
RF Characterization Report

BNC7T Series RF Connector

BNC7T-J-P-GN-ST-TH1

BNC7T-J-P-GN-RA-BH1

Description: 75 Ohm True75[™] BNC Jack, Straight 75 Ohm True75[™] BNC Bulkhead Jack, Right Angle

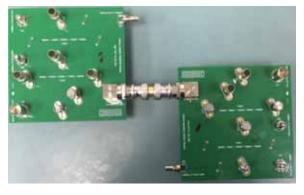
Samtec Inc. 520 Park East Blvd. New Albany IN 47151-1147 USA ©Samtec, Inc. 2005 WWW.SAMTEC.COM 1-800-SAMTEC-9 (US & Canada) <u>RF@samtec.com</u> Phone: 812-944-6733 Fax: 812-948-5047 Report Revision: 6/17/2016 All Rights Reserved

Table of Contents

Test Setup Information	1
Introduction:	1
Product Description:	1
Procedures	2
Calibration for Fixture/DUT and 2X Thru Measurements:	2
AFR ¹	
AFR ²	3
Instrument Setup:	3
Simulation, Modeling and Analysis Tools:	3
Return Loss Results	
75 Ohm Straight BNC Jack Mated to Radiall Plug Barrel Adapter	
75 Ohm Right-Angle BNC Jack Mated to Radiall Plug Barrel Adapter	
75 Ohm Straight BNC Jack Mated to Amphenol 6" BNC Plug Cable Assembly	
75 Ohm Right-Angle BNC Jack Mated to Amphenol 6" BNC Plug Cable Assembly	
75 Ohm Straight BNC Jack Mated to Amphenol 12" BNC Plug Cable Assembly	
75 Ohm Right-Angle BNC Jack Mated to Amphenol 12" BNC Plug Cable Assembly.	6
Test Environment:	7

Test Setup Information

Introduction:


Testing performed evaluates the electrical performance of non-standard impedance products to 12 GHz. Evaluated are two 75 Ohm BNC7T PCB mount series connector types, straight through-hole and right-angle bulkhead through-hole. Measurements evaluate mated pair connector performance over a frequency from 300 KHz to 20 GHz. All measurements conducted utilize specifically designed test boards (PCB-107141-SIG) and Keysight Technologies Automated Fixture Removal (AFR) software tool for the project. AFR methods will de-embed mixed impedance fixturing effects followed by a bifurcation process, splitting dual mated pair performance into separate, single mated pair performance results.

Product Description:

BNC7T-J-P-GN-ST-TH1, straight, through hole BNC7T-J-P-GN-RA-BH1, right-angle, through hole

Measurement conditions:

	Mating Plug Pairs					
	END A	END B	END A	END B	END A	END B
Test Sample	Radiall		Amphenol		Amphenol	
	75Ω Barrel Adapter		75Ω 6 inch Assembly		75Ω 12 inch Assembly	
	BNC Plug to Plug (2)		BNC Plug to Plug (2)		BNC Plug to Plug (2)	
BNC7T-J-P-GN-ST- TH1	V-MM-1A	V-MM-2B	V-6in-1A	V-6in-2B	V-12in-1A	V-12in-2B
	V-MM-3A	V-MM-4B	V-6in-3A	V-6in-4B	V-12in-3A	V-12in-4B
BNC7T-J-P-GN-RA- BH1	H-MM-1A	H-MM-2B	H-6in-1A	H-6in-2B	H-12in-1A	H-12in-2B
	H-MM-3A	H-MM-4B	H-6in-3A	H-6in-4B	H-12in-3A	H-12in-4B

PCB Fixture/DUT

Three Conditions

Procedures

Calibration for Fixture/DUT and 2X Thru Measurements:

Calibration is performed using the 50Ω Agilent mechanical calibration kit, PN 85052D, DC to 26.5 GHz; or an equivalent E-Cal module can be utilized. Performed at the male ends of each test port cable is an unknown thru SOLT type calibration (Figure 1). Standards used are the female open, female short and a female broadband

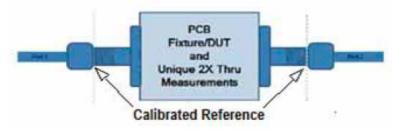
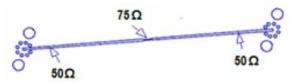
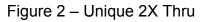




Figure 1 – Standard 50Ω Impedance Calibration

load. The unknown thru standard is an Agilent 3.5mm (f) to 3.5mm (f) precision adapter. NIST traceable open, short and load standards establish the calibrated reflective refer-

ence points for all Fixture/DUT measurements. The unknown thru establishes transmission connection and its effects are determined negligible (Two Port Network Analyzer Calibration Using an Unknown "Thru", Andrea Ferrero, Member, IEEE and Umberto Pisani, IEEE Microwave and

Guided Wave Leters, Vol. 2, No. 12, December 1992). The 50Ω standard impedance calibration provides a 20 GHz working bandwidth in which to operate. The unique 2X thru of non-standard 75 Ω impedance product determines the bandwidth that can be measured effectively. The unique 2X Thru (Figure 2) standard is a one-time critical measurement applicable to all Fixture/DUT measurements. Fixture/DUT measurements total twelve, six straight and six right angle, utilizing the 3-75 Ω BNC plug conditions. The AFR bifurcation process generates two mated pair results for each measurement condition totaling twenty-four mated pair results.

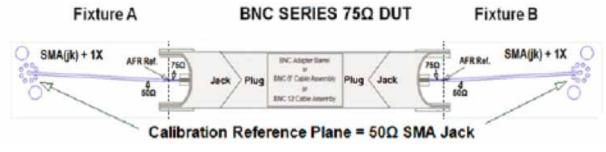


Figure 3 – Fixtures De-embedded

AFR¹

AFR is a module embedded into Keysight Technologies PLTS simulation and deembedding software. Correctly implemented, AFR mathematical routines effectively apply the 2X Thru standard s-parameter characteristics to each of the Fixture/DUT sparameter measurement characteristics that de-embed all the unwanted PCB fixture

Series: BNC7T

Description: 75 Ohm True75[™] BNC Jack, Through Hole

effects. Non-shaded areas of Figure 3 depict fixture "A and B" as de-embdded. Of interest are the shaded areas of the 75 Ω BNC DUT that contain SI characteristics from two mated pairs of 75 Ω BNC connectors, along with induced termination and cable effects from three conditional effects monitored. Final procedure is to employ a method called bifurcation (AFR²) to extract single mated pair results.

AFR²

The definition of bifurcation means to divide into two separate branches, which, when AFR is employed a second time, will occur. By dividing the dual mated pair file result from above against itself, using AFR, the equivalent files are extracted as fixtures, "A" and "B" creating the equivalent mated pair result sought.

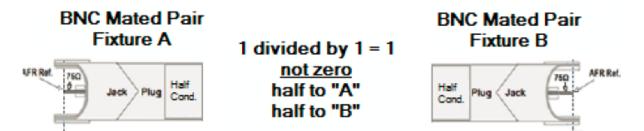
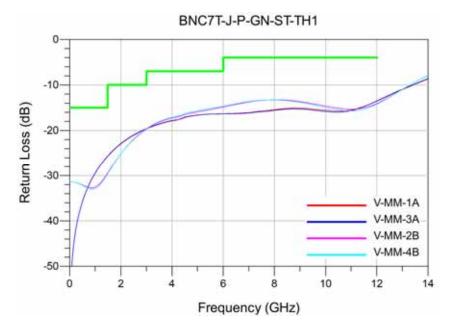


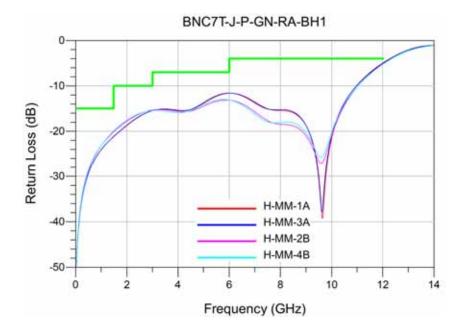
Figure 4 – Two Mated Pair Results Extracted

Instrument Setup:

Network Analyzer	Agilent N5230C PNA-L Series (300 KHz – 20 GHz) 2- Port Configuration
Mechanical Calibration Kit	•
Averaging Factor	0
Smoothing	Off
IF Bandwidth	1 KHz
Sweep Start	300 KHz
Sweep End	20 GHz
Points	1601
Test Cables	Gore OWD01D02039-4 (DC-26.5 GHz)

Simulation, Modeling and Analysis Tools:

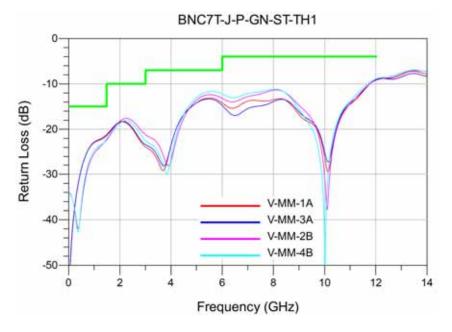

Physical Layer Test System (PLTS), 2014	Keysight Technologies
Automated Fixture Removal (AFR)	Keysight Technologies
AFR (Bifurcation)	Keysight Technologies
AFR ¹ / AFR ² Methods Reference	Non-Standard Impedance Testing
Advanced Design System	Keysight Technologies



Return Loss Results

75 Ohm Straight BNC Jack Mated to Radiall Plug Barrel Adapter

75 Ohm Right-Angle BNC Jack Mated to Radiall Plug Barrel Adapter

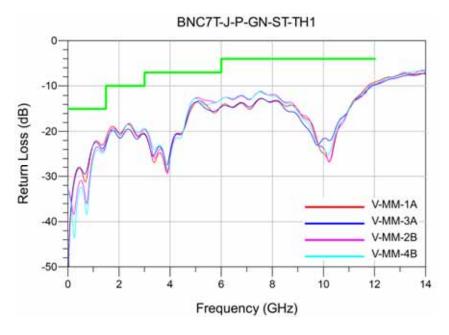


RF@samtec.com

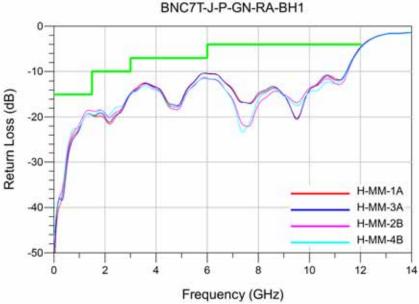
Return Loss

75 Ohm Straight BNC Jack Mated to Amphenol 6" BNC Plug Cable Assembly

75 Ohm Right-Angle BNC Jack Mated to Amphenol 6" BNC Plug Cable Assembly



BNC7T-J-P-GN-RA-BH1



Return Loss

75 Ohm Straight BNC Jack Mated to Amphenol 12" BNC Plug Cable Assembly

75 Ohm Right-Angle BNC Jack Mated to Amphenol 12" BNC Plug Cable Assembly

Test Environment:

(A Typical set-up, actual part depicted.)