High Speed Characterization Report

SEAC-XXX-XX-XX.X-TU-TU

Mated with:

SEAF-XX-05.0-X-XX-X-A-K-TR

Description:

1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG 50 ohm Coax Cable
Table of Contents

Cable Assembly Overview ... 1
Cable Assembly Speed Rating .. 2
Eye Pattern Summary .. 3
Frequency Domain Data Summary ... 5
 Bandwidth Chart – Single-Ended Insertion Loss 6
Time Domain Data Summary ... 7
Characterization Details .. 9
 Differential and Single-Ended Data ... 9
 Cable assembly Signal to Ground Ratio ... 9
 Eye Diagram Data .. 11
 Frequency Domain Data .. 11
 Time Domain Data .. 11
Appendix A – Eye Diagrams ... 13
Appendix B – Frequency Domain Response Graphs 17
 Single-Ended Application – Insertion Loss 17
 Single-Ended Application – Return Loss ... 18
 Single-Ended Application – NEXT Configurations 19
 Single-Ended Application – FEXT Configurations 21
Appendix C – Time Domain Response Graphs 23
 Single-Ended Application – Input Pulse .. 23
 Single-Ended Application – Cable Assembly Impedance 24
 Single-Ended Application – Cable assembly Impedance 25
 Single-Ended Application – Propagation Delay 27
Appendix D – Product and Test System Descriptions 28
 Product Description .. 28
 Test System Description .. 28
 PCB-106736-SIG-XX Test Fixtures ... 28
 PCB Fixtures ... 30
Appendix E – Test and Measurement Setup ... 31
 N5230C Measurement Setup .. 31
 Test Instruments ... 31
 Test Cables & Adapters ... 31
 DSA8200 Measurement Setup ... 32
 Test Instruments ... 32
 Test Cables & Adapters ... 32
Appendix F - Frequency and Time Domain Measurements 33
 Eye Diagram Procedures .. 33
 Eye Mask .. 34
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG
50 ohm Coax Cable
 Rise Time..34
 Frequency (S-Parameter) Domain Procedures ...35
 Time Domain Procedures ...37
 Propagation Delay (TDT) ...37
 Impedance (TDR) ...37
Appendix G – Glossary of Terms ..38
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG
50 ohm Coax Cable

Cable Assembly Overview

The SEAC Cable Assembly is constructed using 36 AWG 50 ohm coax cable and is

designed for high speed, micro pitch application. The SEAC series cable assemblies are

up to ten rows and 500 I/Os, of which half pins dedicated to ground. The minimum cable

length is 152.4 mm (6.0"). The data in this report is only applicable to 250 mm and 1000

mm length cable assembly.

The test sample consists of nine micro ribbon coax cables separated into three groups

of three ribbons each. There are a total of ninety signal lines. At each end of the cable

there is an open pin field array that mates with Edge Rate™ contacts. Each open pin

field array has three small transition PCBs that provide for termination of the ribbon ca-

bles as well as pads that are compatible with Edge Rate™ contacts. The pads are on a

1.27 mm pitch, and half the pads are dedicated to ground. The transition boards use

green PCBs at End 1 and red PCBs at END 2.

The SEAC cable assemblies were tested by mating it to a SEAF-30-05.0-L-06-X-A-K-

TR socket at each end. One sample of each length assembly was tested. The actual

part numbers that were tested are shown in Table 1, which also identifies End 1 and

End 2 of each assembly. A relative sample picture is shown in Figure 1. Two lines, an

Inner Path and an Outer Path of the sample were tested. End 1 is at the left with the as-

sembly stretch out and viewed so that the cable label containing the assembly part

number can be read in normal fashion form left to right.

<table>
<thead>
<tr>
<th>Length</th>
<th>Part Number</th>
<th>End 1</th>
<th>End 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>250 mm</td>
<td>SEAC-030-06-10.0-TU-TU</td>
<td>Open Pin Field Array</td>
<td>Open Pin Field Array</td>
</tr>
<tr>
<td>1000 mm</td>
<td>SEAC-030-06-39.4-TU-TU</td>
<td>Open Pin Field Array</td>
<td>Open Pin Field Array</td>
</tr>
</tbody>
</table>

Table 1: Sample Description

Figure 1: Test Sample
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG 50 ohm Coax Cable

Cable Assembly Speed Rating

The cable assembly Speed Rating is based on the -7 dB insertion loss point of the mated cable assembly. The -7 dB point can be used to estimate usable system bandwidth in a typical two-level signaling environment.

To calculate the Speed Rating, the measured -7 dB point is rounded up to the nearest half-GHz level. The up-rounding corrects for any loss from the test board traces. The resulting loss value is then doubled to determine the approximate maximum data rate in Gigabits per second (Gbps). The following table summarizes the Cable Assembly Speed Ratings for the SEAC cable assemblies tested.

<table>
<thead>
<tr>
<th>Assembly</th>
<th>-7 dB Frequency</th>
<th>Speed Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEAC-030-06-10.0-TU-TU</td>
<td>Inner Path</td>
<td>8.5 GHz</td>
</tr>
<tr>
<td></td>
<td>Outer Path</td>
<td>4.5 GHz</td>
</tr>
<tr>
<td>SEAC-030-06-39.4-TU-TU</td>
<td>Inner Path</td>
<td>3.5 GHz</td>
</tr>
<tr>
<td></td>
<td>Outer Path</td>
<td>3.0 GHz</td>
</tr>
</tbody>
</table>

Table 2: Cable Assembly Speed Rating

The Samtec Speed Rating is best considered a figure of merit for comparing relative performance between cable assemblies. The Speed Rating becomes less meaningful in systems using multi-level signaling or where crosstalk or impedance mismatch are more critical parameters. Modern high-speed digital transceivers can accommodate roughly 9 dB of loss and still operate reliably. The -7 dB rating is a conservative number that allocates 2 dB of system budget for other channel components such as short PCB traces and IC packaging effects.
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG 50 ohm Coax Cable

Eye Pattern Summary

SEAC-030-06-10.0-TU-TU
Single-Ended

Inner Path Output Eye: 17 Gbps
Outer Path Output Eye: 9 Gbps
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG 50 ohm Coax Cable

SEAC-030-06-39.4-TU-TU
Single-Ended

Inner Path Output Eye: 7 Gbps
Outer Path Output Eye: 6 Gbps

Samtec Inc.
520 Park East Blvd.
New Albany IN 47151-1147 USA
©Samtec, Inc. 2005

WWW.SAMTEC.COM
1-800-SAMTEC-9 (US & Canada)
SG3@samtec.com

Phone: 812-944-6733
Fax: 812-948-5047
Report Revision: 7/29/2015
Page:4
All Rights Reserved
High Speed Characterization Report

Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG 50 ohm Coax Cable

Frequency Domain Data Summary

Table 3 – Single-Ended Cable System Performance

<table>
<thead>
<tr>
<th>Test Parameter</th>
<th>Configuration</th>
<th>Driver</th>
<th>Receiver</th>
<th>0.25m</th>
<th>1m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>Inner Path</td>
<td>END1_93</td>
<td>END2_87</td>
<td>7dB@ 8.04 GHz</td>
<td>7dB@ 3.25 GHz</td>
</tr>
<tr>
<td></td>
<td>Outer Path</td>
<td>END1_180</td>
<td>END2_6</td>
<td>7dB@ 4.36 GHz</td>
<td>7dB@ 2.58 GHz</td>
</tr>
<tr>
<td>Return Loss</td>
<td>Inner Path</td>
<td>END1_93</td>
<td>END1_93</td>
<td>>10dB to 4.24 GHz</td>
<td>>10dB to 5.89 GHz</td>
</tr>
<tr>
<td></td>
<td>Outer Path</td>
<td>END1_180</td>
<td>END1_180</td>
<td>>10dB to 3.69 GHz</td>
<td>>10dB to 3.93 GHz</td>
</tr>
<tr>
<td>Near-End Crosstalk</td>
<td>In Row: Inner Path</td>
<td>END1_93</td>
<td>END1_105</td>
<td><-20dB to 16.81 GHz</td>
<td><-20dB to 13.18 GHz</td>
</tr>
<tr>
<td></td>
<td>Across Row</td>
<td>END1_93</td>
<td>END1_94</td>
<td><-20dB to 3.63 GHz</td>
<td><-20dB to 3.6GHz</td>
</tr>
<tr>
<td></td>
<td>In Row: Outer Path</td>
<td>END1_180</td>
<td>END1_168</td>
<td><-20dB to 3.55 GHz</td>
<td><-20dB to 4.79 GHz</td>
</tr>
<tr>
<td></td>
<td>Across Row</td>
<td>END1_180</td>
<td>END1_179</td>
<td><-20dB to 1.11 GHz</td>
<td><-20dB to 0.99 GHz</td>
</tr>
<tr>
<td>Far-End Crosstalk</td>
<td>In Row: Inner Path</td>
<td>END1_93</td>
<td>END2_75</td>
<td><-20dB to 6.53 GHz</td>
<td><-20dB to 20 GHz</td>
</tr>
<tr>
<td></td>
<td>Across Row</td>
<td>END1_93</td>
<td>END2_88</td>
<td><-20dB to 4.46 GHz</td>
<td><-20dB to 20 GHz</td>
</tr>
<tr>
<td></td>
<td>In Row: Outer Path</td>
<td>END1_180</td>
<td>END2_18</td>
<td><-20dB to 1.94 GHz</td>
<td><-20dB to 2.69 GHz</td>
</tr>
<tr>
<td></td>
<td>Across Row</td>
<td>END1_180</td>
<td>END2_5</td>
<td><-20dB to 1.43 GHz</td>
<td><-20dB to 1.39 GHz</td>
</tr>
</tbody>
</table>

©Samtec, Inc. 2005
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG
50 ohm Coax Cable

Bandwidth Chart – Single-Ended Insertion Loss
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG
50 ohm Coax Cable

Time Domain Data Summary

0.25m: Single-Ended Application - Impedance

1m: Single-Ended Application - Impedance
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG 50 ohm Coax Cable

<table>
<thead>
<tr>
<th>Cable length</th>
<th>Driver/ Receiver</th>
<th>Driver/ Receiver</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>END1_93/END2_87</td>
<td>END1_180/END2_6</td>
</tr>
<tr>
<td>0.25m</td>
<td>1.330ns</td>
<td>1.344ns</td>
</tr>
<tr>
<td>1m</td>
<td>4.575ns</td>
<td>4.620ns</td>
</tr>
</tbody>
</table>

Table 4 - Propagation Delay (Cable Assembly)
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG 50 ohm Coax Cable

Characterization Details
This report presents data that characterizes the signal integrity response of a cable assembly in a controlled printed circuit board (PCB) environment. All efforts are made to reveal typical best-case responses inherent to the system under test (SUT).

In this report, the SUT includes the mating connectors, cable assembly, and footprint effects on a typical multi-layer PCB. PCB effects (trace loss) are de-embedded from test data. Board related effects, such as pad-to-ground capacitance, are included in the data presented in this report.

Additionally, intermediate test signal connections can mask the cable assembly’s true performance. Such connection effects are minimized by using high performance test cables and adapters. Where appropriate, calibration and de-embedding routines are also used to reduce residual effects.

Differential and Single-Ended Data
Most Samtec cable assemblies can be used successfully in both differential and single-ended applications. However, electrical performance will differ depending on the signal drive type. In this report, data is only presented for “S” single-ended drive configurations.

Cable assembly Signal to Ground Ratio
Samtec cable assemblies are most often designed for generic applications and can be implemented using various signal and ground pin assignments. In high speed systems, provisions must be made in the interconnect for signal return currents. Such paths are often referred to as “ground”. In some cable assemblies, a ground plane or blade, or an outer shield, is used as the signal return, while in others, cable assembly pins are used as signal returns. Various combinations of signal pins, ground blades, and shields can also be utilized. Electrical performance can vary significantly depending upon the number and location of ground pins.

In general, the more pins dedicated to ground, the better electrical performance will be. But dedicating pins to ground reduces signal density of a cable assembly. Therefore, care must be taken when choosing signal/ground ratios in cost or density-sensitive applications.
Single-Ended Impedance:
- Inner Path (inner terminals, inside test fixture)
- Outer Path (outer terminals, edge of test fixture)

Single-Ended Crosstalk:
- In Row: Inner Path (adjacent terminals in the inner path)
- In Row: Outer Path (adjacent terminals in the outer path)
- Across Row: "Xrow": (from one row of terminals to the other row)

See Appendix D – Product and Test System Descriptions for details

Only one single-ended signal was driven for crosstalk measurements.

Other configurations can be evaluated upon request. Please contact siq@samtec.com for more information.

In a real system environment, active signals might be located at the outer edges of the signal contacts of concern, as opposed to the ground signals utilized in laboratory testing. For example, in a single-ended system, a pin-out of "SSSS", or four adjacent single ended signals might be encountered as opposed to the "GSG" and "GSSG" configurations tested in the laboratory. Electrical characteristics in such applications could vary slightly from laboratory results. But in most applications, performance can safely be considered equivalent.

Signal Edge Speed (Rise Time)
In pulse signaling applications, the perceived performance of the interconnect can vary significantly depending on the edge rate or the rise time of the exciting signal. For this report, the fastest rise time used was 30 ps. Generally, this should demonstrate the worst-case performance.

In many systems, the signal edge rate will be significantly slower at the cable assembly than at the driver launch point. To estimate interconnect performance at other edge rates, data is provided for several rise times between 30ps and 500ps.

Unless otherwise stated, measured rise times were at 10%-90% signal levels.
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG
50 ohm Coax Cable
Eye Diagram Data
Eye patterns are a time domain characterization of system level performance. Eye patterns are generated by sending continuous streams of data from a transmitter to a receiver, and overlaying the received signals upon one another. Over time, the received data builds to resemble an eye. Negative SI effects in the transmission path can cause the signal to distort, which over time, will cause the eye to “close”. Specifications, such as an eyemask template, can be placed on the amount of open area required in the eye to ensure a functional system.

An eyemask template is a representation of the receiver’s sensitivity and is often used as a metric of performance. While there are lot-to-lot and vendor-to-vendor variations in receiver sensitivity, some general guidelines can be developed. After reviewing several major industry standards (PCle, Gigabit Ethernet), we find similar eyemask requirements and we will use these as the basis for a generic template in this report. For this report, we will assume a receiver amplitude sensitivity of 50 mVpp and a jitter margin of 0.5 UI. This results in a diamond shape eyemask template that is 50 mV high and 0.5 UI wide.

Please contact our Signal Integrity Group at sig@samtec.com for more information.

Frequency Domain Data
Frequency Domain parameters are helpful in evaluating the cable assembly system’s signal loss and crosstalk characteristics across a range of sinusoidal frequencies. In this report, parameters presented in the Frequency Domain are Insertion Loss, Return Loss, Near-End and Far-End Crosstalk. Other parameters or formats, such as VSWR or S-Parameters, may be available upon request. Please contact our Signal Integrity Group at sig@samtec.com for more information.

Frequency performance characteristics for the SUT are generated from network analyzer measurements.

Time Domain Data
Time Domain parameters indicate impedance mismatch versus length and signal propagation time in a pulsed signal environment.

Impedance mismatch versus length is measured by DSA8200 Digital Serial Analyzer. Board related effects, such as pad-to-ground capacitance and trace loss, are included in the data presented in this report. The impedance data is provided in Appendix C of this report.
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG 50 ohm Coax Cable

The measured S-Parameters from the network analyzer are post-processed using Agilent ADS to obtain the time domain response for signal propagation time. The Time Domain procedure is provided in Appendix F of this report. Parameters or formats not included in this report may be available upon request. Please contact our Signal Integrity Group at sig@samtec.com for more information.

In this report, propagation delay is defined as the signal propagation time through the cable assembly, mating connectors, and connector footprint. It also includes 10 mils of PCB trace on each connector side. Delay is measured at 30 picoseconds signal rise-time. Delay is calculated as the difference in time measured between the 50% amplitude levels of the input and output pulses.

Data for other configurations may be available. Please contact our Signal Integrity Group at sig@samtec.com for further information.

Additional information concerning test conditions and procedures is located in the appendices of this report. Further information may be obtained by contacting our Signal Integrity Group at sig@samtec.com.
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG
50 ohm Coax Cable

Appendix A – Eye Diagrams

SEAC-030-06-10.0-TU-TU
Single-Ended

17Gbps: Inner Path
No De-Emphasis

Amplitude (V)
Time (ps)
E/e Height = 202 mV

3dB De-Emphasis

Amplitude (V)
Time (ps)
E/e Height = 281 mV

6dB De-Emphasis

Amplitude (V)
Time (ps)
E/e Height = 282 mV
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG
50 ohm Coax Cable

Single-Ended

9Gbps: Outer Path
No De-Emphasis

3dB De-Emphasis

6dB De-Emphasis
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG
50 ohm Coax Cable

SEAC-030-06-39.4-TU-TU
Single-Ended

7Gbps: Inner Path

No De-Emphasis

3dB De-Emphasis

6dB De-Emphasis
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG
50 ohm Coax Cable

Single-Ended

6Gbps: Outer Path

No De-Emphasis

3dB De-Emphasis

6dB De-Emphasis

E/e Height = 158 mV

E/e Height = 247 mV

E/e Height = 279 mV
Appendix B – Frequency Domain Response Graphs

Single-Ended Application – Insertion Loss

0.25m: Single-Ended Application - Insertion Loss

1m: Single-Ended Application - Insertion Loss
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG
50 ohm Coax Cable

Single-Ended Application – Return Loss

0.25m: Single-Ended Application - Return Loss

1m: Single-Ended Application - Return Loss
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG 50 ohm Coax Cable

Single-Ended Application – NEXT Configurations

0.25m: Single-Ended Application - NEXT

<table>
<thead>
<tr>
<th>Frequency (GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

Near-End Crosstalk (dB)

- END1_91_END1_105
- END1_91_END1_94

0.25m: Single-Ended Application - NEXT

<table>
<thead>
<tr>
<th>Frequency (GHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

Near-End Crosstalk (dB)

- END1_18_END1_168
- END1_18_END1_176
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG
50 ohm Coax Cable
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG
50 ohm Coax Cable

Single-Ended Application – FEXT Configurations

0.25m: Single-Ended Application - FEXT

0.25m: Single-Ended Application - FEXT
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG
50 ohm Coax Cable

![Graph 1](image1)

![Graph 2](image2)
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG 50 ohm Coax Cable

Appendix C – Time Domain Response Graphs

Single-Ended Application – Input Pulse
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG
50 ohm Coax Cable
Single-Ended Application – Cable Assembly Impedance

0.25m: Single-Ended Application - Impedance

1m: Single-Ended Application - Impedance
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG
50 ohm Coax Cable
Single-Ended Application – Cable assembly Impedance

SEAC-030-06-10.0-TU-TU

END1_93_END2_87

END1_186_END2_6
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG 50 ohm Coax Cable

SEAC-030-06-39.4-TU-TU
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG
50 ohm Coax Cable

Single-Ended Application – Propagation Delay

![Graph 1](image1)

![Graph 2](image2)
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG 50 ohm Coax Cable

Appendix D – Product and Test System Descriptions

Product Description
Product test samples are 1.27 mm SEARAY™ High Speed High Density Array Cable Assemblies. The part numbers are SEAC-030-06-10.0-TU-TU and SEAC-030-06-39.4-TU-TU. They mate with SEAF-30-05.0-L-06-2-A-K-TR. A photo of the mated test article mounted to SI test boards is shown below.

The cable assembly terminations had a particular signal line configuration. The respective END 1 signal line numbers that were made available as test ports and that were used during the testing are shown in Table 5 below. All adjacent lines are terminated where applicable.

![Table 5: Respective signal line numbers as viewed from End 1](image)

Test System Description
The test fixtures are composed of four-layer FR-4 material with 50Ω signal trace and pad configurations designed for the electrical characterization of Samtec high speed cable assembly products. A PCB mount SMA connector is used to interface the VNA test cables to the test fixtures. Optimization of the SMA launch was performed using full wave simulation tools to minimize reflections. Two test fixtures are specific to SEAC series cable assemblies and identified by part numbers PCB-106736-SIG-01A and 01B. The Auto Fixture Removal (AFR) calibration structures designed specifically for the SEAC series are located on PCB-106736-SIG-01A test board. Displayed on the following pages is the information for the SEAC and AFR calibration structure and directives for the mating SEAC fixtures.

PCB-106736-SIG-XX Test Fixtures

![PCB-106736-SIG-XX Test Fixtures](image)
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG 50 ohm Coax Cable
Artwork of the PCB design is shown below.
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG 50 ohm Coax Cable

PCB Fixtures
The test fixtures used are as follows:

PCB-106736-SIG-01A – SEAC Cable Test Board 1
PCB-106736-SIG-01B – SEAC Cable Test Board 2
Appendix E – Test and Measurement Setup

For frequency domain measurements, the test instrument is the Agilent N5230C PNA-L network analyzer. Frequency domain data and graphs are extracted from the instrument by AFR application. Post-processed time domain data and graphs are generated using convolution algorithms within Agilent ADS. The network analyzer is configured as follows:

Start Frequency – 300 KHz Number of points -1601
Stop Frequency – 20 GHz IFBW – 1 KHz

With these settings, the measurement time is approximately 20 seconds.

N5230C Measurement Setup

Test Instruments

<table>
<thead>
<tr>
<th>QTY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Agilent N5230C PNA-L Network Analyzer (300 KHz to 20 GHz)</td>
</tr>
<tr>
<td>1</td>
<td>Agilent N4433A ECAL Module (300 KHz to 20 GHz)</td>
</tr>
</tbody>
</table>

Test Cables & Adapters

<table>
<thead>
<tr>
<th>QTY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Gore OWD01D02039-4 (DC-26.5 GHz)</td>
</tr>
</tbody>
</table>
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG 50 ohm Coax Cable
For impedance measurements, the test instrument is the Tektronix DSA8200 Digital Serial Analyzer mainframe and 80E04 sampling module. The impedance data and profiles are obtained directly from the instrument. The Digital Analyzer is configured as follows:

Vertical Scale: 5 ohm / Div:
Offset: Default / Scroll
Horizontal Scale: 500ps/ Div or 1.5ns/ Div
Record Length: 4000
Averages: ≥ 16

DSA8200 Measurement Setup

![DSA8200 Measurement Setup](image)

Test Instruments

<table>
<thead>
<tr>
<th>QTY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tektronix DSA8200 Digital Serial Analyzer</td>
</tr>
<tr>
<td>2</td>
<td>Tektronix 80E04 Dual Channel 20 GHz TDR Sampling Module</td>
</tr>
</tbody>
</table>

Test Cables & Adapters

<table>
<thead>
<tr>
<th>QTY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Samtec RF405-01SP1-01SP1-0305 (DC-20 GHz)</td>
</tr>
</tbody>
</table>
Appendix F - Frequency and Time Domain Measurements

Eye Diagram Procedures

Eye Diagrams and statistical eye diagram metrics such as eye height can be generated by post-processing Frequency Domain measurements using Agilent ADS. Simulated data is sent over a touchstone model and the bits are overlain into an eye pattern.

Currently, no CEI specification is available for 7Gbps, so CEI-28-VSR Working Clause Proposal, CEI Implementation agreement Draft 7.0, dated May 14, 2012 was used for this report.

The simulation circuit is modeled as:
Agilent’s Advanced Design System Tx and Rx modules that are configured to the CEI-28-VSR Working Clause Proposal, CEI Implementation agreement Draft 7.0, dated May 14, 2012.

- Tx parameters are specified in Section 1.3.3, Module-to-Host Specifications, Table 1-4, Page 7.
- Rx parameters defined in Section 1.3.2 Host-to-Module Electrical Specifications, Table 1-1, Page 5.
- A 1.5 inch length of Tx interconnect trace segment at the transmitter.
- SUT Cable Assembly S-Parameter measurements
 - 10 mils of 9.5 mil wide single-ended microstrip signal trace
 - Test board vias, pads (footprint effects) for the SEAF connector
 - The SEAF series connector
 - The SEAC-030-06-XX.X-TU-TU cable assembly
 - The SEAF series connector
 - Test board vias, pads (footprint effects) for the SEAF connector
 - 10 mils of 9.5 mil wide single-ended microstrip signal trace
 - A 1.5 inch length of Rx interconnect trace segment at the receiver.

All traces were modeled as microstrip on FR4 with the following parameters:

- The FR4 parameters are modeled using:
 - Er = 4.2 @ 1 GHz
 - Loss Tangent = 0.02 @ 1 GHz

- Copper is modeled as:
 - Conductivity = 4.5E+7 S-m
 - Surface roughness = 0.6 micron

- Traces are microstrip with the following geometry:
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG 50 ohm Coax Cable
 o 9.5 mil trace width
 o 1.7 mil trace copper thickness
 o 5.9 mil FR4 dielectric thickness

Eye Mask
The eye mask is set for 50mVpp, with a jitter margin of 0.5 UI.

Rise Time
The 10-90 risetime of the 9Gbps signal was determined to be 78psec, using the following formula:

\[
\text{Risetime} = \frac{0.35}{\text{Bandwidth}}
\]
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG
50 ohm Coax Cable

Frequency (S-Parameter) Domain Procedures

The quality of any data taken with a network analyzer is directly related to the quality of the calibration standards and the use of proper test procedures. For this reason, extreme care is taken in the design of the AFR calibration standards, the SI test boards and the selection of the PCB vendor.

The measurement process begins with a measurement of the AFR calibration standards. A coaxial SOLT calibration is performed using an N4433A E-CAL module. This measurement is required in order to obtain precise values of the line standard offset delay and frequency bandwidths. Measurements of the 2x through line standard can be used to determine the maximum frequency for which the calibration standards are valid. For the SEAC test boards, this is greater than 20 GHz.

The figure below shows how the THRU reference traces are utilized to compensate for the losses due to the coaxial test cables and the test fixture during testing. The calibration board is characterized to obtain parameters required to define the 2x Thru.
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG 50 ohm Coax Cable

Measurements are then performed using the test boards as shown below. The test board effects are removed in post-processing via AFR in Agilent PLTS. The calibrated reference plane is located at the middle of the connector footprint on each side. The S-Parameter measurements include:

A. 10 mils of 9.5 mil wide single-ended microstrip signal trace
B. Test board vias, pads (footprint effects) for the SEAF connector
C. The SEAF series connector
D. The SEAC-030-06-XX.X-TU-TU test cable
E. The SEAF series connector
F. Test board vias, pads (footprint effects) for the SEAF connector
G. 10 mils of 9.5 mil wide single-ended microstrip signal trace

The figure below shows the location of the measurement reference plane.
Mathematically, Frequency Domain data can be transformed to obtain a Time Domain response. Perfect transformation requires Frequency Domain data from DC to infinity Hz. Fortunately, a very accurate Time Domain response can be obtained with bandwidth-limited data, such as measured with modern network analyzer.

The Time Domain responses were generated using Agilent ADS 2011 update 10. This tool has a transient convolution simulator, which can generate a Time Domain response directly from measured S-Parameters. An example of a similar methodology is provided in the Samtec Technical Note on domain transformation.

Propagation Delay (TDT)
The Propagation Delay is a measure of the Time Domain delay through the cable assembly and footprint. A step pulse is applied to the touchstone model of the cable assembly and the transmitted voltage is monitored. The same pulse is also applied to a reference channel with zero loss, and the Time Domain pulses are plotted on the same graph. The difference in time, measured at the 50% point of the step voltage is the propagation delay.

Impedance (TDR)
Measurements involving digital pulses are performed using either Time Domain Reflectometer (TDR) or Time Domain Transmission (TDT) methods. The TDR method is used for the impedance measurements in this report.

The signal line(s) of the SUT’s is energized with a TDR pulse and the far-end of the energized signal line is terminated in the test systems characteristic impedance (e.g.; 50Ω or 100Ω terminations). By terminating the adjacent signal lines in the test systems characteristic impedance, the effects on the resultant impedance shape of the waveform is limited. The “best case” signal mapping was tested and is presented in this report.
Series: SEAC
Description: 1.27 mm SEARAY™ High Speed High Density Array Cable Assembly, 36 AWG 50 ohm Coax Cable

Appendix G – Glossary of Terms

ADS – Agilent Advanced Design System
AFR – Automatic Fixture Removal
CTLE – Continuous Time Linear Analyzer
CuFireFly™ - Copper FireFly™ assembly
DUT – Device under test
FD – Frequency domain
FEXT – Far-End Crosstalk
HDV – High Density Vertical
NEXT – Near-End Crosstalk
OV – Optimal Vertical
OH – Optimal Horizontal
PCB – Printed Circuit Board
PLTS – Agilent Physical Layer Design System
PPO – Pin Population Option
SE – Single-Ended
SI – Signal Integrity
SUT – System Under Test
S – Static (independent of PCB ground)
SOLT – acronym used to define Short, Open, Load & Thru Calibration Standards
TD – Time Domain
TDA – Time Domain Analysis
TDR – Time Domain Reflectometry
TDT – Time Domain Transmission
UI – Unit Interval
XROW – Across Row
Z – Impedance (expressed in ohms)