High Speed Characterization Report

HSEC8-1XX-01-L-RA-TR

Description:
High-Speed Edge Card Socket, Right Angle, Surface-Mount, 0.8mm (.0315”) Pitch, Mates with 1.60mm (.062”) thick load card
Table of Contents

Connector Overview .. 1
Connector System Speed Rating .. 2
Frequency Domain Data Summary ... 3
 Table 1 - Single-Ended Connector System Performance .. 3
 Table 2 - Differential Connector System Performance ... 3
 Bandwidth Chart – Single-Ended & Differential Insertion Loss 4
Time Domain Data Summary .. 5
 Table 3 - Single-Ended Impedance (Ω) ... 5
 Table 4 - Differential Impedance (Ω) .. 6
 Table 5 - Single-Ended Crosstalk (%) .. 7
 Table 6 - Differential Crosstalk (%) .. 7
 Table 7 - Propagation Delay (Mated Connector) ... 7
Characterization Details .. 8
 Differential and Single-Ended Data ... 8
 Connector Signal to Ground Ratio .. 8
 Frequency Domain Data .. 10
 Time Domain Data ... 10
Appendix A – Frequency Domain Response Graphs .. 12
 Single-Ended Application – Insertion Loss ... 12
 Single-Ended Application – Return Loss ... 12
 Single-Ended Application – NEXT Configurations ... 13
 Single-Ended Application – FEXT Configurations ... 14
 Differential Application – Insertion Loss .. 15
 Differential Application – Return Loss ... 15
 Differential Application – NEXT Configurations ... 16
 Differential Application – FEXT Configurations .. 17
Appendix B – Time Domain Response Graphs ... 18
 Single-Ended Application – Input Pulse .. 18
 Single-Ended Application – Impedance .. 19
 Single-Ended Application – Propagation Delay .. 20
 Single-Ended Application – NEXT, Worst Case Configuration 21
 Single-Ended Application – FEXT, Worst Case Configuration 22
 Single-Ended Application – NEXT, Best Case Configuration 23
 Single-Ended Application – FEXT, Best Case Configuration 24
 Single-Ended Application – NEXT, Across Row Configuration 25
 Single-Ended Application – FEXT, Across Row Configuration 25
 Differential Application – Input Pulse ... 26
 Differential Application – Impedance ... 27
High Speed Characterization Report

Series: HSEC8-RA
Description: High-Speed Edge Card Socket, Right Angle Surface-Mount, 0.8mm (0.0315") Pitch, Mated with 1.60mm (.062") thick load card

Differential Application – Propagation Delay .. 28
Differential Application – NEXT, Worst Case Configuration .. 29
Differential Application – FEXT, Worst Case Configuration .. 30
Differential Application – NEXT, Best Case Configuration ... 31
Differential Application – FEXT, Best Case Configuration ... 32
Differential Application – NEXT, Across Row Case Configuration 33
Differential Application – FEXT, Across Row Case Configuration 33

Appendix C – Product and Test System Descriptions ... 34
 Product Description ... 34
 Test System Description .. 34
 PCB-103911-TST-XX Test Fixtures .. 34
 PCB-103911-TST-XX PCB Layout Panel .. 35
 PCB Fixtures ... 35
 Calibration Board ... 37

Appendix D – Test and Measurement Setup ... 39
 N5230C Measurement Setup .. 39
 Test Instruments .. 40
 Test Cables & Adapters .. 40

Appendix E - Frequency and Time Domain Measurements .. 41
 Frequency (S-Parameter) Domain Procedures ... 41
 Time Domain Procedures .. 41
 Impedance (TDR) ... 41
 Propagation Delay (TDT) ... 42
 Near-End Crosstalk (TDT) & Far End Crosstalk (TDT) .. 42

Appendix F – Glossary of Terms ... 43
Series: HSEC8-RA
Description: High-Speed Edge Card Socket, Right Angle Surface-Mount, 0.8mm (0.0315”) Pitch, Mated with 1.60mm (.062”) thick load card

Connector Overview

The HSEC8-RA series is a double row, high-speed edge-card socket connector on a 0.8mm pitch and available up to 60 pins per row. The data in this report is applicable only to HSEC8 right angle socket strip connector mated with a load card.

HSEC8-RA possesses two terminal types, with each terminal type having different performance. The signal integrity performance of these two terminal types is documented in this report. The terminology used in this report to define which connector terminal is as follows:

*The short terminal of the connector is referred to as “Case 1”
*The long terminal of the connector is referred to as “Case 2”

This is illustrated in the following figure.
High Speed Characterization Report

Series: HSEC8-RA
Description: High-Speed Edge Card Socket, Right Angle Surface-Mount,
0.8mm (.0315”) Pitch, Mated with 1.60mm (.062”) thick load card

Connector System Speed Rating

HSEC8-RA Series, 0.8mm (.0315”) Pitch Interface, Right Angle

<table>
<thead>
<tr>
<th>Case</th>
<th>Signaling</th>
<th>Speed Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Single-Ended:</td>
<td>18 GHz/ 36 Gbps</td>
</tr>
<tr>
<td></td>
<td>Differential:</td>
<td>18.5 GHz/ 37 Gbps</td>
</tr>
<tr>
<td>2</td>
<td>Single-Ended:</td>
<td>16 GHz/ 32 Gbps</td>
</tr>
<tr>
<td></td>
<td>Differential:</td>
<td>16 GHz/ 32 Gbps</td>
</tr>
</tbody>
</table>

The Speed Rating is based on the -3 dB insertion loss point of the connector system. The -3 dB point can be used to estimate usable system bandwidth in a typical, two-level signaling environment.

To calculate the Speed Rating, the measured -3 dB point is rounded-up to the nearest half-GHz level. The up rounding corrects for a portion of the test board’s trace loss, since a short length of trace loss included in the loss data in this report. The resulting loss value is then doubled to determine the approximate maximum data rate in Gigabits per second (Gbps).

For example, a connector with a -3 dB point of 7.8 GHz would have a Speed Rating of 8 GHz/ 16 Gbps. A connector with a -3 dB point of 7.2 GHz would have a Speed Rating of 7.5 GHz/ 15 Gbps.
Frequency Domain Data Summary

Table 1 - Single-Ended Connector System Performance
Case 1 = Short Row; Case 2 = Long Row

<table>
<thead>
<tr>
<th>Case</th>
<th>Test Parameter</th>
<th>Configuration</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Insertion Loss</td>
<td>GSG</td>
<td>3dB@ 18.0 GHz</td>
</tr>
<tr>
<td></td>
<td>Return Loss</td>
<td>GSG</td>
<td>>10dB to 18.2 GHz</td>
</tr>
<tr>
<td></td>
<td>Near-End Crosstalk</td>
<td>GAQG</td>
<td><-20dB to 16.4 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xrow, GAG to GQG</td>
<td><-20dB to 13.5 GHz</td>
</tr>
<tr>
<td></td>
<td>Far-End Crosstalk</td>
<td>GAQG</td>
<td><-20dB to 6.0 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GAGQQ</td>
<td><-20dB to 15.1 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xrow, GAG to GQG</td>
<td><-20dB to 20.0 GHz</td>
</tr>
<tr>
<td>2</td>
<td>Insertion Loss</td>
<td>GSG</td>
<td>3dB@ 15.7 GHz</td>
</tr>
<tr>
<td></td>
<td>Return Loss</td>
<td>GSG</td>
<td>>10dB to 11.5 GHz</td>
</tr>
<tr>
<td></td>
<td>Near-End Crosstalk</td>
<td>GAQG</td>
<td><-20dB to 0.6 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GAGQQ</td>
<td><-20dB to 16.2 GHz</td>
</tr>
<tr>
<td></td>
<td>Far-End Crosstalk</td>
<td>GAQG</td>
<td><-20dB to 8.1 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GAGQQ</td>
<td><-20dB to 20.0 GHz</td>
</tr>
</tbody>
</table>

Table 2 - Differential Connector System Performance
Case 1 = Short Row; Case 2 = Long Row

<table>
<thead>
<tr>
<th>Case</th>
<th>Test Parameter</th>
<th>Configuration</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Insertion Loss</td>
<td>GSG</td>
<td>3dB@ 18.3 GHz</td>
</tr>
<tr>
<td></td>
<td>Return Loss</td>
<td>GSG</td>
<td>>10dB to 17.4 GHz</td>
</tr>
<tr>
<td></td>
<td>Near-End Crosstalk</td>
<td>GAQG</td>
<td><-20dB to 20.0 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xrow, GAG to GQG</td>
<td><-20dB to 20.0 GHz</td>
</tr>
<tr>
<td></td>
<td>Far-End Crosstalk</td>
<td>GAQG</td>
<td><-20dB to 20.0 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GAGQQ</td>
<td><-20dB to 20.0 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xrow, GAG to GQG</td>
<td><-20dB to 20.0 GHz</td>
</tr>
<tr>
<td>2</td>
<td>Insertion Loss</td>
<td>GSG</td>
<td>3dB@ 16.0 GHz</td>
</tr>
<tr>
<td></td>
<td>Return Loss</td>
<td>GSG</td>
<td>>10dB to 13.5 GHz</td>
</tr>
<tr>
<td></td>
<td>Near-End Crosstalk</td>
<td>GAQG</td>
<td><-20dB to 20.0 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GAGQQ</td>
<td><-20dB to 20.0 GHz</td>
</tr>
<tr>
<td></td>
<td>Far-End Crosstalk</td>
<td>GAQG</td>
<td><-20dB to 20.0 GHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GAGQQ</td>
<td><-20dB to 20.0 GHz</td>
</tr>
</tbody>
</table>
Series: HSEC8-RA
Description: High-Speed Edge Card Socket, Right Angle Surface-Mount, 0.8mm (0.0315") Pitch, Mated with 1.60mm (.062") thick load card

Bandwidth Chart – Single-Ended & Differential Insertion Loss
Case 1 = Short Row; Case 2 = Long Row

HSEC8-RA Connector Series
Time Domain Data Summary

<table>
<thead>
<tr>
<th>Case</th>
<th>Signal Rise-time</th>
<th>30ps</th>
<th>50ps</th>
<th>100ps</th>
<th>250ps</th>
<th>500ps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Maximum Impedance</td>
<td>60.1</td>
<td>56.6</td>
<td>52.8</td>
<td>51.7</td>
<td>51.4</td>
</tr>
<tr>
<td></td>
<td>Minimum Impedance</td>
<td>46.8</td>
<td>48.7</td>
<td>49.8</td>
<td>49.9</td>
<td>50.0</td>
</tr>
<tr>
<td>2</td>
<td>Maximum Impedance</td>
<td>64.5</td>
<td>61.1</td>
<td>57.1</td>
<td>53.3</td>
<td>52.5</td>
</tr>
<tr>
<td></td>
<td>Minimum Impedance</td>
<td>47.0</td>
<td>48.9</td>
<td>49.9</td>
<td>49.9</td>
<td>50.0</td>
</tr>
</tbody>
</table>

Single-Ended Impedance - Case 1, Short Row

Single-Ended Impedance - Case 2, Long Row
Series: HSEC8-RA
Description: High-Speed Edge Card Socket, Right Angle Surface-Mount, 0.8mm (0.0315") Pitch, Mated with 1.60mm (.062") thick load card

Table 4 - Differential Impedance (Ω)
Case 1 = Short Row; Case 2 = Long Row

<table>
<thead>
<tr>
<th>Case</th>
<th>Signal Rise-time</th>
<th>30ps</th>
<th>50ps</th>
<th>100ps</th>
<th>250ps</th>
<th>500ps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Maximum Impedance</td>
<td>107.2</td>
<td>106.5</td>
<td>105.7</td>
<td>104.3</td>
<td>102.2</td>
</tr>
<tr>
<td></td>
<td>Minimum Impedance</td>
<td>78.6</td>
<td>85.4</td>
<td>89.8</td>
<td>95.1</td>
<td>98.4</td>
</tr>
<tr>
<td>2</td>
<td>Maximum Impedance</td>
<td>105.8</td>
<td>104.5</td>
<td>103.1</td>
<td>101.7</td>
<td>100.8</td>
</tr>
<tr>
<td></td>
<td>Minimum Impedance</td>
<td>75.5</td>
<td>81.6</td>
<td>84.8</td>
<td>91.7</td>
<td>96.3</td>
</tr>
</tbody>
</table>

Differential Impedance - Case 1, Short Row

Differential Impedance - Case 2, Long Row
Table 5 - Single-Ended Crosstalk (%)
Case 1 = Short Row; Case 2 = Long Row

<table>
<thead>
<tr>
<th>Case</th>
<th>Input(t)</th>
<th>30ps</th>
<th>50ps</th>
<th>100ps</th>
<th>250ps</th>
<th>500ps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NEXT</td>
<td>GAQQ</td>
<td>18.44</td>
<td>16.96</td>
<td>13.09</td>
<td>6.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GAGQG</td>
<td>2.65</td>
<td>2.21</td>
<td>1.58</td>
<td>0.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xrow</td>
<td>2.41</td>
<td>1.97</td>
<td>1.35</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>FEXT</td>
<td>GAQQ</td>
<td>6.21</td>
<td>5.04</td>
<td>3.35</td>
<td>1.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GAGQG</td>
<td>2.77</td>
<td>2.04</td>
<td>1.15</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xrow</td>
<td>0.65</td>
<td>0.32</td>
<td>0.18</td>
<td>0.11</td>
</tr>
<tr>
<td>2</td>
<td>NEXT</td>
<td>GAQQ</td>
<td>20.40</td>
<td>19.63</td>
<td>17.09</td>
<td>9.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GAGQG</td>
<td>2.86</td>
<td>2.03</td>
<td>1.77</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td>FEXT</td>
<td>GAQQ</td>
<td>2.77</td>
<td>2.04</td>
<td>1.15</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GAGQG</td>
<td>2.22</td>
<td>1.70</td>
<td>0.92</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Table 6 - Differential Crosstalk (%)
Case 1 = Short Row; Case 2 = Long Row

<table>
<thead>
<tr>
<th>Case</th>
<th>Input(t)</th>
<th>30ps</th>
<th>50ps</th>
<th>100ps</th>
<th>250ps</th>
<th>500ps</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NEXT</td>
<td>GAQQ</td>
<td>5.30</td>
<td>4.82</td>
<td>3.80</td>
<td>1.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GAGQG</td>
<td>0.35</td>
<td>0.33</td>
<td>0.23</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xrow</td>
<td>0.61</td>
<td>0.48</td>
<td>0.31</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>FEXT</td>
<td>GAQQ</td>
<td>0.79</td>
<td>0.51</td>
<td>0.29</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GAGQG</td>
<td>0.52</td>
<td>0.26</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Xrow</td>
<td>0.19</td>
<td><0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>2</td>
<td>NEXT</td>
<td>GAQQ</td>
<td>6.00</td>
<td>5.79</td>
<td>5.01</td>
<td>2.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GAGQG</td>
<td>0.56</td>
<td>0.34</td>
<td>0.27</td>
<td>0.16</td>
</tr>
<tr>
<td></td>
<td>FEXT</td>
<td>GAQQ</td>
<td>1.27</td>
<td>0.80</td>
<td>0.35</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GAGQG</td>
<td>0.64</td>
<td>0.44</td>
<td>0.21</td>
<td><0.1</td>
</tr>
</tbody>
</table>

Table 7 - Propagation Delay (Mated Connector)
Case 1 = Short Row; Case 2 = Long Row

<table>
<thead>
<tr>
<th>Case</th>
<th>Single-Ended</th>
<th>50 ps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Differential</td>
<td>47 ps</td>
</tr>
<tr>
<td>Case 2</td>
<td>Single-Ended</td>
<td>69 ps</td>
</tr>
<tr>
<td></td>
<td>Differential</td>
<td>63 ps</td>
</tr>
</tbody>
</table>
Characterization Details
This report presents data that characterizes the signal integrity response of a connector pair in a controlled printed circuit board (PCB) environment. All efforts are made to reveal typical best-case responses inherent to the system under test (SUT).

In this report, the SUT includes the connector pair and footprint effects on a typical multi-layer PCB. PCB effects (trace loss) are de-embedded from test data. Board related effects, such as pad-to-ground capacitance, are included in the data presented in this report.

Additionally, intermediate test signal connections can mask the connector's true performance. Such connection effects are minimized by using high performance test cables and adapters. Where appropriate, calibration and de-embedding routines are also used to reduce residual effects.

Differential and Single-Ended Data
Most Samtec connectors can be used successfully in both differential and single-ended applications. However, electrical performance will differ depending on the signal drive type. In this report, data is presented for both differentially and single-ended driven scenarios.

Connector Signal to Ground Ratio
Samtec connectors are most often designed for generic applications and can be implemented using various signal and ground pin assignments. In high-speed systems, provisions must be made in the interconnect for signal return currents. Such paths are often referred to as “ground”. In some connectors, a ground plane or blade, or an outer shield, is used as the signal return, while in others, connector pins are used as signal returns. Various combinations of signal pins, ground blades, and shields can also be utilized. Electrical performance can vary significantly depending upon the number and location of ground pins.

In general, the more pins dedicated to ground, the better electrical performance will be. However, dedicating pins to ground reduces signal density of a connector. Therefore, care must be taken when choosing signal/ground ratios in cost or density-sensitive applications.
For this connector, the following configurations were evaluated:

Single-Ended Impedance:
- GSG (Ground-Signal-Ground)

Single-Ended Crosstalk:
- Electrical “worst case”: GAQQG (Ground-Active-Quiet-Ground)
- Electrical “best case”: GAGQQG (Ground-Active-Ground-Quiet-Ground)
- Across row: “xrow case”: GAG to GQQG (from one row of terminals to the other row)

Differential Impedance:
- GSSG (Ground-positive Signal-negative Signal-Ground)

Differential Crosstalk:
- Electrical “worst case”: GAAQQG (Ground-Active-Active-Quiet-Quiet-Ground)
- Electrical “best case”: GAAGQQG (Ground-Active-Active-Ground-Quiet-Quiet-Ground)
- Across row: “xrow case”: GAAG to GQQG (from one row of terminals to the other row)

In all cases in this report, the center blade of the connector was grounded to the PCB. Only one single-ended signal or differential pair was driven for crosstalk measurements.

Other configurations can be evaluated upon request. Please contact sig@samtec.com for more information.

In a real system environment, active signals might be located at the outer edges of the signal contacts of concern, as opposed to the ground signals utilized in laboratory testing. For example, in a single-ended system, a pin-out of “SSSS”, or four adjacent single ended signals might be encountered as opposed to the “GSG” and “GSSG” configurations tested in the laboratory. Electrical characteristics in such applications could vary slightly from laboratory results. However, in most applications, performance can safely be considered equivalent.

Signal Edge Speed (Rise Time):
In pulse signaling applications, the perceived performance of the interconnect can vary significantly depending on the edge rate or rise time of the exciting signal. For this report, the fastest rise time used was 30 ps. Generally, this should demonstrate worst-case performance.
In many systems, the signal edge rate will be significantly slower at the connector than at the driver launch point. To estimate interconnect performance at other edge rates, data is provided for several rise times between 30ps and 500ps.

For this report, measured rise times were at 10%-90% signal levels.

Frequency Domain Data

Frequency Domain parameters are helpful in evaluating the connector system’s signal loss and crosstalk characteristics across a range of sinusoidal frequencies. In this report, parameters presented in the Frequency Domain are Insertion Loss, Return Loss, and Near-End and Far-End Crosstalk. Other parameters or formats, such as VSWR or S-Parameters, may be available upon request. Please contact our Signal Integrity Group at sig@samtec.com for more information.

Frequency performance characteristics for the SUT are generated directly from network analyzer measurements.

Time Domain Data

Time Domain parameters indicate Impedance mismatch versus length, signal propagation time, and crosstalk in a pulsed signal environment. The measured S-Parameters from the network analyzer are post-processed using Agilent Advanced Design System to obtain the time domain response. Time Domain procedure is provided in Appendix E of this report. Parameters or formats not included in this report may be available upon request. Please contact our Signal Integrity Group at sig@samtec.com for more information.

In this report, propagation delay is defined as the signal propagation time through the connector and connector footprint. It includes 10 mils of PCB trace on the HSEC8-RA connector and Edge Card side each. Delay is measured at 100 picoseconds signal rise time. Delay is calculated as the difference in time measured between the 50% amplitude levels of the input and output pulses.

Crosstalk or coupled noise data is provided for various signal configurations. All measurements are single disturber. Crosstalk is calculated as a ratio of the input line voltage to the coupled line voltage. The input line is sometimes described as the active or drive line. The coupled line is sometimes described as the quiet or victim line. Crosstalk ratio is tabulated in this report as a percentage. Measurements are made at both the near-end and far-end of the SUT.

Data for other configurations may be available. Please contact our Signal Integrity Group at sig@samtec.com for further information.
As a rule of thumb, 10% crosstalk levels are often used as a general first pass limit for determining acceptable interconnect performance. However, modern system crosstalk tolerance can vary greatly. For advice on connector suitability for specific applications, please contact our Signal Integrity Group at sig@samtec.com.

Additional information concerning test conditions and procedures is located in the appendices of this report. Further information may be obtained by contacting our Signal Integrity Group at sig@samtec.com.
Appendix A – Frequency Domain Response Graphs

Single-Ended Application – Insertion Loss
Case 1 = Short Row; Case 2 = Long Row

Single-Ended Application – Return Loss
Case 1 = Short Row; Case 2 = Long Row
Single-Ended Application – NEXT Configurations

Case 1 (Short Row)

Case 2 (Long Row)
Series: HSEC8-RA
Description: High-Speed Edge Card Socket, Right Angle Surface-Mount, 0.8mm (0.0315”) Pitch, Mated with 1.60mm (.062”) thick load card

Single-Ended Application – FEXT Configurations

Case 1 (Short Row)

Case 2 (Long Row)
Series: HSEC8-RA
Description: High-Speed Edge Card Socket, Right Angle Surface-Mount,
0.8mm (0.0315”) Pitch, Mated with 1.60mm (.062”) thick load card

Differential Application – Insertion Loss
Case 1 = Short Row; Case 2 = Long Row

![Differential Application - Insertion Loss Graph](image)

Differential Application – Return Loss
Case 1 = Short Row; Case 2 = Long Row

![Differential Application - Return Loss Graph](image)
Series: HSEC8-RA
Description: High-Speed Edge Card Socket, Right Angle Surface-Mount, 0.8mm (0.0315”) Pitch, Mated with 1.60mm (.062”) thick load card

Differential Application – NEXT Configurations

Case 1 (Short Row)

Case 2 (Long Row)
Differential Application – FEXT Configurations

Case 1 (Short Row)

Case 2 (Long Row)
Appendix B – Time Domain Response Graphs

Single-Ended Application – Input Pulse

![Single-Ended Application - Input Pulse Graph]
Single-Ended Application – Impedance

Case 1 (Short Row)

Case 2 (Long Row)
Single-Ended Application – Propagation Delay

Case 1 (Short Row)

![Single-Ended Application - Propagation Delay (Short Row)]

Case 2 (Long Row)

![Single-Ended Application - Propagation Delay (Long Row)]
High Speed Characterization Report

Series: HSEC8-RA
Description: High-Speed Edge Card Socket, Right Angle Surface-Mount, 0.8mm (0.0315") Pitch, Mated with 1.60mm (.062") thick load card

Single-Ended Application – NEXT, Worst Case Configuration

Case 1 (Short Row)

Case 2 (Long Row)
Single-Ended Application – FEXT, Worst Case Configuration

Case 1 (Short Row)

Case 2 (Long Row)
Series: HSEC8-RA
Description: High-Speed Edge Card Socket, Right Angle Surface-Mount, 0.8mm (0.0315”) Pitch, Mated with 1.60mm (.062”) thick load card

Single-Ended Application – NEXT, Best Case Configuration

Case 1 (Short Row)

![Graph showing Single-Ended Application - NEXT for Case 1 (Short Row)]

Case 2 (Long Row)

![Graph showing Single-Ended Application - NEXT for Case 2 (Long Row)]
Single-Ended Application – FEXT, Best Case Configuration

Case 1 (Short Row)

Case 2 (Long Row)
Series: HSEC8-RA
Description: High-Speed Edge Card Socket, Right Angle Surface-Mount, 0.8mm (0.0315") Pitch, Mated with 1.60mm (.062") thick load card

Single-Ended Application – NEXT, Across Row Configuration

![NEXT Diagram]

Single-Ended Application – FEXT, Across Row Configuration

![FEXT Diagram]
Series: HSEC8-RA
Description: High-Speed Edge Card Socket, Right Angle Surface-Mount, 0.8mm (0.0315”) Pitch, Mated with 1.60mm (.062”) thick load card

Differential Application – Input Pulse

![Differential Application - Input Pulse](image-url)
Series: HSEC8-RA
Description: High-Speed Edge Card Socket, Right Angle Surface-Mount, 0.8mm (0.0315”) Pitch, Mated with 1.60mm (.062”) thick load card

Differential Application – Impedance

Case 1 (Short Row)

![Differential Application - Impedance (Short Row)](image1)

Case 2 (Long Row)

![Differential Application - Impedance (Long Row)](image2)
Differential Application – Propagation Delay

Case 1 (Short Row)

Case 2 (Long Row)
Series: HSEC8-RA
Description: High-Speed Edge Card Socket, Right Angle Surface-Mount, 0.8mm (0.0315”) Pitch, Mated with 1.60mm (.062”) thick load card

Differential Application – NEXT, Worst Case Configuration

Case 1 (Short Row)

![Differential Application - NEXT](chart1.png)

Case 2 (Long Row)

![Differential Application - NEXT](chart2.png)
Series: HSEC8-RA
Description: High-Speed Edge Card Socket, Right Angle Surface-Mount, 0.8mm (0.0315”) Pitch, Mated with 1.60mm (.062”) thick load card

Differential Application – FEXT, Worst Case Configuration

Case 1 (Short Row)

![Differential Application - FEXT](image1)

Case 2 (Long Row)

![Differential Application - FEXT](image2)
Series: HSEC8-RA
Description: High-Speed Edge Card Socket, Right Angle Surface-Mount, 0.8mm (0.0315”) Pitch, Mated with 1.60mm (.062”) thick load card

Differential Application – NEXT, Best Case Configuration

Case 1 (Short Row)

Case 2 (Long Row)
Series: HSEC8-RA
Description: High-Speed Edge Card Socket, Right Angle Surface-Mount, 0.8mm (0.0315") Pitch, Mated with 1.60mm (.062") thick load card

Differential Application – FEXT, Best Case Configuration

Case 1 (Short Row)

![Differential Application - FEXT](image)

Case 2 (Long Row)

![Differential Application - FEXT](image)
Series: HSEC8-RA
Description: High-Speed Edge Card Socket, Right Angle Surface-Mount, 0.8mm (0.0315”) Pitch, Mated with 1.60mm (.062”) thick load card

Differential Application – NEXT, Across Row Case Configuration

![Differential Application - NEXT](image)

Differential Application – FEXT, Across Row Case Configuration

![Differential Application - FEXT](image)
Appendix C – Product and Test System Descriptions

Product Description
Product test samples are HSEC8-RA Series connectors. The part number is HSEC8-140-01-L-RA-TR. The HSEC8-RA Series connector is a right angle product. Each connector has two rows of contacts evenly spaced on a 0.8mm (0.0315") pitch. The HSEC8-RA Series connectors use an edge-coupled contact system. A photo of the test articles mounted to SI test boards is shown below.

Test System Description
The test fixtures are composed of four-layer FR-4 material with 50Ω signal trace and pad configurations designed for the electrical characterization of Samtec high speed connector products. A PCB mount SMA connector is used to interface the VNA test cables to the test fixtures. Optimization of the SMA launch was performed using full wave simulation tools to minimize reflections. Six test fixtures are specific to the HSEC8-RA series connector set and identified by part numbers PCB-103911-TST-01-A and C to PCB-103911-TST-03-A and C. Calibration standards specific to the HSEC8-RA series are located on the calibration boards PCB-103911-TST-04.
To keep trace lengths short, three different test board sets were required to access the necessary signal pins.

PCB-103911-TST-XX Test Fixtures
Shown below is a photograph of the one of the three test board sets.
Series: HSEC8-RA
Description: High-Speed Edge Card Socket, Right Angle Surface-Mount, 0.8mm (0.0315") Pitch, Mated with 1.60mm (.062") thick load card

PCB-103911-TST-XX PCB Layout Panel

Artwork of the PCB design is shown below.

PCB Fixtures
The test fixtures used are as follows:

- PCB-103911-TST-01-A – HSEC8-RA Series Edge Card for differential best case for long pin & short pin and differential across row
- PCB-103911-TST-01-C – HSEC8-RA Series Test Board for differential best case for long pin & short pin and differential across row
- PCB-103911-TST-02-A – HSEC8-RA Series Edge Card for single-ended best-case for long pin & short pin, single-ended worst-case for long pin & short pin and single-ended across row
- PCB-103911-TST-02-C– HSEC8-RA Series Test Board for single-ended best-case for long pin & short pin, single-ended worst-case for long pin & short pin and single-ended across row
- PCB-103911-TST-03-A – HSEC8-RA Series Edge Card for differential worst-case for long pin & short pin
- PCB-103911-TST-03-C – HSEC8-RA Series Test Board for differential worst-case for long pin & short pin
Series: HSEC8-RA
Description: High-Speed Edge Card Socket, Right Angle Surface-Mount, 0.8mm (0.0315") Pitch, Mated with 1.60mm (.062") thick load card
Calibration Board

Test fixture losses and test point reflections were removed from the data by use of TRL calibration. The calibration board is shown below. Prior to making any measurements, the calibration board is characterized to obtain parameters required to define the calibration kit. Once a calibration kit is defined, calibration using the standards on the calibration board can be performed. Finally, the device can be measured and the test board effects are automatically removed.

Thru line – 2980 mils
Open Reflect – 1490 mils
Line 1 – 6370 mils
Line 2 – 3660 mils
Line 3 – 3120 mils
Match – 1490 mils
All traces on the test boards are length matched to 1.5” measured from the edge of the pad to the SMA. The TRL calibration effectively removes 1.49” of test board trace effects. This means that 10 mils of test board trace length effects are included in the both sides of test boards in the measurement. The S-Parameter measurement includes:

A- The HSEC8 Series connector set
B- Test board vias, pads (footprint effects) for the HSEC8-RA connector side.
C- 10 mils of 9.5 mil wide microstrip trace.
D- Test board vias, pads (footprint effects) for the Edge Card side.
E- 10 mils of 9.5 mil wide microstrip trace.

The figure below shows the location of the measurement reference plane.
Appendix D – Test and Measurement Setup

The test instrument is the Agilent N5230C PNA-L network analyzer. Frequency domain data and graphs are obtained directly from the instrument. Post-processed time domain data and graphs are generated using convolution algorithms within Agilent ADS. The network analyzer is configured as follows:

Start Frequency – 300 KHz
Stop Frequency – 20 GHz
Number of points -1601
IFBW – 1 KHz

With these settings, the measurement time is approximately 20 seconds.

N5230C Measurement Setup
Series: HSEC8-RA
Description: High-Speed Edge Card Socket, Right Angle Surface-Mount, 0.8mm (0.0315”) Pitch, Mated with 1.60mm (.062”) thick load card

Test Instruments
QTY Description
1 Agilent N5230C PNA-L Network Analyzer (300 KHz to 20 GHz)
1 Agilent N4433A ecal module (300 KHz to 20 GHz)

Test Cables & Adapters
QTY Description
4 Gore OWD01D02039-4 (DC-50 GHz)
Appendix E - Frequency and Time Domain Measurements

Frequency (S-Parameter) Domain Procedures

The quality of any data taken with a network analyzer is directly related to the quality of the calibration standards and the use of proper test procedures. For this reason, extreme care is taken in the design of the LRM calibration standards, the SI test boards, and the selection of the PCB vendor.

The measurement process begins with a measurement of the LRM calibration standards. A coaxial SOLT calibration is performed using an N4433A ecal module. This measurement is required in order to obtain precise values of the line standard offset delay and frequency bandwidths. Measurements of the reflect and 2x through line standard can be used to determine the maximum frequency for which the calibration standards are valid. For the HSEC8-RA Series test boards, this is greater than 20 GHz.

From the LRM calibration standard measurements, a user defined calibration kit is developed and stored in the network analyzer. Calibration is then performed on all 4 ports following the calibration wizard within the Agilent N5230C. This calibration is saved and can be recalled at any time. Calibration takes roughly 30 minutes to perform.

Time Domain Procedures

Mathematically, Frequency Domain data can be transformed to obtain a Time Domain response. Perfect transformation requires Frequency Domain data from DC to infinity Hz. Fortunately, a very accurate Time Domain response can be obtained with bandwidth-limited data, such as measured with modern network analyzer.

The Time Domain responses were generated using Agilent ADS 2009 update 1. This tool has a transient convolution simulator, which can generate a Time Domain response directly from measured S-Parameters. An example of a similar methodology is provided in the Samtec Technical Note on domain transformation.

Impedance (TDR)

A step pulse is applied to the touchstone model of the connector and the reflected voltage is monitored. The reflected voltage is converted to a reflection coefficient and then transformed into an impedance profile. All ports of the Touchstone model are terminated in 50 ohms.
Series: HSEC8-RA
Description: High-Speed Edge Card Socket, Right Angle Surface-Mount, 0.8mm (0.0315") Pitch, Mated with 1.60mm (.062") thick load card

Propagation Delay (TDT)
The Propagation Delay is a measure of the Time Domain delay through the connector and footprint. A step pulse is applied to the touchstone model of the connector and the transmitted voltage is monitored. The same pulse is also applied to a reference channel with zero loss, and the Time Domain pulses are plotted on the same graph. The difference in time, measured at the 50% point of the step voltage is the propagation delay.

Near-End Crosstalk (TDT) & Far End Crosstalk (TDT)
A step pulse is applied to the touchstone model of the connector and the coupled voltage is monitored. The amplitude of the peak-coupled voltage is recorded and reported as a percentage of the input pulse.
Appendix F – Glossary of Terms

ADS – Advanced Design Systems
BC – Best Case crosstalk configuration
DUT – Device under test, term used for TDA IConnect & Propagation Delay waveforms
FD – Frequency domain
FEXT – Far-End Crosstalk
GSG – Ground–Signal-Ground; geometric configuration
GSSG - Ground–Signal-Signal-Ground; geometric configuration
HDV – High Density Vertical
NEXT – Near-End Crosstalk
OV – Optimal Vertical
OH – Optimal Horizontal
PCB – Printed Circuit Board
PPO – Pin Population Option
SE – Single-Ended
SI – Signal Integrity
SUT – System Under Test
S – Static (independent of PCB ground)
SOLT – acronym used to define Short, Open, Load & Thru Calibration Standards
TD – Time Domain
TDA – Time Domain Analysis
TDR – Time Domain Reflectometry
TDT – Time Domain Transmission
WC – Worst Case crosstalk configuration
Z – Impedance (expressed in ohms)