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Abstract  

The quality of time domain simulation results depends on the quality of the Sïparameter 

models used. Causality is shown to be an important parameter limiting the usefulness of a 

model.  In this paper, we demonstrate that causality problems can be classified as 

mathematical (or numerical) and physical in origin. Mathematical non-causalities are 

caused by discretization and truncation of S-parameters models, while physical non-

causalities are caused by simulations and/or measurement inaccuracies and noise. It will 

be shown how mathematical non-causalities can be controlled, but not eliminated.  Their 

impact on simulation results will be discussed. Finally, it will be demonstrated that for 

high quality S-parameters, physical non-causalities can be eliminated easily, while this is 

not the case if the quality of the S-parameters is not good. 
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1.  Introduction  

S-parameters have become the de facto standard for interconnect modeling as they 

accurately capture impairments such as crosstalk, reflections and loss.  For example, 

resonant behavior in systems is easily seen when working with S-parameters. While there 

are many advantages to using S-parameters for SI analysis, there are nagging problems 

associated with using them in time domain simulations.  Often it is assumed that the 

Fourier transform is an analytically precise means of converting from the frequency 

domain to the time domain.  This would be true if the S-parameters were continuous and 

spanned all frequencies, unfortunately this is not the case.  Real world S-parameters are 

bandwidth limited and sampled so transformation into the time domain will result in non-

causal signals.  Gibbs Phenomenon is one well known effect which causes a non-causal 

time domain signal and is due to finite bandwidth of the S-parameter data set.  Gibbs 

Phenomenon is illustrated in Figure 1; the non-causal time domain response is the ringing 

that occurs prior to the base delay of approximately 1.2 ns. 

 

  
(a) (b) 

Figure 1: Illustration of Gibbs Phenomenon, (a) Typical bandwidth limited insertion loss 

of a transmission line, (b) Corresponding impulse response with ringing. 

Samtec fulfills  over 1200 SI support requests per year, and many of these are requests 

for S-parameter models of connectors.  An increasing number of customers have received 

warnings related to causality violations when using these models in various 3
rd

 party 

analysis tools.   This research was motivated by the need to improve the quality of said 

connector models, and to guide customers in their use and limitations. 

 

2.  Causality  

The concept of a causal system is intuitive; the cause must precede the effect. This 

concept is broad in nature and spans the fields of theology, law, biology and physics.  

This paper focuses on physics; more specifically on the mathematical aspects of the 

Kramers-Kronig relations applied to linear time invariant (LTI) systems such as passive 

interconnects for electronics. The goal of this work is to understand how causality 

violations arise and what can be done to minimize their impact.   

 



To illustrate, consider the case of a transmission line in which the electrical length is 1 ns. 

The physical length and velocity of propagation determine the electrical length; for the 

sake of this simple example it is 1 ns.  If a stimulus were applied at the input, the output 

cannot respond for at least 1 ns.  Any output response happening before 1 ns has elapsed, 

no matter how small, is a causality violation.  While this effect may seem minor, bit error 

rate (BER) calculations of systems are predicated on very accurate calculations of time 

domain parameters (jitter for example).  Causality errors can cascade leading to 

over/under predictions of system level parameters such as BER or channel operating 

margin (COM). 

 

Our approach to understanding and ultimately correcting causality violations will be to 

separate them into numerical and non-physical components.  Gibbs Phenomenon is an 

example of a numerical non-causality.  Numerical non-causalities are caused by two 

separate attributes: 

 

1. Real world S-parameters are bandwidth limited.  A typical data set from a vector 

network analyzer (VNA) might have a bandwidth of 50 MHz to 20 GHz or 

higher/lower depending on the equipment limitations. The key point here is that it 

is not infinity; the data sets are bandwidth limited. 

 

2. Real world S-parameters are a sampled data set.  Again, a typical data set from a 

VNA might have a sample every 10 MHz or 1 MHz.  The key point is that it is 

not continuous; it is a discretized data set. 

   

Non-physical components can best be described as ñnoiseò and can occur in measured or 

modeled data.  For example, a full wave simulation of a PCB trace that uses a non-

physical dielectric model can result in a causality violation.  Another common example 

occurs when performing a TRL calibration of a VNA measurement.  TRL calibration 

effectively shifts the reference plane of the S-parameter data set and removes loss from 

test fixtures.  If the TRL calibration structures differ from the test fixture, the resultant 

reference plane shift and/or loss correction may result in a causality violation. 

 

This paper details several aspects of causality. Specifically, Section 3 discusses causality 

for continuous signals with an infinite bandwidth. It will be shown that for this case, 

causality is straight forward; can easily be recognized in both the time and frequency 

domains, and non-causalities can be easily corrected. Section 4 discusses the numerical 

issues that occur when data is bandwidth limited and discretized. This section also 

discusses the link between the Fourier Transform and the Discrete Fourier Transform, 

which itself is used for discrete, bandwidth limited signals. Section 5 deals explicitly with 

causality for discrete, bandwidth limited signals. It is shown that with the right 

assumptions, causality for this kind of signal is as straightforward as causality for 

continuous signals with infinite bandwidth. Definition, detection and enforcement are 

also discussed. Section 6 covers non-physical; non-causalities and final conclusions are 

located in Section 7.  

 



3.  Causality for  continuous functions  with 

infinite bandwidth  

While real world S-parameters are discrete and bandwidth limited, one should first 

consider an ideal case with S-parameters that are continuous and have an infinite 

bandwidth. It is well known that in this case, real and imaginary parts of the S-parameters 

are linked through Kramers-Kronig or the Hilbert transform [1-2]. This section illustrates 

what these relations represent in the time domain [3].  These very relations will be used 

as the basis to define associations between the real and imaginary part of S-parameters 

that are bandwidth limited and discretized. This approach should (hopefully) ñdemystifyò 

the mathematics by starting with something a bit more basic.  

 

Consider a causal time domain signal v(t) shown in Figure 2.   

 

 
Figure 2: Illustration of a causal time domain signal. 

The time domain definition of causality is quite simple:  

 0t0)t(v <=  (1) 

There can be no signal as long as there is no excitation. This equation assumes that the 

signal has no delay and that the reference plane is at t=0. This assumption is maintained 

throughout this document. This is not a limitation; as for passive interconnection 

structures, it is always possible to decompose the S-parameters into the product of a 

minimum-phase function and an all pass-function: with the minimum phase function 

having its reference plane at t=0. An all pass-function is a function with unit magnitude 

response at all frequencies and is a pure phase shifter [4]. 

 

In order to obtain a frequency domain definition of causality, one must first expand v(t) 

into even and odd components and introduce the sign function. This construct will also be 

helpful to show how to enforce causality.  Recall that an even and odd signal are defined 

by 
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When taking into account equation (1) (v(t) is causal), it follows: 
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These equations become 
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Through the use of the sign function definition: 
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Equation (4) can be considered as a second ñdefinitionò of causality. A signal v(t) is 

causal if the even and odd part of v(t) are linked through the sign function.  

 

Remember, the goal is to provide S-parameters that are of a high quality so as to be 

useful for SI simulations.  S-parameters are frequency domain based; therefore having the 

causality condition confirmed in the time domain is not very helpful.  The next step then 

becomes to represent the causality conditions in equation (3) using the Fourier 

Transform.  Going forward, ñFourier Transformò will be abbreviated in this paper as 

ñFTò. To obtain the causality requirement in the frequency domain, first perform the 

Fourier Transform of equation (4) and take into account that 
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Thus obtaining 
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The integral is defined according to the Cauchy Principle Value: 
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By taking the Fourier Transform of equation (4), one obtains the Hilbert Transform 

which relates real and imaginary parts of a causal S-parameter. Translation of the Hilbert 

Transform for causal functions in the time domain indicates that the even and odd parts 

of a causal signal are linked with each other. 

 

If an S-parameter is not causal, the above equations also provides  a very simple method 

to enforce causality both in the time and frequency domains. This is illustrated in Figure 

3 for the time domain. In the first step, the even (or odd) function is calculated (Figures b, 

c). Next, the corresponding causal, odd (or even) functions are calculated using equation 

(4) (Figures d, e). The causality enforced, time domain response is then obtained by 

taking the sum of the even (or odd) function and the calculated odd (or even) function 

(Equation (9) and Figure 3f and 3g). 
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(a) 

  
(b) (c) 

  
(d) (e) 

  
(f) (g) 

Figure 3: Causality enforcement illustrated. 

Notice in Figure 3 that in the causality enforced signals, the non-causality is shifted from 

negative time to positive time. This is an undesired side-effect of causality enforcement. 

To avoid this, the even and odd causality enforced functions need to be combined: 
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as illustrated in Figure 4. 

 

 
Figure 4: Combination of odd and even causality enforced functions. 

By substituting equation (9) in equation (10) we obtain 
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with u(t) being a perfect step signal. The causality enforced function can simply be 

obtained by multiplying the original causal function with a perfect step function. 

 

In the frequency domain, these equations become 
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At this point, we introduce the concept of a causality number.  The objective is to have a 

metric which answers the question: ñHow causal is an S-parameter set?ò.  The metric for 

signals with an infinite bandwidth is simple and logical. This is done by determining how 

much energy there is between the original function and the causality enforced function. In 

the time domain, this is identical to verifying how much energy exists for t<0 as shown is 

equation (13). 
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The smaller this number, the more causal the resultant signal. This equates to zero for 

causal functions. In frequency domain, it follows: 
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4.  Numerical representation of S -parameters  

To process signals, numerical tools cannot work with infinite continuous signals; 

therefore, the infinite signals must be truncated and discretized. Furthermore, time and 

frequency domain representations of the signals are linked through the Discrete Fourier 

Transform (DFT) instead of the Fourier Transform.  Unfortunately, non-causality effects 

are introduced if this is not done with care.  

 

Figure 5 below compares the impulse response of an infinite continuous signal with the 

impulse response of a bandwidth limited, discretized signal of the same system; they do 

not fall on top of each other. Before discussing causality for discrete signals, one must 

understand why there is a difference. 

 
Figure 5: Comparison between the IFT and DIFT of a continuous and sampled, 

bandwidth limited S-parameter.  

What follows is the impact of bandwidth limitation, discretization and the use of the DFT 

on causality in three steps. First, we detail the effect of bandwidth limitations.  Second, 

we look at the impact of sampling in the frequency domain.  Third, we consider sampling 

in the time domain.  As a conclusion, the relation between the DFT and Fourier 

Transform will be illustrated, followed by a closer look at the Gibbs Phenomenon for 

sampled bandwidth limited signals.  

 

4.1  Bandwidth limitation of S -parameters  

A bandwidth limited signal HB(f) can be represented as a bandwidth unlimited signal H(f) 

multiplied with a perfect rectangular filter R(f). 

 
 

(15) H
B
(f)=H(f).R(f) 



 
Figure 6: Bandwidth limited signal. 

In the time domain, this equation becomes: 

 
 

(16) 

as the inverse Fourier Transform of a block function is the sinc function.   

 
Figure 7: Time domain response bandwidth limited signal 

The time domain impulse response of a bandwidth limited signal is equal to the impulse 

response of the bandwidth unlimited function convolved with a non-causal sinc function. 

As a result, there is ringing, also known as Gibbs Phenomenon, on the impulse response 

rendering the impulse response no longer causal. This ringing is a function of the S-

Parameter bandwidth and can only be avoided if all of the signal energy falls completely 

in the considered bandwidth, Fmax, as is illustrated in Figure 8. Figure 8a compares the 

spectrum of two different signals. The blue signal has more loss, and as such has 

relatively more energy (compared to the total energy), in the considered bandwidth. 

Figure 8b shows that the blue impulse response has significantly less ringing. 

  
 (a) (b) 

Figure 8: Ringing for bandwidth limited S-parameters with different loss: the blue curve 

has significantly less ripple than the red curve. 

h
B
(t)=B.h(t)*sinc(pBt) 



Unfortunately, this requirement is quite impractical for many systems (e.g. low loss 

systems) as this means the maximum frequency must be several hundred gigahertz or 

higher. 

 

One could consider causality enforcement to minimize ringing by using equations (10) or 

(12). An example is illustrated in Figure 9. Enforcing causality results in S-parameters 

that are no longer bandwidth limited. Fortunately, as is shown in paragraph 4.4, there are 

a number of ways to reduce the ringing. Also, in practical simulations one is not 

interested in the impulse response, but in the pulse response. To obtain the pulse 

response, the S-parameters need to be multiplied with the spectrum of the excitation 

signal: a pulse in this case. Since a pulse can be considered a low pass filter, all energy of 

the received signal shifts to lower frequencies, and the received signal has relatively more 

energy in the considered bandwidth, thus reducing the ringing of the pulse response 

significantly. 

 

  
Figure 9: Elimination of ringing by causality enforcement. 

4.2  Sampling of S -parameters  

The sampling of S-parameters results in a periodic impulse response with period T0 

defined by the sampling frequency: T0 = 1/Df. This is illustrated in Figure 10. It is 

assumed that: 

¶ the frequency is continuous and infinite 

¶ the S-parameter data is zero at all frequencies except for the sampling frequencies  

The inverse Fourier Transform is used to obtain the time domain data. The impulse 

response of the sampled bandwidth limited S-parameters is given by 

 ä
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With hcontinuous(t) being the impulse response of the un-sampled bandwidth limited S-

parameters. 

 



 
 (a) (b) 

Figure 10: Sampling of the S-parameters (a) results in a periodic impulse response (b). 

Notice that the impulse response of the sampled S-parameters does not equal the sampled 

impulse response of the continuous S-parameters; there is a shift/offset (see small 

window in Figure 10b  This is caused by time domain overlap or time domain leakage 

which occurs when the duration of the un-sampled impulse response lasts longer than the 

period T0. To avoid this time domain overlap, one must reduce the frequency step (Df) to 

make sure that T0 is larger than the duration of the impulse response as shown in Figure 

11.  

 
Figure 11: By reducing the frequency step Df the time window gets larger and the 

difference between the continuous impulse response and discrete impulse response 

disappears.  

Due to the periodicity, the impulse response is definitely not-causal (hdiscrete(t)Í0 for t<0). 

The initial definition for causality can no longer be used. 

 

Since the time domain response is periodic, it can be limited to one period. The question 

arises, where must the time domain window be taken? For simplicity, the assumption is 

made that the reference plane is at t=0. It is also assumed that the impulse response falls 

completely in the time window. Basically, there are 2 options (see Figure 12 ): a time 

window from -T0/2 to T0/2 (option a) or a time window from 0 to T0 (option b). 

 



  
(a) (b) 

Figure 12: Options for time window selection. 

The answer depends on the assumptions made. If it is known that the S-parameters are 

causal and do not suffer from physical non-causalities, then option (b) is the best choice: 

the impulse response can last a complete time window before time domain leakage 

occurs; this is twice as long as for option a.  If it is unknown that the S-parameters are 

causal, then option (a) must be selected. This is the only option with ñnegativeò time and 

allows one to check if a signal is causal. Consequently, if  the impulse response is longer 

than half the period, T0, then according to option (a), the S-parameters become non-causal 

even if the impulse response is smaller than T0! High quality S-parameters require that 

option (a) is selected and that the impulse response falls completely in half the time 

window. 

 

In order to avoid non-causalities that are a result of time domain overlap or leakage, the 

time domain period, T0, must be larger than two times the impulse response duration, 

Tmax. The impulse response duration of a typical connector, cable or backplane is 

determined by several factors: length of delay, impedance mismatches and reflection and 

insertion loss.  Unfortunately, many of the signals we consider have an infinite impulse 

response duration. Figure 13 shows an RC-filter; the infinite impulse response of this 

filter is given by:  
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Figure 13: RC filter 

The impulse response of a signal propagating through an ideal transmission line with 

reflection coefficient r and delay t is given by (Figure 14) 

 ( )( )...)3t()3t()t(.1)t(h 422 +t-dr+t-dr+t-dr-=  (19) 

The impulse response gets smaller as time passes, but is only zero for t=¤. 
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Figure 14: Impulse response of ideal transmission line. 

By definition, many signals become non-causal due to discretization. One solution is to 

minimize and control the non-causalities by making the time window, T0, as large as 

needed by minimizing the frequency step, Df. A second method is to limit the impulse 

duration by truncating the time domain response so it falls completely in half of the time 

window as is illustrated below. However, applying this method results in S-parameters 

that are no longer bandwidth limited. 

 

In order to enforce causality, the impulse response is set to zero for the negative time 

portion of the time window for all periods. The result is a small change to the insertion 

loss which is shown in Figure 15. The observed change is a function of the non-causality; 

the more causal the impulse response, the less of a change will be seen upon causality 

enforcement. If there is no change, then the signal is already causal. 

 

 

 
(a) (b) 

Figure 15: Causality enforcement (a) time domain, (b) frequency domain. 

4.3  Sampling time domain data  

In the previous sections, we assumed that the bandwidth of frequency domain data is 

infinite and that time domain signals are continuous. To come to a numerical 

representation of the impulse response, the time domain response needs to be discretized. 

In principle, the time step, (ȹt), can be chosen arbitrarily, but we will consider a specific 



case which illustrates how the Fourier Transform correlates with the DFT.  We choose 

the time step according to Equation (20) shown below.  
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Figure 16(a) shows the sampled time domain response of an impulse response using a 

time step, ȹt=25ps. Figure 16 (b) shows the corresponding spectrum. As a result of the 

time domain sampling, the spectrum becomes periodic and has infinite bandwidth. 

 

The frequency domain representation of the finite length, sampled impulse response is 

periodic and can be limited to one period.  Notice that a bandwidth limited set of S-

parameters is obtained if we have a continuous sampling of the time domain impulse 

response. The sampled time domain function, limited to one time window, is the function 

that is obtained when an Inverse Discrete Fourier Transform (IDFT) is performed on the 

sampled, bandwidth limited frequency domain data. If the correct assumptions are made, 

 
(a) 

 
(b) 

Figure 16: Sampled time domain data and corresponded spectrum. 

the IFT and IDFT will result in the same time domain signal. For the IFT, all non-

sampled, frequency domain data needs to be set to zero and periodically extended. Notice 

that the time domain sampling has no impact on causality. 

 



The IDFT is identical to the IFT assuming: 

¶ the spectrum is zero between sampling points 

¶ the signal is periodic with period, T = 2ĀFmax 

¶ the time domain response is limited to one period T 

 

The DFT is identical to the FT assuming: 

¶ the signal is zero between sampling points 

¶ the signal is periodic with period, T = 1/ȹf 

¶ the frequency spectrum is limited to one period 

 

This indicates that bandwidth limitations and discretization introduce non-causalities that 

can be limited by maximizing the bandwidth of the signal and minimizing the frequency 

step. 

 

4.4  Gibbs Phenomenon  for discrete bandwidth limited  

signal s 

The previous section (Figure 16) showed that Gibbs Phenomenon occurs for bandwidth 

limited signals, and that the bandwidth limited signal is, when considering the DFT, not 

bandwidth limited but periodic. This section takes a closer look at the periodic function.  

Figure 17 shows the real and imaginary parts of the periodic S-parameters. It is clear that 

the imaginary part is discontinuous at Fmax= 20 GHz (which will likely be the case for 

most signals). This discontinuity can be avoided if the S-parameters are limited to 19.8 

GHz (Figure 18). This is the first frequency below Fmax where the imaginary part of the 

S-parameter is equal to zero. Figure 19 compares the impulse responses of both sets of S-

parameters. The ringing is significantly reduced if the S-parameter set has no 

discontinuities at the maximum frequency. 

 
Figure 17: Real and imaginary parts of periodic transfer function 



 
Figure 18: Transfer function made periodic by reducing the bandwidth from 20 GHz to 

19.8 GHz. 

 
Figure 19: Comparison impulse response of S-parameters shown on Figure 18. 

Limiting the bandwidth to make the S-parameters continuous changes the time domain 

step as well. For some applications, this is not desired. A second method to reduce the 

ripple is to make the imaginary part of the S-parameter zero at Fmax. This can be 

accomplished by adding a small delay (between 0 and Dt) to the S-parameter. This is 

illustrated on Figure 20. 

  




