High Speed Characterization Report

FSI-1XX-03-X-X-XX

Description:

One Piece Board Stacking Interconnect, 1.0mm Pitch
3mm (0.118”) Body Height
Table of Contents

Connector Overview .. 1
Frequency Domain Data Summary .. 2
 Bandwidth Chart – Single-Ended & Differential Insertion Loss 3
Time Domain Data Summary .. 4
Characterization Details .. 6
 Differential and Single-Ended Data .. 6
 Connector Signal to Ground Ratio ... 6
 Frequency Domain Data ... 8
Time Domain Data .. 8
Appendix A – Frequency Domain Response Graphs .. 10
 Single-Ended Application – Insertion Loss .. 10
 Single-Ended Application – Return Loss .. 10
 Single-Ended Application – NEXT Configurations ... 11
 Single-Ended Application – FEXT Configurations .. 11
 Differential Application – Insertion Loss .. 12
 Differential Application – Return Loss .. 12
 Differential Application – NEXT Configurations ... 13
 Differential Application – FEXT Configurations ... 13
Appendix B – Time Domain Response Graphs .. 14
 Single-Ended Application – Input Pulse ... 14
 Single-Ended Application – Impedance .. 14
 Single-Ended Application – Propagation Delay ... 15
 Single-Ended Application – NEXT, Worst Case Configuration 15
 Single-Ended Application – FEXT, Worst Case Configuration 16
 Single-Ended Application – NEXT, Best Case Configuration 16
 Single-Ended Application – FEXT, Best Case Configuration 17
 Single-Ended Application – NEXT, Across Row Configuration 17
 Single-Ended Application – FEXT, Across Row Configuration 18
 Differential Application – Input Pulse ... 18
 Differential Application – Impedance ... 19
 Differential Application – Propagation Delay ... 19
 Differential Application – NEXT, Worst Case .. 20
 Differential Application – FEXT, Worst Case ... 20
 Differential Application – NEXT, Best Case .. 21
 Differential Application – FEXT, Best Case .. 21
 Differential Application – NEXT, Across Row Case ... 22
 Differential Application – FEXT, Across Row Case ... 22
Appendix C – Product and Test System Descriptions ... 23
Series: FSI Series
Description: One Piece Board Stacking Interconnect, 1.0mm Pitch, 3mm (0.118") Body Height

Product Description ... 23
Test System Description.. 23
PCB-103164-TST-XX Test Fixtures... 23
PCB-103164-TST-XX PCB Layout Panel .. 24
PCB Fixtures ... 24
Calibration Board ... 26
Appendix D – Test and Measurement Setup ... 28
 N5230C Measurement Setup ... 28
 Test Instruments .. 29
 Test Cables & Adapters ... 29
Appendix E - Frequency and Time Domain Measurements .. 30
 Frequency (S-Parameter) Domain Procedures ... 30
 Time Domain Procedures ... 30
 Impedance (TDR) ... 31
 Propagation Delay (TDT) .. 31
 Near-End Crosstalk (TDT) & Far End Crosstalk (TDT) .. 31
Appendix F – Glossary of Terms ... 32
Connector Overview

FSI 1.0 mm (.0394") pitch interfaces are available with up to 100 I/Os (100 for double rows and 50 for single row) and with standard body height of 3mm (0.118"), 6mm (0.236"), and 10mm (0.394"). The data in this report is applicable only to the 3mm (0.118") body height version for both double rows and single row.

Connector System Speed Rating

One Piece Board Stacking Interconnect, 1.0mm Pitch, 3mm (0.118") Body Height

<table>
<thead>
<tr>
<th>Signaling</th>
<th>Speed Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Ended</td>
<td>8GHz/ 16Gbps</td>
</tr>
<tr>
<td>Differential</td>
<td>12GHz/ 24Gbps</td>
</tr>
</tbody>
</table>

The Speed Rating is based on the -3 dB insertion loss point of the connector system. The -3 dB point can be used to estimate usable system bandwidth in a typical, two-level signaling environment.

To calculate the Speed Rating, the measured -3 dB point is rounded-up to the nearest half-GHz level. The up rounding corrects for a portion of the test board’s trace loss, since a short length of trace loss included in the loss data in this report. The resulting loss value is then doubled to determine the approximate maximum data rate in Gigabits per second (Gbps).

For example, a connector with a -3 dB point of 7.8 GHz would have a Speed Rating of 8 GHz/ 16 Gbps. A connector with a -3 dB point of 7.2 GHz would have a Speed Rating of 7.5 GHz/ 15 Gbps.
Frequency Domain Data Summary

Table 1 - Single-Ended Connector System Performance

<table>
<thead>
<tr>
<th>Test Parameter</th>
<th>Configuration</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>GSG</td>
<td>-3dB@ 7.90GHz</td>
</tr>
<tr>
<td>Return Loss</td>
<td>GSG</td>
<td>-15.48dB@ 7.90GHz</td>
</tr>
<tr>
<td>Near-End Crosstalk</td>
<td>GAQG</td>
<td>-13.93dB@ 7.90GHz</td>
</tr>
<tr>
<td></td>
<td>GAGQG</td>
<td>-14.27dB@ 7.90GHz</td>
</tr>
<tr>
<td></td>
<td>Xrow, GAG to GQG</td>
<td>-21.84dB@ 7.90GHz</td>
</tr>
<tr>
<td>Far-End Crosstalk</td>
<td>GAQG</td>
<td>-15.96dB@ 7.90GHz</td>
</tr>
<tr>
<td></td>
<td>GAGQG</td>
<td>-14.76dB@ 7.90GHz</td>
</tr>
<tr>
<td></td>
<td>Xrow, GAG to GQG</td>
<td>-21.34dB@ 7.90GHz</td>
</tr>
</tbody>
</table>

Table 2 - Differential Connector System Performance

<table>
<thead>
<tr>
<th>Test Parameter</th>
<th>Configuration</th>
<th>Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertion Loss</td>
<td>GSSG</td>
<td>-3dB@ 11.80GHz</td>
</tr>
<tr>
<td>Return Loss</td>
<td>GSSG</td>
<td>-3.78dB@ 11.80GHz</td>
</tr>
<tr>
<td>Near-End Crosstalk</td>
<td>GAAQQG</td>
<td>-27.27dB@ 11.80GHz</td>
</tr>
<tr>
<td></td>
<td>GAAGQQG</td>
<td>-29.59dB@ 11.80GHz</td>
</tr>
<tr>
<td></td>
<td>Xrow, GAAG to GQQG</td>
<td>-34.42dB@ 11.80GHz</td>
</tr>
<tr>
<td>Far-End Crosstalk</td>
<td>GAAQQG</td>
<td>-25.53 dB@ 11.80GHz</td>
</tr>
<tr>
<td></td>
<td>GAAGQQG</td>
<td>-31.32 dB@ 11.80GHz</td>
</tr>
<tr>
<td></td>
<td>Xrow, GAAG to GQQG</td>
<td>-31.59 dB@ 11.80GHz</td>
</tr>
</tbody>
</table>
Bandwidth Chart – Single-Ended & Differential Insertion Loss

FSI Connector Series
Series: FSI Series
Description: One Piece Board Stacking Interconnect, 1.0mm Pitch, 3mm (0.118") Body Height

Time Domain Data Summary

<table>
<thead>
<tr>
<th>Table 3 - Single-Ended Impedance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Risetime</td>
</tr>
<tr>
<td>Maximum Impedance</td>
</tr>
<tr>
<td>Minimum Impedance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4 - Differential Impedance (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Risetime</td>
</tr>
<tr>
<td>Maximum Impedance</td>
</tr>
<tr>
<td>Minimum Impedance</td>
</tr>
</tbody>
</table>
High Speed Characterization Report

Series: FSI Series
Description: One Piece Board Stacking Interconnect, 1.0mm Pitch, 3mm (0.118") Body Height

Table 5 - Single-Ended Crosstalk (%)

<table>
<thead>
<tr>
<th>Input(t)</th>
<th>30ps</th>
<th>50 ps</th>
<th>100 ps</th>
<th>250 ps</th>
<th>500 ps</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEXT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAQQ</td>
<td>19.4</td>
<td>16.5</td>
<td>11.7</td>
<td>5.7</td>
<td>2.9</td>
</tr>
<tr>
<td>GAGGG</td>
<td>4.9</td>
<td>4.1</td>
<td>2.4</td>
<td>1.0</td>
<td>0.5</td>
</tr>
<tr>
<td>Xrow</td>
<td>3.0</td>
<td>1.6</td>
<td>0.7</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>FEXT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAQQ</td>
<td>7.5</td>
<td>4.9</td>
<td>2.2</td>
<td>0.9</td>
<td>0.4</td>
</tr>
<tr>
<td>GAGGG</td>
<td>4.6</td>
<td>3.6</td>
<td>1.9</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>Xrow</td>
<td>1.1</td>
<td>0.5</td>
<td>0.1</td>
<td><0.1</td>
<td><0.1</td>
</tr>
</tbody>
</table>

Table 6 - Differential Crosstalk (%)

<table>
<thead>
<tr>
<th>Input(t)</th>
<th>30ps</th>
<th>50 ps</th>
<th>100 ps</th>
<th>250 ps</th>
<th>500 ps</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEXT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAAQQQ</td>
<td>5.5</td>
<td>5.0</td>
<td>3.9</td>
<td>2.1</td>
<td>1.1</td>
</tr>
<tr>
<td>GAAGQQQ</td>
<td>0.9</td>
<td>0.7</td>
<td>0.4</td>
<td>0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>Xrow</td>
<td>0.7</td>
<td>0.4</td>
<td>0.2</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>FEXT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAAQQQ</td>
<td>2.2</td>
<td>1.4</td>
<td>0.8</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>GAAGQQQ</td>
<td>0.7</td>
<td>0.5</td>
<td>0.2</td>
<td><0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>Xrow</td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
<td><0.1</td>
<td><0.1</td>
</tr>
</tbody>
</table>

Table 7 - Propagation Delay (Mated Connector)

<table>
<thead>
<tr>
<th></th>
<th>Single-Ended</th>
<th>Differential</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>69 ps</td>
<td>65 ps</td>
</tr>
</tbody>
</table>

Characterization Details
This report presents data that characterizes the signal integrity response of a one piece connector in a controlled printed circuit board (PCB) environment. All efforts are made to reveal typical best-case responses inherent to the system under test (SUT).

In this report, the SUT includes the connector and footprint effects on a typical multi-layer PCB. PCB effects (trace loss) are de-embedded from test data. Board related effects, such as pad-to-ground capacitance, are included in the data presented in this report.

Additionally, intermediate test signal connections can mask the connectors true performance. Such connection effects are minimized by using high performance test cables and adapters. Where appropriate, calibration and de-embedding routines are also used to reduce residual effects.

Differential and Single-Ended Data
Most Samtec connectors can be used successfully in both differential and single-ended applications. However, electrical performance will differ depending on the signal drive type. In this report, data is presented for both differential and single-ended drive scenarios.

Connector Signal to Ground Ratio
Samtec connectors are most often designed for generic applications and can be implemented using various signal and ground pin assignments. In high speed systems, provisions must be made in the interconnect for signal return currents. Such paths are often referred to as “ground”. In some connectors, a ground plane or blade, or an outer shield, is used as the signal return, while in others, connector pins are used as signal returns. Various combinations of signal pins, ground blades, and shields can also be utilized. Electrical performance can vary significantly depending upon the number and location of ground pins.

In general, the more pins dedicated to ground, the better electrical performance will be. But dedicating pins to ground reduces signal density of a connector. Therefore, care must be taken when choosing signal/ground ratios in cost or density-sensitive applications.
For this connector, the following array configurations are evaluated:

Single-Ended Impedance:
- GSG (ground-signal-ground)

Single-Ended Crosstalk:
- Electrical “worst case”: GAQG (ground-active-quiet-ground)
- Electrical “best case”: GAGQG (ground-active-ground-quiet-ground)
- Across row: “xrow case”: GAG to GQG (from one row of terminals to the other row)

Differential Impedance:
- GSSG (Ground-positive signal-negative signal-ground)

Differential Crosstalk:
- Electrical “worst case”: GAAQQG (ground-active-active-quiet-quiet-ground)
- Electrical “best case”: GAAGQQG (ground-active-active-ground-quiet-quiet-ground)
- Across row: “xrow case”: GAAG to GQQG (from one row of terminals to the other row)

Only one single-ended signal or differential pair was driven for crosstalk measurements.

Other configurations can be evaluated upon request. Please contact sig@samtec.com for more information.

In a real system environment, active signals might be located at the outer edges of the signal contacts of concern, as opposed to the ground signals utilized in laboratory testing. For example, in a single-ended system, a pin-out of “SSSS”, or four adjacent single ended signals, might be encountered, as opposed to the “GSG” and “GSSG” configurations tested in the laboratory. Electrical characteristics in such applications could vary slightly from laboratory results. But in most applications, performance can safely be considered equivalent.

Signal Edge Speed (Rise Time):
In pulse signaling applications, the perceived performance of the interconnect can vary significantly depending on the edge rate or rise time of the exciting signal. For this report, the fastest rise time used was 30 ps. Generally, this should demonstrate worst-case performance.

In many systems, the signal edge rate will be significantly slower at the connector than at the driver launch point. To estimate interconnect performance at other edge rates, data is provided for several rise times between 30 ps and 500 ps.

For this report, measured rise times were at 10%-90% signal levels.
Frequency Domain Data
Frequency Domain parameters are helpful in evaluating the connector system’s signal loss and crosstalk characteristics across a range of sinusoidal frequencies. In this report, parameters presented in the Frequency Domain are Insertion Loss, Return Loss, and Near-End and Far-End Crosstalk. Other parameters or formats, such as VSWR or S-Parameters, may be available upon request. Please contact our Signal Integrity Group at sig@samtec.com for more information.

Frequency performance characteristics for the SUT are generated directly from network analyzer measurements.

Time Domain Data
Time Domain parameters indicate Impedance mismatch versus length, signal propagation time, and crosstalk in a pulsed signal environment. The measured S-Parameters from the network analyzer are post-processed using Agilent Advanced Design System to obtain the time domain response. Time Domain procedure is provided in Appendix E of this report. Parameters or formats not included in this report may be available upon request. Please contact our Signal Integrity Group at sig@samtec.com for more information.

In this report, propagation delay is defined as the signal propagation time through the connector and connector footprint. It includes 30 mils of PCB trace on each end of the connector and 77 mils of the connected PCB. Delay is measured at 30 picoseconds signal risetime. Delay is calculated as the difference in time measured between the 50% amplitude levels of the input and output pulses.

Crosstalk or coupled noise data is provided for various signal configurations. All measurements are single disturber. Crosstalk is calculated as a ratio of the input line voltage to the coupled line voltage. The input line is sometimes described as the active or drive line. The coupled line is sometimes described as the quiet or victim line. Crosstalk ratio is tabulated in this report as a percentage. Measurements are made at both the near-end and far-end of the SUT.

Data for other configurations may be available. Please contact our Signal Integrity Group at sig@samtec.com for further information.

As a rule of thumb, 10% crosstalk levels are often used as a general first pass limit for determining acceptable interconnect performance. But modern system crosstalk tolerance can vary greatly. For advice on connector suitability for specific applications, please contact our Signal Integrity Group at sig@samtec.com.
Series: FSI Series
Description: One Piece Board Stacking Interconnect, 1.0mm Pitch, 3mm (0.118") Body Height

Additional information concerning test conditions and procedures is located in the appendices of this report. Further information may be obtained by contacting our Signal Integrity Group at sig@samtec.com
Appendix A – Frequency Domain Response Graphs

Single-Ended Application – Insertion Loss

![Single-Ended Application - Insertion Loss Graph](image1)

Single-Ended Application – Return Loss

![Single-Ended Application - Return Loss Graph](image2)
High Speed Characterization Report

Series: FSI Series
Description: One Piece Board Stacking Interconnect, 1.0mm Pitch, 3mm (0.118") Body Height

Single-Ended Application – NEXT Configurations

Single-Ended Application – FEXT Configurations
Series: FSI Series
Description: One Piece Board Stacking Interconnect, 1.0mm Pitch, 3mm (0.118") Body Height

Differential Application – Insertion Loss

![Differential Application - Insertion Loss](image)

Differential Application – Return Loss

![Differential Application - Return Loss](image)
Series: FSI Series
Description: One Piece Board Stacking Interconnect, 1.0mm Pitch, 3mm (0.118”) Body Height

Differential Application – NEXT Configurations

Differential Application – FEXT Configurations
Appendix B – Time Domain Response Graphs

Single-Ended Application – Input Pulse

![Single-Ended Application - Input Pulse Graph](image)

Single-Ended Application – Impedance

![Single-Ended Application - Impedance Graph](image)
Single-Ended Application – Propagation Delay

![Propagation Delay Graph]

Single-Ended Application – NEXT, Worst Case Configuration

![NEXT Graph]
Single-Ended Application – FEXT, Worst Case Configuration

![Single-Ended Application - FEXT](image)

Single-Ended Application – NEXT, Best Case Configuration

![Single-Ended Application - NEXT](image)
Single-Ended Application – FEXT, Best Case Configuration

Single-Ended Application – NEXT, Across Row Configuration
Single-Ended Application – FEXT, Across Row Configuration

Differential Application – Input Pulse
Differential Application – Impedance

Differential Application – Propagation Delay
Differential Application – NEXT, Worst Case

![Differential Application - NEXT Graph]

Differential Application – FEXT, Worst Case

![Differential Application - FEXT Graph]
Series: FSI Series
Description: One Piece Board Stacking Interconnect, 1.0mm Pitch, 3mm (0.118") Body Height

Differential Application – NEXT, Best Case

Differential Application – FEXT, Best Case
Series: FSI Series
Description: One Piece Board Stacking Interconnect, 1.0mm Pitch, 3mm (0.118") Body Height

Differential Application – NEXT, Across Row Case

![NEXT Graph]

Differential Application – FEXT, Across Row Case

![FEXT Graph]
Appendix C – Product and Test System Descriptions

Product Description
Product test samples are 3mm (0.118") body height FSI Series connectors. The part number is FSI-150-03-G-D-AD. The FSI Series connector are surface mount products. The FSI Series connector has two rows or one row of contacts evenly spaced on a 1mm (0.0394") pitch. A photo of the test articles mounted to SI test boards is shown below.

Test System Description
The test fixtures are composed of four-layer FR-4 material with 50Ω signal trace and pad configurations designed for the electrical characterization of Samtec high speed connector products. A PCB mount SMA connector is used to interface the VNA test cables to the test fixtures. Optimization of the SMA launch was performed using full wave simulation tools to minimize reflections. Six test fixtures are specific to the FSI Series connector set and identified by part numbers PCB-103164-TST-01 to PCB-103164-TST-06. Calibration standards specific to the FSI Series are located on the calibration boards PCB-103164-TST-07 and PCB-103164-TST-08. To keep trace lengths short, three different test board sets were required to access the necessary signal pins.

PCB-103164-TST-XX Test Fixtures
Shown below is a photograph of one of the three test board sets.
PCB-103164-TST-XX PCB Layout Panel

Artwork of the PCB design is shown below.

PCB Fixtures
The test fixtures used are as follows:

- PCB-103164-TST-01 Rev – FSI Series Test Board for worst-case crosstalk
- PCB-103164-TST-02 Rev – PCB Test Board for worst-case crosstalk
- PCB-103164-TST-03 Rev – FSI Series Test Board for best-case crosstalk
- PCB-103164-TST-04 Rev – PCB Test Board for best-case crosstalk
- PCB-103164-TST-05 Rev – FSI Series Test Board for cross row crosstalk
- PCB-103164-TST-06 Rev – PCB Test Board for cross row crosstalk
Series: FSI Series
Description: One Piece Board Stacking Interconnect, 1.0mm Pitch, 3mm (0.118") Body Height
Calibration Board

Test fixture losses and test point reflections were removed from the data by use of TRL calibration. The calibration board is shown below. Prior to making any measurements, the calibration board is characterized to obtain parameters required to define the calibration kit. Once a cal kit is defined, calibration using the standards on the calibration board can be performed. Finally, the device can be measured and the test board effects are automatically removed.

Thru line – 2800 mils
Open Reflect – 1400 mils
Line 1 – 6190 mils
Line 2 – 3480 mils
Line 3 – 2940 mils
Match – 1400 mils
All traces on the test boards are length matched to 1.5” measured from the center of the pad to the SMA. The TRL calibration effectively removes 1.4” of test board trace effects. This means that 77 mils of test board trace length effects for the FSI connector side and 30 mils for the connected PCB are included in the measurement. The S-Parameter measurement includes for FSI connector and connected PCB side:

A- The FSI Series connector set
B- test board vias, pads (footprint effects) for FSI connector side.
C- 77 mils of 16 mil wide microstrip trace.
D- test board vias, pads (footprint effects) for connected PCB side.
E- 30 mils of 16 mil wide microstrip trace.

The figure below shows the location of the measurement reference planes.
Appendix D – Test and Measurement Setup

The test instrument is the Agilent N5230C PNA-L network analyzer. Frequency domain data and graphs are obtained directly from the instrument. Post-processed time domain data and graphs are generated using convolution algorithms within Agilent ADS. The network analyzer is configured as follows:

Start Frequency – 300 KHz
Stop Frequency – 20 GHz
Number of points -1601
IFBW – 1 KHz

With these settings, the measurement time is approximately 20 seconds.

N5230C Measurement Setup
Series: FSI Series
Description: One Piece Board Stacking Interconnect, 1.0mm Pitch, 3mm (0.118”) Body Height

Test Instruments

<table>
<thead>
<tr>
<th>QTY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Agilent N5230C PNA-L Network Analyzer (300 KHz to 20 GHz)</td>
</tr>
<tr>
<td>1</td>
<td>Agilent N4433A ecal module (300 KHz to 20 GHz)</td>
</tr>
</tbody>
</table>

Test Cables & Adapters

<table>
<thead>
<tr>
<th>QTY</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Megaphase CM26 (DC-26 GHz)</td>
</tr>
</tbody>
</table>
Appendix E - Frequency and Time Domain Measurements

Frequency (S-Parameter) Domain Procedures

The quality of any data taken with a network analyzer is directly related to the quality of the calibration standards and the use of proper test procedures. For this reason, extreme care is taken in the design of the LRM calibration standards, the SI test boards, and the selection of the PCB vendor.

The measurement process begins with a measurement of the LRM calibration standards. A coaxial SOLT calibration is performed using an N4433A ecal module. This measurement is required in order to obtain precise values of the line standard offset delay and frequency bandwidths. Measurements of the reflect and 2x through line standard can be used to determine the maximum frequency for which the calibration standards are valid. For the FSI Series test boards, this is greater than 20 GHz.

From the LRM calibration standard measurements, a user defined calibration kit is developed and stored in the network analyzer. Calibration is then performed on all 4 ports following the calibration wizard within the Agilent N5230C. This calibration is saved and can be recalled at any time. Calibration takes roughly 30 minutes to perform.

Time Domain Procedures

Mathematically, Frequency Domain data can be transformed to obtain a Time Domain response. Perfect transformation requires Frequency Domain data from DC to infinity Hz. Fortunately, a very accurate Time Domain response can be obtained with bandwidth-limited data, such as measured with modern network analyzer.

The Time Domain responses were generated using Agilent ADS 2009 update 1. This tool has a transient convolution simulator which can generate a Time Domain response directly from measured S-Parameters. An example of a similar methodology is provided in the Samtec Technical Note on domain transformation http://www.samtec.com/Technical_Library/reference/articles/pdfs/tech-note_using-PLTS-for-time-domain-data_web.pdf

Impedance (TDR)

A step pulse is applied to the touchstone model of the connector and the reflected voltage is monitored. The reflected voltage is converted to a reflection coefficient and then transformed into an impedance profile. All ports of the Touchstone model are terminated in 50 ohms.
Series: FSI Series
Description: One Piece Board Stacking Interconnect, 1.0mm Pitch, 3mm (0.118") Body Height

Propagation Delay (TDT)
The Propagation Delay is a measure of the Time Domain delay through the connector and footprint. A step pulse is applied to the touchstone model of the connector and the transmitted voltage is monitored. The same pulse is also applied to a reference channel with zero loss, and the Time Domain pulses are plotted on the same graph. The difference in time, measured at the 50% point of the step voltage is the propagation delay.

Near-End Crosstalk (TDT) & Far End Crosstalk (TDT)
A step pulse is applied to the touchstone model of the connector and the coupled voltage is monitored. The amplitude of the peak-coupled voltage is recorded and reported as a percentage of the input pulse.
Appendix F – Glossary of Terms

ADS – Advanced Design Systems
BC – Best Case crosstalk configuration
DUT – Device under test, term used for TDA IConnect & Propagation Delay waveforms
FD – Frequency domain
FEXT – Far-End Crosstalk
GSG – Ground–Signal-Ground; geometric configuration
GSSG - Ground–Signal-Signal-Ground; geometric configuration
HDV – High Density Vertical
NEXT – Near-End Crosstalk
OV – Optimal Vertical
OH – Optimal Horizontal
PCB – Printed Circuit Board
PPO – Pin Population Option
SE – Single-Ended
SI – Signal Integrity
SUT – System Under Test
S – Static (independent of PCB ground)
SOLT – acronym used to define Short, Open, Load & Thru Calibration Standards
TD – Time Domain
TDA – Time Domain Analysis
TDR – Time Domain Reflectometry
TDT – Time Domain Transmission
WC – Worst Case crosstalk configuration
Z – Impedance (expressed in ohms)