>0.14</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td></td>
<td>SEAM_147,157</td>
<td>SEAM_126,136</td>
<td>0.96</td>
<td>0.86</td>
<td>0.69</td>
<td>0.34</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>SEAM_147,157</td>
<td>SEAM_145,155</td>
<td>0.15</td>
<td>0.10</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>FEXT</td>
<td>SEAM_147,157</td>
<td>SEAF_107,117</td>
<td>0.77</td>
<td>0.50</td>
<td>0.25</td>
<td>0.10</td>
<td><0.1</td>
</tr>
<tr>
<td></td>
<td>SEAM_147,157</td>
<td>SEAF_126,136</td>
<td>0.28</td>
<td>0.20</td>
<td>0.13</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td></td>
<td>SEAM_147,157</td>
<td>SEAF_145,155</td>
<td>0.16</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
</tbody>
</table>

Differential Optimal Horizontal Crosstalk Pin Map

![Pin Map Diagram](image)
Table 14 - Differential Crosstalk (%) – Optimal Vertical

<table>
<thead>
<tr>
<th>Input(tr)</th>
<th>Driver</th>
<th>Receiver</th>
<th>30 ps</th>
<th>50 ps</th>
<th>100 ps</th>
<th>250 ps</th>
<th>500 ps</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEXT</td>
<td>SEAM_157,158</td>
<td>SEAM_137,138</td>
<td>0.38</td>
<td>0.24</td>
<td>0.16</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td></td>
<td>SEAM_157,158</td>
<td>SEAM_145,146</td>
<td>1.10</td>
<td>0.99</td>
<td>0.77</td>
<td>0.37</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>SEAM_157,158</td>
<td>SEAM_153,154</td>
<td>0.16</td>
<td>0.10</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>FEXT</td>
<td>SEAM_157,158</td>
<td>SEAF_137,138</td>
<td>0.36</td>
<td>0.15</td>
<td>0.10</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td></td>
<td>SEAM_157,158</td>
<td>SEAF_145,146</td>
<td>0.44</td>
<td>0.27</td>
<td>0.18</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td></td>
<td>SEAM_157,158</td>
<td>SEAF_153,154</td>
<td>0.26</td>
<td>0.19</td>
<td>0.10</td>
<td><0.1</td>
<td><0.1</td>
</tr>
</tbody>
</table>

Differential Optimal Vertical Crosstalk Pin Map

![Pin Map Diagram]

©Samtec, Inc. 2005 Page:14 All Rights Reserved
Table 15 - Differential Crosstalk (%) – High Density Vertical

<table>
<thead>
<tr>
<th>Input(tr)</th>
<th>Driver</th>
<th>Receiver</th>
<th>30 ps</th>
<th>50 ps</th>
<th>100 ps</th>
<th>250 ps</th>
<th>500 ps</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEXT</td>
<td>SEAM_156,157</td>
<td>SEAM_136,137</td>
<td>0.69</td>
<td>0.54</td>
<td>0.43</td>
<td>0.26</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>SEAM_156,157</td>
<td>SEAM_145,146</td>
<td>0.96</td>
<td>0.86</td>
<td>0.69</td>
<td>0.34</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>SEAM_156,157</td>
<td>SEAM_153,154</td>
<td>0.15</td>
<td>0.10</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>FEXT</td>
<td>SEAM_156,157</td>
<td>SEAF_136,137</td>
<td>0.78</td>
<td>0.54</td>
<td>0.41</td>
<td>0.23</td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td>SEAM_156,157</td>
<td>SEAF_145,146</td>
<td>1.00</td>
<td>0.74</td>
<td>0.48</td>
<td>0.22</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>SEAM_156,157</td>
<td>SEAF_153,154</td>
<td>0.20</td>
<td>0.16</td>
<td>0.11</td>
<td><0.1</td>
<td><0.1</td>
</tr>
</tbody>
</table>

Differential High Density Vertical Crosstalk Pin Map
<table>
<thead>
<tr>
<th>Description</th>
<th>Propagation Delay (Mated Connector)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Ended: 1:1 S/G</td>
<td>54 ps</td>
</tr>
<tr>
<td>Single-Ended: 2:1 S/G</td>
<td>54 ps</td>
</tr>
<tr>
<td>Differential: Optimal Horizontal</td>
<td>53 ps</td>
</tr>
<tr>
<td>Differential: Optimal Vertical</td>
<td>51 ps</td>
</tr>
<tr>
<td>Differential: High Density Vertical</td>
<td>53 ps</td>
</tr>
</tbody>
</table>
Characterization Details
This report presents data that characterizes the signal integrity response of a connector pair in a controlled printed circuit board (PCB) environment. All efforts are made to reveal typical best-case responses inherent to the system under test (SUT).

In this report, the SUT includes the connector pair and footprint effects on a typical multi-layer PCB. PCB effects (trace loss) are de-embedded from test data. Board related effects, such as pad-to-ground capacitance, are included in the data presented in this report.

Additionally, intermediate test signal connections can mask the connector’s true performance. Such connection effects are minimized by using high performance test cables and adapters. Where appropriate, calibration and de-embedding routines are also used to reduce residual effects.

Differential and Single-Ended Data
Most Samtec connectors can be used successfully in both differential and single-ended applications. However, electrical performance will differ depending on the signal drive type. In this report, data is presented for both differential and single-ended drive scenarios.

Connector Signal to Ground Ratio
Samtec connectors are most often designed for generic applications and can be implemented using various signal and ground pin assignments. In high-speed systems, provisions must be made in the interconnect for signal return currents. Such paths are often referred to as “ground”. In some connectors, a ground plane or blade, or an outer shield, is used as the signal return, while in others, connector pins are used as signal returns. Various combinations of signal pins, ground blades, and shields can also be utilized. Electrical performance can vary significantly depending upon the number and location of ground pins.

In general, the more pins dedicated to ground, the better electrical performance will be. However, dedicating pins to ground reduces signal density of a connector. Therefore, care must be taken when choosing signal/ground ratios in cost or density-sensitive applications.
For this connector, the following array configurations are evaluated:

- Open pin field
- Grounded pin field
- Signal pin field
- 50 ohm termination field

Single-Ended 1:1 S/G Pattern

Single-Ended 2:1 S/G Pattern

Single-Ended Impedance (denoted by green circles):
- 1:1 S:G ratio
- 2:1 S:G ratio

Single-Ended Crosstalk (denoted by red circles):
- 1:1 S:G ratio
- 2:1 S:G ratio
Series: SEAM/SEAF
Description: Open Pin Field Array, 1.27mm x 1.27mm Pitch, 10mm Stack Height

Differential Optimal Horizontal

Differential Optimal Vertical
Differential Impedance (denoted by green circles):
- Optimal Horizontal
- Optimal Vertical
- High Density Vertical

Differential Crosstalk (denoted by red circles):
- Optimal Horizontal
- Optimal Vertical
- High Density Vertical

Only one single-ended signal or differential pair was driven for crosstalk measurements.

Other configurations can be evaluated upon request. Please contact sig@samtec.com for more information.

In a real system environment, active signals might be located at the outer edges of the signal contacts of concern, as opposed to the ground signals utilized in laboratory testing. For example, in a single-ended system, a pin-out of “SSSS”, or four adjacent single ended signals might be encountered as opposed to the “GSG” and “GSSG” configurations tested in the laboratory. Electrical characteristics in such applications could vary slightly from laboratory results. However, in most applications, performance can safely be considered equivalent.
Signal Edge Speed (Rise Time):
In pulse signaling applications, the perceived performance of the interconnect can vary significantly depending on the edge rate or rise time of the exciting signal. For this report, the fastest rise time used was 30 ps. Generally, this should demonstrate worst-case performance.

In many systems, the signal edge rate will be significantly slower at the connector than at the driver launch point. To estimate interconnect performance at other edge rates, data is provided for several rise times between 30ps and 500ps.

For this report, measured rise times were at 10%-90% signal levels.

Frequency Domain Data
Frequency Domain parameters are helpful in evaluating the connector system’s signal loss and crosstalk characteristics across a range of sinusoidal frequencies. In this report, parameters presented in the Frequency Domain are Insertion Loss, Return Loss, and Near-End and Far-End Crosstalk. Other parameters or formats, such as VSWR or S-Parameters, may be available upon request. Please contact our Signal Integrity Group at sig@samtec.com for more information.

Frequency performance characteristics for the SUT are generated directly from network analyzer measurements.

Time Domain Data
Time Domain parameters indicate Impedance mismatch versus length, signal propagation time, and crosstalk in a pulsed signal environment. The measured S-Parameters from the network analyzer are post-processed using Agilent Advanced Design System to obtain the time domain response. Time Domain procedure is provided in Appendix E of this report. Parameters or formats not included in this report may be available upon request. Please contact our Signal Integrity Group at sig@samtec.com for more information.

In this report, propagation delay is defined as the signal propagation time through the connector and connector footprint. It includes 10 mils of PCB trace on each end of the connector. Delay is measured at 30 picoseconds signal rise-time. Delay is calculated as the difference in time measured between the 50% amplitude levels of the input and output pulses.
Crosstalk or coupled noise data is provided for various signal configurations. All measurements are single disturber. Crosstalk is calculated as a ratio of the input line voltage to the coupled line voltage. The input line is sometimes described as the active or drive line. The coupled line is sometimes described as the quiet or victim line. Crosstalk ratio is tabulated in this report as a percentage. Measurements are made at both the near-end and far-end of the SUT.

Data for other configurations may be available. Please contact our Signal Integrity Group at sig@samtec.com for further information.

As a rule of thumb, 10% crosstalk levels are often used as a general first pass limit for determining acceptable interconnect performance. However, modern system crosstalk tolerance can vary greatly. For advice on connector suitability for specific applications, please contact our Signal Integrity Group at sig@samtec.com.

Additional information concerning test conditions and procedures is located in the appendices of this report. Further information may be obtained by contacting our Signal Integrity Group at sig@samtec.com.
Appendix A – Frequency Domain Response Graphs

Single-Ended Application – Insertion Loss

![Single-Ended Application - Insertion Loss Graph](image)

Single-Ended Application – Return Loss

![Single-Ended Application - Return Loss Graph](image)
High Speed Characterization Report

Series: SEAM/SEAF
Description: Open Pin Field Array, 1.27mm x 1.27mm Pitch, 10mm Stack Height

Single-Ended 1:1 S/G Pattern Application – NEXT

![Single-Ended Application - NEXT](image)

Single-Ended 1:1 S/G Pattern Application – FEXT

![Single-Ended Application - FEXT](image)
Single-Ended 2:1 S/G Pattern Application – NEXT

Single-Ended 2:1 S/G Pattern Application – FEXT
Differential Application – Insertion Loss

![Insertion Loss Graph]

Differential Application – Return Loss

![Return Loss Graph]
Differential Optimal Horizontal Application – NEXT

Differential Optimal Horizontal Application – FEXT
Differential Optimal Vertical Application – NEXT

Differential Optimal Vertical Application – FEXT
Differential High Density Vertical Application – NEXT

Differential High Density Vertical Application – FEXT
Appendix B – Time Domain Response Graphs

Single-Ended Application – Input Pulse
Single-Ended 1:1 S/G Pattern Application – Impedance

Single-Ended Application - Impedance

Time (nsec) vs. Impedance (Ohms)

Single-Ended 1:1 S/G Pattern Application – Propagation Delay

Single-Ended Application - Propagation Delay

Time (nsec) vs. Amplitude (Volts)
Single-Ended 2:1 S/G Pattern Application – Impedance

Single-Ended Application - Impedance

Single-Ended 2:1 S/G Pattern Application – Propagation Delay

Single-Ended Application - Propagation Delay
Single-Ended 1:1 S/G Pattern Application – NEXT, SEAM167_SEAM147

![NEXT Graph]

Single-Ended 1:1 S/G Pattern Application – FEXT, SEAM167_SEAF147

![FEXT Graph]
Single-Ended 1:1 S/G Pattern Application – NEXT, SEAM167_SEAM165

![NEXT Measurement Graph]

Single-Ended 1:1 S/G Pattern Application – FEXT, SEAM167_SEAF165

![FEXT Measurement Graph]
Series: SEAM/SEAF
Description: Open Pin Field Array, 1.27mm x 1.27mm Pitch, 10mm Stack Height

Single-Ended 1:1 S/G Pattern Application – NEXT, SEAM167_SEAM176

![NEXT graph]

Single-Ended 1:1 S/G Pattern Application – FEXT, SEAM167_SEAF176

![FEXT graph]
Single-Ended 2:1 S/G Pattern Application – NEXT, SEAM156_SEAM146

![NEXT Crosstalk Graph](image)

Single-Ended 2:1 S/G Pattern Application – FEXT, SEAM156_SEAF146

![FEXT Crosstalk Graph](image)
Single-Ended 2:1 S/G Pattern Application – NEXT, SEAM156_SEAM155

![NEXT Crosstalk Graph]

Single-Ended 2:1 S/G Pattern Application – FEXT, SEAM156_SEAF155

![FEXT Crosstalk Graph]
Single-Ended 2:1 S/G Pattern Application – NEXT, SEAM156_SEAM165

![NEXT Pattern Graph](image)

Single-Ended 2:1 S/G Pattern Application – FEXT, SEAM156_SEAF165

![FEXT Pattern Graph](image)
Differential Application – Input Pulse
Differential Optimal Horizontal Application – Impedance

Differential Optimal Horizontal Application – Propagation Delay
Series: SEAM/SEAF

Description: Open Pin Field Array, 1.27mm x 1.27mm Pitch, 10mm Stack Height

Differential Optimal Vertical Application – Impedance

Differential Optimal Vertical Application – Propagation Delay
Differential High Density Vertical Application – Impedance

Differential High Density Vertical Application – Propagation Delay
Diff Optimal Horizontal Application – NEXT, SEAM147, 157_SEAM107, 117

Diff Optimal Horizontal Application – FEXT, SEAM147, 157_SEAF107, 117
Series: SEAM/SEAF
Description: Open Pin Field Array, 1.27mm x 1.27mm Pitch, 10mm Stack Height

Diff Optimal Horizontal Application – NEXT, SEAM147, 157_SEAM126, 136

![Differential Application - NEXT](image1.png)

Time (nsec)

Diff Optimal Horizontal Application – FEXT, SEAM147, 157_SEAF126, 136

![Differential Application - FEXT](image2.png)

Time (nsec)
Diff Optimal Horizontal Application – NEXT, SEAM147, 157_SEAM145, 155

![Differential Application - NEXT](image)

Diff Optimal Horizontal Application – FEXT, SEAM147, 157_SEAF145, 155

![Differential Application - FEXT](image)
Diff Optimal Vertical Application – NEXT, SEAM157, 158_SEAM137, 138

Diff Optimal Vertical Application – FEXT, SEAM157, 158_SEAF137, 138
Diff Optimal Vertical Application – NEXT, SEAM157, 158_SEAM145, 146

![Differential Application - NEXT](image)

Time (nsec)

Cross talk (%)

-1.2
-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6

30 psec
60 psec
100 psec
250 psec
500 psec

Diff Optimal Vertical Application – FEXT, SEAM157, 158_SEAF145, 146

![Differential Application - FEXT](image)

Time (nsec)

Cross talk (%)

-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4
0.5

30 psec
60 psec
100 psec
250 psec
500 psec
Series: SEAM/SEAF
Description: Open Pin Field Array, 1.27mm x 1.27mm Pitch, 10mm Stack Height

Diff Optimal Vertical Application – NEXT, SEAM157, 158_SEAM153, 154

![Differential Application - NEXT](image)

Diff Optimal Vertical Application – FEXT, SEAM157, 158_SEAF153, 154

![Differential Application - FEXT](image)
Diff High Density Vertical Application – NEXT, SEAM156, 157_SEAM136, 137

![Differential Application - NEXT](image)

Diff High Density Vertical Application – FEXT, SEAM156, 157_SEAF136, 137

![Differential Application - FEXT](image)
Series: SEAM/SEAF
Description: Open Pin Field Array, 1.27mm x 1.27mm Pitch, 10mm Stack Height

Diff High Density Vertical Application – NEXT, SEAM156, 157_SEAM145, 146

![Differential Application - NEXT](image1)

Diff High Density Vertical Application – FEXT, SEAM156, 157_SEAF145, 146

![Differential Application - FEXT](image2)
Series: SEAM/SEAF
Description: Open Pin Field Array, 1.27mm x 1.27mm Pitch, 10mm Stack Height

Diff High Density Vertical Application – NEXT, SEAM156, 157_SEAM153, 154

![Graph of Differential Application - NEXT](image1)

Diff High Density Vertical Application – FEXT, SEAM156, 157_SEAF153, 154

![Graph of Differential Application - FEXT](image2)
Appendix C – Product and Test System Descriptions

Product Description
Product test samples are 10 mm (0.394”) stack height SEAM/SEAF Series connectors. The part numbers are SEAM-30-03.5-S-10-2-A-K-TR and SEAF-30-06.5-S-10-2-A-K-TR. The SEAM/SEAF Series is an open pin field connector designed for single-ended signals with various options for differential signaling configurations. The open pin field array is 10 row providing 30 signal pins per row. A photo of the test articles mounted to SI test boards is shown below.

Test System Description
The test fixtures are composed of four-layer FR-4 material with 50Ω signal trace and pad configurations designed for the electrical characterization of Samtec high speed connector products. A PCB mount SMA connector is used to interface the VNA test cables to the test fixtures. Optimization of the SMA launch was performed using full wave simulation tools to minimize reflections. Ten test fixtures are specific to the SEAM/SEAF Series connector set and identified by part numbers PCB-103314-TST-01-A and B to PCB-103314-TST-05 A and B. Calibration standards specific to the SEAM/SEAF Series are located on the calibration boards PCB-103314-TST-06 and PCB-103314-TST-07. To keep trace lengths short, five different test board sets were required to access the necessary signal pins.

PCB-103314-TST-XX Test Fixtures
Shown below is a photograph of one of the five test board sets.
PCB-103314-TST-XX PCB Layout Panel

Artwork of the PCB design is shown below.
PCB Fixtures

The test fixtures used are as follows:

- PCB-103314 -TST-04-A Rev – SEAF Series Test Board for SE 1:1 S/G Pattern
- PCB-103314 -TST-01-B Rev – SEAM Series Test Board for Differential Optimal Horizontal
- PCB-103314 -TST-01-A Rev – SEAF Series Test Board for Differential Optimal Horizontal
- PCB-103314 -TST-02-B Rev – SEAM Series Test Board for Differential Optimal Vertical
- PCB-103314 -TST-02-A Rev – SEAF Series Test Board for Differential Optimal Vertical
- PCB-103314 -TST-03-B Rev – SEAM Series Test Board for Differential High Density Vertical
- PCB-103314 -TST-03-A Rev – SEAF Series Test Board for Differential High Density Vertical
Series: SEAM/SEAF
Description: Open Pin Field Array, 1.27mm x 1.27mm Pitch, 10mm Stack Height
Series: SEAM/SEAF
Description: Open Pin Field Array, 1.27mm x 1.27mm Pitch, 10mm Stack Height
Calibration Board

Test fixture losses and test point reflections were removed from the data by use of TRL calibration. The calibration board is shown below. Prior to making any measurements, the calibration board is characterized to obtain parameters required to define the calibration kit. Once a cal kit is defined, calibration using the standards on the calibration board can be performed. Finally, the device can be measured and the test board effects are automatically removed.

Thru line – 2980 mils
Open Reflect – 1490 mils
Line 1 – 6370 mils
Line 2 – 3660 mils
Line 3 – 3120 mils
Match – 1490 mils
All traces on the test boards are length matched to 1.5” measured from the edge of the pad to the SMA. The TRL calibration effectively removes 1.490” of test board trace effects. This means that 10 mils of test board trace length effects are included in the measurement. The S-Parameter measurement includes:

A- The SEAM/SEAF Series connector set
B- Test board vias and pads (footprint effects)
C- 10 mils of 9.5 mil wide microstrip trace

The figure below shows the location of the measurement reference plane.
Appendix D – Test and Measurement Setup

The test instrument is the Agilent N5230C PNA-L network analyzer. Frequency domain data and graphs are obtained directly from the instrument. Post-processed time domain data and graphs are generated using convolution algorithms within Agilent ADS. The network analyzer is configured as follows:

Start Frequency – 300 KHz
Stop Frequency – 20 GHz
Number of points -1601
IFBW – 1 KHz

With these settings, the measurement time is approximately 20 seconds.

N5230C Measurement Setup
Series: SEAM/SEAF
Description: Open Pin Field Array, 1.27mm x 1.27mm Pitch, 10mm Stack Height

Test Instruments

<table>
<thead>
<tr>
<th>QTY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Agilent N5230C PNA-L Network Analyzer (300 KHz to 20 GHz)</td>
</tr>
<tr>
<td>1</td>
<td>Agilent N4433A ecal module (300 KHz to 20 GHz)</td>
</tr>
</tbody>
</table>

Test Cables & Adapters

<table>
<thead>
<tr>
<th>QTY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Gore OWD01D02039-4 (DC-50 GHz)</td>
</tr>
</tbody>
</table>
Appendix E - Frequency and Time Domain Measurements

Frequency (S-Parameter) Domain Procedures

The quality of any data taken with a network analyzer is directly related to the quality of the calibration standards and the use of proper test procedures. For this reason, extreme care is taken in the design of the LRM calibration standards, the SI test boards, and the selection of the PCB vendor.

The measurement process begins with a measurement of the LRM calibration standards. A coaxial SOLT calibration is performed using an N4433A ecal module. This measurement is required in order to obtain precise values of the line standard offset delay and frequency bandwidths. Measurements of the reflect and 2x through line standard can be used to determine the maximum frequency for which the calibration standards are valid. For the SEAM/SEAF Series test boards, this is greater than 20 GHz.

From the LRM calibration standard measurements, a user defined calibration kit is developed and stored in the network analyzer. Calibration is then performed on all 4 ports following the calibration wizard within the Agilent N5230C. This calibration is saved and can be recalled at any time. Calibration takes roughly 30 minutes to perform.

Time Domain Procedures

Mathematically, Frequency Domain data can be transformed to obtain a Time Domain response. Perfect transformation requires Frequency Domain data from DC to infinity Hz. Fortunately, a very accurate Time Domain response can be obtained with bandwidth-limited data, such as measured with modern network analyzer.

The Time Domain responses were generated using Agilent ADS 2009 update 1. This tool has a transient convolution simulator, which can generate a Time Domain response directly from measured S-Parameters. An example of a similar methodology is provided in the Samtec Technical Note on domain transformation. http://www.samtec.com/Technical_Library/reference/articles/pdfs/tech-note_using-PLTS-for-time-domain-data_web.pdf

Impedance (TDR)

A step pulse is applied to the touchstone model of the connector and the reflected voltage is monitored. The reflected voltage is converted to a reflection coefficient and then transformed into an impedance profile. All ports of the Touchstone model are terminated in 50 ohms.
Series: SEAM/SEAF
Description: Open Pin Field Array, 1.27mm x 1.27mm Pitch, 10mm Stack Height

Propagation Delay (TDT)
The Propagation Delay is a measure of the Time Domain delay through the connector and footprint. A step pulse is applied to the touchstone model of the connector and the transmitted voltage is monitored. The same pulse is also applied to a reference channel with zero loss, and the Time Domain pulses are plotted on the same graph. The difference in time, measured at the 50% point of the step voltage is the propagation delay.

Near-End Crosstalk (TDT) & Far End Crosstalk (TDT)
A step pulse is applied to the touchstone model of the connector and the coupled voltage is monitored. The amplitude of the peak-coupled voltage is recorded and reported as a percentage of the input pulse.
Appendix F – Glossary of Terms

ADS – Advanced Design Systems
BC – Best Case crosstalk configuration
DUT – Device under test, term used for TDA IConnect & Propagation Delay waveforms
FD – Frequency domain
FEXT – Far-End Crosstalk
GSG – Ground–Signal-Ground; geometric configuration
GSSG - Ground–Signal-Signal-Ground; geometric configuration
HDV – High Density Vertical
NEXT – Near-End Crosstalk
OV – Optimal Vertical
OH – Optimal Horizontal
PCB – Printed Circuit Board
PPO – Pin Population Option
SE – Single-Ended
SI – Signal Integrity
SUT – System Under Test
S – Static (independent of PCB ground)
SOLT – acronym used to define Short, Open, Load & Thru Calibration Standards
TD – Time Domain
TDA – Time Domain Analysis
TDR – Time Domain Reflectometry
TDT – Time Domain Transmission
WC – Worst Case crosstalk configuration
Z – Impedance (expressed in ohms)