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Abstract

The quality of time domairsimulation esults depends on the quality of Bigparameter
models usedCausality is shown to be an important parameter limiting the usefulness of a
model. In this papewe demonstrate that causality problems can be classified as
mathematica{or numerical)and plysical in origin. Mathematical necausalities are

caused by discretization and truncation gfeBameters modelw/hile physical non

causalities are caused by simulations and/or measurement inaccuracies and noise. It will
be shown how mathematical roausalities can be controlledut not eliminated. Their
impact on simulation results will be discussed. Findtiyill be demonstrated thébr

high quality Sparametergphysical norcausalities can be eliminatedsily, while this is

not the case if thquality of the Sparameters is not good.
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1. Introduction

S-parameters have become thdalgo standard for interconnect modeling as they
accurately capture impairments such as crosstalk, reflections andrtoyssxample,
resonat behavior in systemis easily seen when working with@rametersWhile there
are many advantages to using&ameters for Sl analysis, there are nagging problems
associated with using them in time domain simulations. Often it is assumed that the
Fourier transform is an analytically precise means of converting from the frequency
domain to the time domain. This would be true if thgaBameters were continuous and
spanned all frequeres unfortunately this is not the case. Real woHpaBameters ar
bandwidth limited and sampletransformationinto the time domain will result in nen
causal signalsGibbsPhenomenors one well know effect whichcauses noncausal
time domain signal and is due to finite bandwidth of thea&meter data set.ilibs
Phenomenors illustrated inFigurel; the noncausal time domain response is the ringing
that occurs prior tthe base delay of approximatédly? ns.
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Figure 1: lllustration of GibbsPhenonenon (a) Typical bandwidth limited insertion loss
of a transmission line, (b) Corresponding impulse response with ringing.

Samtedulfills over 1200 Sl support requests per yaad many of thee are requests

for Sparameter modelsf connectors.An increasing number of customers have received
warnings related to causality violations when using these models in vaflqastg

analysis tools This research was motivated by the need to improve the quasigicbf
connector mode]sind to guide custom®in their use and limitations.

2. Causality

The concept of a causal system is intuitive;dhese must precede the effddtis

concept is broad in nature and spans the fields of theology, law, biology and physics.
This paper focuses ghysics morespeifically on the mathematicaspects of the
KramersKronig relations applied to linear time invariant (LTI) systems such as passive
interconnec for electronics. The goal of this work is to understand how causality
violations arise and what can be dooertinimize their impact.



To illustrate, consider the case aransmission line in which the electrical lengtii iss.

The physical length and velocity of propagation determine the electrical ;lémgthe

sake of thisimple exampld is 1 rs. If a stimuluswere appliedat the inputthe output
cannot respond fat leastl ns. Any output respondeappening beforé nshas elapsed

no matter how small, is a causality violation. While this effect may seem minor, bit error
rate (BER) calculationsf systems are predicated on very accurate calculations of time
domain parameters (jitter for examplejausality errors cacascade leading to

over/under predictions of system level parameters such as BER or channel operating
margin (COM).

Our approaciio understanding and ultimately correcting causality violations will be to
separate them into numerical and fpirysical components. GibBhenomenors an
example of a numerical narausality. Numerical nenaustties are caused by two
separate attridas:

1. Real world Sparameters are bandwidth limited. A typical data set from a vector
network analyzer (VNA) mighttave a bandwidth &0 MHz t020 GHz or
higher/lower depending on the equipment limitatidrtse key point here is that it
is notinfinity ; the data setare bandwidth limited.

2. Real world Sparameters are a sampled data set. Again, a typical data set from a
VNA might have a sample every 10 MHz or 1 MHz. The key point is that it is
not continuousit is a discretized data set.

Nonphysich components can best be described as
modeleddata. For example, &ull wave simulation of a PCB trace that uses a-non

physical dielectric model can result in a causality violation. Another common example
occurswhenperforming arRL calibration of a VNA measurement. TRL calibration

effectively shifts the reference plane of thp&ameter data set and removes loss from

test fixtures. If the TRL calibration structures differ from the test fixtineresultant

reference plane shift and/or loss correctioayresult in a causality violation.

This paper detailseveral aspects of causali§pecifically Section 3 discusses causality
for continuous signals with an infinite bandwidth. It will be shown that for this cas
causality is straight forward@an easily be recognized in bdketime and frequency
domairs, and norcausalities cabeeasily corrected. Sectionddscusgsthe numerical
issues that occur when data is bandwidth limited and discretized. This sdstion
discusses the link between the Fourier Transform and the Discrete Fourier Transform
whichitselfis used for discrefdandwidth limited signals. Sectiondgals explicitly with
causality for discretdoandwidth limited signals. Is shown thatvith the right
assumptions, causality for this kind of signal is as straightforward as causality for
continuous signals with infinite bandwidth. Definition, detection and enforcement are
alsodiscussedSection6 coversnonphysical;non-causalitiesandfinal conclusionsare
locatedin Section 7.



3. Causality for continuous functions with
infinite bandwidth

While real world Sparameters are discrete and bandwidth limibea shouldirst

consider an ideal case withgarameters that are continuous and havefarite

bandwidth. It is well known that in this caseal and imaginary pabof the Sparameters

are linked through KamersKronig or theHilbert transform1-2]. This sectionllustrates

what these relatiomrgpresenin the time domaifid]. Thesevery relations willbe used

as the basis to defirmssociationbetween the real and imaginary part gi&8ameters

that are bandwidthmited and discretized. This approach shofiidpefully) i d e my st i f y 0
the mathematicby startingwith something a bit moreasic.

Consider a causal time domain signal s(tpwn in Figure 2

"l

0
Figure 2: lllustration of a causal time domain signal

The ime domaindefinition of causalitys quite simple:
v(t)=0 t<O0 1)

There can be no signal as long as there is no excitdims equation assumes that the
signal has no delay and that the reference plane is at t=0. This assuspizomtained
throughouthis document. This is not a limitatipas for pasive interconnection
structuresit is always possible to decompose thpaBameteginto the product of a
minimum-phase function and an all passiction with the minimum phase function
having its reference plane at t=0. An all pasgsction is a functia with unit magnitude
response at all frequencies and is a pure phase g#jfter

In order to obtain a frequency domain definition of causadity, must firsexpandv(t)
into even and odd components and introduce the sign funttigconstructvill alsobe
helpful to show howo enforce causalityRecall that an eveand oddsignalare defined

by

Veven(t) = Mz\/(-t)
2 @
Voadt) = 1D

Whentakinginto account equatiofl) (v(t) is causal)it follows:
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These equations become
Veven(t) = Sign(t)'vodd(t) (4)
Vodd(t) = Sign(t)'veven(t)
Throughthe useof the sign functiorefinition:
é1 t<0
signt)=1 0 t=0 (5)
b1 t>0

Equationd) can be considered as a second dAdefini
causal iftheeven and odd part of v(t) are linked through the sign function.

Rememberthegoal is to provide $arameters that are of a high quasityas to be

useful for SI simulations. $arameters are frequency dombasedthereforehaving the

causality conditiortonfirmedin the time domain is not very helpful. The next stem

becomedo represent the causality conditions in equation (3) using the Fourie

Transform. Going forwardfi F o u r i em owillheablseviated in this paper as

AFOT. To obtain t he thefegquwmy domayfirstpertpumithe e ment i n
FourierTransform of equatiof4) and take into account tha

V(f)=FT(v(t)) =Ve(f) + Vi (T)
even( f) = FT( even(t)) :VR( f)
Voad( F) = FT (Voua(D)) =V, (T) 6)

SIGN(f) = FT (sign(t)) = —~
j o
Thusobtairing

V. (f) =SIGN(f)* }V, (f)_B r}%df
. (7)
iV, (F) =SIGN(f )* V, (f) = - pPﬁ#df

The integral is defined according to the CauPhwciple Value:
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By taking the Fouriefransform of equatio(¥), oneobtairs the HilbertTransform

which relates real and imaginary ot a causal $arameter. Translation of the Hilbert
Transform for causal functions thetime danainindicateshattheeven and odd part

of a causal signal are linked with each other.

If an Sparameter is not caus#he above equationalsoprovides a very simple method

to enforce causality both thetime and frequency domanThis is illustratedn Figure

3 for thetime domain. Irthefirst step the even (or odd) function is calculated (Figures b,
c). Next the corresponding causaldd (or even) functions are calculated using equation
(4) (Figures dg). The causality enforcetime domain response tisenobtained by
takingthesum ofthe even(or odd) functionand the calculated odd (or even) function
(Equation(9) and kgure 3 and3g).

Vcausabven(t) = Veven(t) + Sign(t)'veven(t)
Vcausabdd(t) = Vodd(t) + Sign(t)'vodd(t)

9)

v(t)\

/\

| t
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Figure 3: Causality enforcement illustrated.

Notice inFigure3 that in the causality enforceignalsthe noncausality is sited from
negative time to positive time. This is an undesired-eftict of causality enforcement.
To avoid this, the even and odd causality enforced functions need to be combined:



t —_ Vcausabven(t) + Vcausabdd(t)
Vcausa( ) - 2

(10

as illustratedn Figure4.
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Figure 4: Combination of odd and even causality enforced functions.

By substituting equatio(®) in equation(10) we obtain

V) = TIEID vy (11

with u(t) being a perfect step signal. The causality enforced function staply be
obtained by multiplying the original causal function with a perfect step function.

In thefrequency domairthese equations become

V) = VO TSENOVO
_ V(f) + Hilbert(V (f))
2

At this point we introducethe concept of a causality numbérhe objective is to have a

metric which answerthe questioni Ho w ¢ a u sparameterseban S he metri c
signals with an infiite bandwidth is simple and logicdlhis is done by determininigow

much energy there is between the original function and the causality enforced function. In
thetime domainthis is identical toverifying how much energy exists for t<0 as shown is

equaion (13).

(12

+

0
AV - VeodOF dt P
Causality Nimber=100-"——; =100:= (13

fv’ (t) dt fiv’ (t) dt

The smaller this numbgthe more causal thesultant signalThisequates taero for
causal functions. In frequency domairfollows:

AV () - Veasof )] df ADV (F)[ df
Causality Nimber=100—“—— =100-= (14)
AV () df AV () df




4. Numerical representation of S -parameters

To proces signals, numerical tools ¢ant work with infinite continuous signals
therefoe, the infinite signalsnustbe truncated andiscretized. Furthermoyéme and
frequeny domain representatisof the signals are linkethroughthe Discrete Fourier
Transform DFT) insteaddf the Fourier Transform. Unfortunatelyon-causality effects
are introduced if this is not done with care.

Figure5 belowcomparegheimpulseresponse oéninfinite continuous signal witthe
impulse reponse ofa bandwidth limited, discretized signal thie same systenthey do
not fall on top of each other. Befadéscussingcausality for discrete signalgne must

undestand why there is a difference.
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Figure 5: Comparison between the IFT and DIFT of a continuous and sampled,

bandwidth limited $arameter.

What follows isthe impact of bandwidth limitatiqmliscretization and the use of the DF
on causality irthreestepsFirst, we cetail the effect obandwidth limitatiors. Second

we look at the impact ofampling inthefrequency domain Third, we considesampling
in thetime domain As aconclusionthe relation betweetihhe DFT andFourier
Transformwill be illustrated followed bya closer loolkatthe GibbsPhenomenofor

sampled bandwidth limited signals.
4.1 Bandwidth limitation of S -parameters

A bandwidth limited signaHg(f) can berepresenteds abardwidth unlimited signaH(f)
multiplied with aperfect rectangular filteR(f).

Ho( f) = H( (15)
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Figure 6: Bandwidth limited signal
In thetime domainthis equation becomes
hg(t) =B. hpBt (16)
as the inverse Fouridirangorm of a block function ishesinc function.
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Figure 7: Time domain response bandwidth limited signal

The time domain impulse response of a bandwidth limited signal is equal to the impulse
response of the bandwidth unlimitachttionconvolvedwith a noncausal sinc function.

As a resultthere is ringingalso known as GibbBhenomenaoron the impulse response
rendering thempulse response no longer causal. This ringirafisction of theS-
Parametebandwidth and can onlye avoided if all othe signaknergyfalls completely

in the considered bandwidthnax as isillustratedin Figure8. Figure8acompares the
spectrum of two different signals. The blue signal has moredadsas such has

relativdy more energy (compared to the total enery)he considered bandwidth.
Figure8b shows that the blue impulse response has signifyclass ringing.
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Figure 8: Ringing for bandwidth limited-Barameters wittdifferent lossthe blue curve
has significarly less ripple than the red curve.



Unfortunately this requirement is quitenpractical formanysystems (e.g. low loss
systems) as this mean®thmaximum frequencynustbe several hundred gigaheaz
higher

One could considerausality enforcement to minimize ringibg using equation§l0) or
(12). An examples illustrated in Figure9. Enforcing causalityesults inS-parametes
that areno longer bandwidth limitedzortunately, ass shown in paragrap#.4, there are
a number of ways to redutiee ringing. Alsojn practical simulationene isnot
interested in the impulse responiset in the pulse response. To obtain the pulse
responsgthe Sparametesneed to be multiplied with the spectrum of the excitation
signat a pulse in this cas&incea pulse can be consideradow pass filter, all energy of
the received signal shifts to lower frequencesdthe received signal haslativdy more

energy in the considered bandwidtius reducing the ringing of the pulse response
significantly.
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Figure 9: Elimination of ringing by causality enforcement.

4.2 Samplingof S -parameters

The amplingof S-parametes results in a periodic impulse responsth period To
defined by the sampling frequendy = 1/Df. This is illustratedn FigurelO. It is
assumed that

1 thefrequency is continuous and infinite

1 the Sparameter data is zeroall frequencies except for the sampling frequencies
The inverse Fouriefransform is used to obtain the time domain data. The impulse
response of the sampled bandwidth limitedeBametesis given by

+ o

hdiscrete(t) = a. hcontinuouét_ nTO) n :'1 é ’O ’ 1 ’ é (17)

With heoniinuou€t) beingthe impulse response of the-sampled bandwidth limited-S
parametes.
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Figure 10: Sampling of the-parameters (a) results in a periodic impulse response (b).

Notice thatheimpulse response of the sangpi&parametersloesnot equal thesampled
impulse response of the continuoup&ametes; there is a shift/offset (see small
window in Figure 10bThis is caused by time domain overlap or time domain leakage
which occursvhen the duration of than-sampled impulse response lasts longer than the
periodTo. To avoid this time domain overlapne musteduce the frequency stépf) to

make sure thal is largerthan theduration of the impulse responag shown irfFigure
11
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Due to the periodicitytheimpulse response is definitely rcausakhgisqred t ) 1 O .f or t <0)
The initial definition for causality can no longer be used

Sincethetime domain response igfodic,it can be limited to one period. The question
arises, where must the time domain window be talkk@rsimplicity, the assumption is
madethatthereference plane is at t=I.is alsoassumd that the impulse response falls
completely inthetime window. Basicallythere are 2 options (s€&gure 12): atime
window from-Ty/2 to To/2 (option a)or atime window from 0 to T (optionb).
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Figure 12: Options for time window selection

The answer depends on tlesamptiongnade If it is knownthat the Sparameters are
causaland do not suffer from physical n@ausalitiesthen option(b) is the best choice
theimpulse responsean last &omplete time windowvefore time domain leakage

occurs this is twice asdng as for option.alf it is unknownthatthe Sparameters are
causal, thenoptio@ must be selected. This isandhe
allowsoneto check if a signal is caus&onsequentlyif theimpulse response is longer
than hal the period T, thenaccordingo option (a) the Sparameters become neausal
even iftheimpulse response is smaller thagh High quality Sparameters require that
option (a) is selected and ththeimpulse response falls completely infhizle time

window.

In order to avoid nortausalitieghat are a result dfme domain overlap or leakage, the
time domain periodTl o, must ke larger thartwo times the impulse response duration

Tmax The impulse response duration of a typical connector, cablec&plane is
determined by several factotength of delay, impedance mismatches and reflection and
insertion loss Unfortunately many of the signals weonsidethaveaninfinite impulse
response duratioffrigure13 shows an R@ilter; the infinite impulse response of this

filter is given by

S, (D) =d(t) - ——e “<'u(t) (18)

27,C
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—
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Figure 13: RC filter

The impulse response akignal propagating through an ideal transmission link wit
reflection coefficient and delayt is given by Figurel14)

h(t) =(1- r2)(d(t- t)+r2d(t- 3t)+r*d(t- 3t)+..) (19)

The impulse response gets smaller as time passes, but is only zero. for t=
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Figure 14: Impulse responsef ideal transmission line

By definition, manysignals become necausal due to discretizatio@nesolutionis to
minimize andcontrolthe noncausalities by mdng the time windowT,, as largeas
needed by minimizinthe frequeng step Df. A second method is tonit the impulse
duration by truncating the time domain response so it falls completelyfiaftiaé time
window as is illustratetbelow. However applying this method resulis S-parameters
that are no longer bandwidth limite

In order to enforce causality, the impulse response is set to zero for the negative time
portion of the time window for all periods. The result is a small change to the insertion
loss which is shown ifigurel5. The observedhange is a function of the n@ausality

the more causal the impulse response, the less of a change wilhlpseeausality
enforcement. If there is no changjgen the signal is already causal.
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Figure 15: Causlity enforcement (a) time domain, (b) frequency domain

4.3 Sampling time domain data

In the pevioussectionsweassumed thahe bandwidth offrequency domain data is
infinite and that time domain signals are continudisscome to a numerical
representatin of the impulse response, the time domain responss toeled discretized.
In principle thetime step( qtan be chosen arbitrarjligut we will consider a specific



case which illustrates how tik@urierTransform correlates with the DFWe choose
the time step according to Equati@®) shown below.
1

Dt=—.
20 .,

(20)

Figurel6(a) showghesampled time domain respondfeanimpulse response using a
time steppt = 2 Bigure16 (b) shows the corresponding spectrus a result of the
time domain samplinghe spectrunbecomes periodic arfths infinite bandwidth.

The frequency domain representation of the finite lersgtimpled impulse response is
periodic and can be limited to one period. Notice that a bandwidth limited set of S
paraneters is obtained we have a continuous sampling of the time domain impulse
response. The sampled time domain function, limited to one time window, is the function
that is obtained when an Inverse Discrete Fourier Transform (IDFT) is performed on the
sanpled, bandwidth limited frequency domain data. If the correct assumptiomaédee
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Figure 16: Sampled time domain data and corresponded spectrum

the IFT and IDFTwill result in the same time domain sigriabr the IFT, dl non
sampledfrequencydomaindata neeslto be set to zero and periodily extendedNotice
thatthetime domain samplingas no impact on causality



ThelDFT is identical taheIFT assuming
1 the spectrum is zero between sampling points
{1 the sgnalis periodic with periodT = 2&max
1 the time domain response is limited to one period T

TheDFT is identical tahe FT assuming
1 thesignal is zero between sampling points
1 thesignal is periodic with period” = 1/qf
1 the frequency spectrum limited to oneperiod

This indicaesthatbandwidth limitatiors and discretization introduce n@ausalities that
can be limited by maximizing the bandwidth of the signal and minimizing the frequency
step.

4.4 Gibbs Phenomenon for discrete bandwidth limited
signal s

The pevioussection(Figure16) showedhat GibbsPhenomenonccursfor bandwidth
limited signalsand that the bandwidth limited signal is, when considering the DT
bandwidth limited but periodid his section takes a clodeok at the periodic function
Figurel7 showsthereal and imaginary parbf the periodic Sparameters. It is clear that
theimaginary paris discontinwusat Fna= 20 GHz (which will likely be the casfor

most signals)Thisdiscontinuity can be avoided if thepffarameters are limited to 19.8
GHz (Figure18). This is the first frequency below,kwheretheimagnary part of the
S-paraneteris equal to zeroFigure19 compaes the impulse responses of both sets-of S
parameters. The ringing is significantly reduced if thgaBametesethas no
discontinuities at the maximum frequency.
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Figure 17: Real and imampary parts of periodic transfer functio



Figure 18: Transfer function made periodic by reducithg bandwidthfrom 20 GHz to
19.8GHz

Figure 19: Comparison impulse response ep&ameters shown drigure 18.

Limiting the bandwidth to make thef#rametes continuous changes the time domain
stepas well For some applicationghis is not desired. A second method to reduce the
ripple isto make the imaginary part of t&eparametereroat Fnax This can be
accomplishedby adding a small delay (between O @&uto the Sparameter. This is
illustrated onFigure20.






