Welcome to DESIGNCON® 2024 WHERE THE CHIP MEETS THE BOARD

Conference

January 30 – February 1, 2024

Santa Clara Convention Center

Expo

January 31 – February 1, 2024

Tutorial – How to Develop Advanced PCB Component Launches

JAN. 30 – FEB. 1, 2024

SPEAKERS

Scott McMorrow

Strategic Technologist, Samtec Inc. scott.mcmorrow@samtec.com| samtec.com |

Scott McMorrow serves as a Strategic Technologist for Samtec, Inc. As a consultant for years too numerous to mention, Scott has helped many companies develop high performance products, while training signal integrity engineers. Today he works for "the man," where he continues being a problem solver, a change agent and "betting his job" every day.

Matthew Commens

Senior Manager, Product Management, Ansys Inc. matt.commens@ansys.com | ansys.com |

Responsible for the strategic product direction of the Ansys electronics software portfolio; including products HFSS, Maxwell, Slwave, and Icepak, and is a recognized expert in the application of computational electromagnetics.

#DesignCo

JAN. 30 - FEB. 1. 2024

(informa markets

Part 1 — Periodically Loaded Transmission Line Design and Optimization (a.k.a Via Launches)

Whereby We Discuss the Systematic Process of Optimizing Launches with Vias in Six "Simple" Steps

JAN. 30 – FEB. 1, 2024

Table of Contents

- Simplified Theory of Periodically Loaded Transmission Lines
- Trace Design
- Zones of Control
- Step-by-Step near-optimal optimization process
- Step 1 Create a thru design with launch on top and bottom.
 - o Signal Via Drill Size
 - Antipad Diameter for thick and thin plane layers.
 - Ground Via Drill Size (optional).

Step 2 – Create trace escapes on selected layers

- Optimize plane antipads above and below trace layers. 0
- Fine tune via pitch. 0
- Fine tune thick and thin plane antipad diameters. 0

Table of Contents - continued

Step 3 – Simulate FEXT and NEXT

- Utilize 1 Row by 2 column array of launches to simulate in-row FEXT.
- o Utilize 2 Row and 1 Column array of launches to simulation row-to-row NEXT

Step 4 – Evaluate Potential Patterns for Routing

• Generate representative arrays of launches to visualize the various ways in which full package/connector routing may be accomplished.

Step 5 – Additional Ground Stitch Via Placement

• After evaluating and choosing an appropriate launch pattern for routing, visually determine locations for additional ground stitch vias for reduction of crosstalk.

Step 6 – Simulate Final Launch Array Design

- Document final results and transfer s-parameters to other tools for end-to-end channel simulation.
- Or export/copy final design into comprehensive model of PCB BORs and Package/Connector 3D Models.

JAN. 30 - FEB. 1, 2024

#DesignCon

Simple Incremental LC Transmission Line

$$Z = \sqrt{\frac{L(\Delta x)}{C(\Delta x)}}$$
 $Td = \sqrt{L(\Delta x) * C(\Delta x)}$

JAN. 30 - FEB. 1, 2024

Periodically Shunt Loaded Transmission Line

#DesignCon

Distributed capacitive loading of planes:

- reduces impedance
- Increases Delay
- Increases Loss

Coupled planes are orthogonal to the transmission line.

$$Z = \sqrt{\frac{L(\Delta x)}{C(\Delta x) + Cshunt(\Delta x)}} \qquad Td = \sqrt{L(\Delta x) + Cshunt(\Delta x)}$$

informa markets

2D SE Impedance – Signal plus 4 Ground Vias

0.25 mm vias 0.7 mm space Dielectric Dk - 3.0

JAN. 30 – FEB. 1, 2024

#DesignCon

2D SE Impedance – Signal plus 4 Ground Vias and Plane with Antipad

JAN. 30 – FEB. 1, 2024

10

Impedance Variation vs Frequency of Ground Layers

JAN. 30 – FEB. 1, 2024

#DesignCon

11 (

informa markets

Impedance Variation vs Frequency of Ground Layers

#DesignCon

JAN. 30 - FEB. 1, 2024

12 (informa markets

SE Via Surrounded by 4 Gnd Via No Ground Planes

0.25 mm Vias 0.7 mm Space 0.7 mm Antipad Dielectric Dk - 3.0 42 Layer

#DesignCon////

Filtered vs Unfiltered TDR

#DesignCon

14 (

Loss Factor vs Frequency of Ground Layers

Loss Factor increases with the number of plane layers.

#DesignCon

JAN. 30 - FEB. 1, 2024

15

informa markets

Phase Delay vs Frequency of Ground Layers

JAN. 30 – FEB. 1, 2024

#DesignCon

Breakout (BOR) and Trace Design

Important parameters

- \$viaDiameter_SigVia 0.2, 0.225, 0.25 mm (8, 9,10 mil)
- \$padAnnularRing 0.115, 0.127 mm (4.5, 5 mil)
- \$minAnnularClearance 0.1 mm (4 mil)
- Pad Diameter = \$viaDiameter_SigVia + 2 * \$padAnnularRing
- Important! For signal integrity modeling, all vias are drawn at the drill size, not the plated hole size.
 - Failure to check this will lead to significant performance penalties from incorrect modeling.

JAN. 30 - FEB. 1, 2024

Routing Region

- Remember!
- Even if the layer is a ground layer will full contact ground vias, an annular clearance from trace metal to the ground pad/via must be provided
- A via pad defines the via capture region that is the circular probability of error of the drill strike location.
- An annular clearance is created to account for manufacturing tolerances in placement of the via and the trace etch.

#DesignCor

Available Trace Routing Space = BGA_Pitch – Antipad_Diameter Antipad_Diameter = ViaDiameter + 2 x PadAnnularRIng+ 2 x MinimumAnnularClearance

JAN. 30 - FEB. 1, 2024

Minimum Trace to Via Spacing

Trace Routing Space = TracePitch + TraceWidth More space for fringe fields is always better.

JAN. 30 - FEB. 1, 2024

#DesignCon

Routing Space for 1 mm Pitch BGA

#DesignCon

BGA Pitch (mm)	Via Diameter (mm)	Pad Annular Ring (mm)	Min Annular Clearance (mm)	Available Routing Space (mm)	Available Routing Space (mi)
1	0.2	0.115	0.1	0.37	14.57
1	0.2	0.127	0.1	0.346	13.62
1	0.225	0.115	0.1	0.345	13.58
1	0.225	0.127	0.1	0.321	12.64
1	0.25	0.115	0.1	0.32	12.60
1	0.25	0.127	0.1	0.296	11.65

Trace Design for 92.5 Ohm Impedance Dk = 3.0, 0.25 mm Drill, 0.115 mm Clearance

Allowable Trace Routing Range @92.5 ohm

Trace Width (mil)	Pitch (mil)	Route Space (mil)	
3.75	6.1	9.85	
4	6.6	10.6	
4.25	7.1	11.35	
4.5	7.6	12.1	
4.75	8.1	12.85	
4.8	8.2	13	
4.9	8.5	13.4	
5	8.7	13.7	

27_metal	signal	copper	programmableAnisotropicMaterial	0.6mil
27_die	dielectric	programmableAnisotropicMaterial		5mil
28_metal	signal	copper	programmableAnisotropicMaterial	0.6mil
28_die	dielectric	programmableAnisotropicMaterial		5.39mil
29_metal	signal	copper	programmableAnisotropicMaterial	0.6mil

BGA Pitch (mm)	Via Diameter (mm)	Pad Annular Ring (mm)	Min Annular Clearance (mm)	Available Routing Space (mm)	Available Routing Space (mi)
1	0.2	0.115	0.1	0.37	14.57
1	0.2	0.127	0.1	0.346	13.62
1	0.225	0.115	0.1	0.345	13.58
1	0.225	0.127	0.1	0.321	12.64
1	0.25	0.115	0.1	0.32	12.60
1	0.25	0.127	0.1	0.296	11.65

#DesignCor

Trace Design for 92.5 Ohm Impedance Dk = 3.0, 0.225 mm Drill, 0.115 mm Clearance

Trace Width (mil)	Pitch (mil)	Route Space (mil)	
3.75	6.94	10.69	
4	7.5	11.5	
4.25	8.2	12.45	
4.5	8.9	13.4	
4.75	9.7	14.45	
4.8	9.9	14.7	
4.9	10.3	15.2	
5	10.7	15.7	1

27_metal	signal	copper	programmableAnisotropicMaterial	0.6mil
27_die	dielectric	programmableAnisotropicMaterial		5mil
28_metal	signal	copper	programmableAnisotropicMaterial	0.6mil
28_die	dielectric	programmableAnisotropicMaterial		5.39mil
29_metal	signal	copper	programmableAnisotropicMaterial	0.6mil

#DesignCor

BGA Pitch (mm)	Via Diameter (mm)	Pad Annular Ring (mm)	Min Annular Clearance (mm)	Available Routing Space (mm)	Available Routing Space (mi)
1	0.2	0.115	0.1	0.37	14.57
1	0.2	0.127	0.1	0.346	13.62
1	0.225	0.115	0.1	0.345	13.58
1	0.225	0.127	0.1	0.321	12.64
1	0.25	0.115	0.1	0.32	12.60
1	0.25	0.127	0.1	0.296	11.65

S · ///

Zones of Control

JAN. 30 - FEB. 1, 2024

23

#DesignCon

informa markets

1 mm Pitch BGA Via-in-Pad

JAN. 30 - FEB. 1, 2024

#DesignCon

Dk 3.0 Vary Drill Size (0.2, 0.225, 0.25 mm) Vary Antipad (0.6, 0.9 mm)

Dk 3.0 Drill Size (0.25 mm), Thin Layer Antipad (0.68 mm) Vary Top Antipad (0.9 to 1.2 mm)

(i) informa markets 26

Baseline Trace Escape Drill (0.25 mm), Top Antipad (1 mm) Thin Layer Antipad (0.68 mm), Backdrill Stub (6 mil)

JAN. 30 - FEB. 1, 2024

#DesignCon

27 🔘

Baseline Trace Escape Drill (0.25 mm), Top Antipad (1 mm) Thin Layer Antipad (0.68 mm), Backdrill Stub (6 mil)

JAN. 30 - FEB. 1, 2024

#DesignCon

Optimized Trace Escape Antipads Above and Below Trace Varied with Progressive Optimization from Original Thru Design

29

#DesignCon

() informa markets

Optimized Trace Escape Antipads Above and Below Trace Varied

JAN. 30 - FEB. 1, 2024

[||||

30

#DesignCon

informa markets

Optimized BGA Launch Trace Width/Pitch (4.5 / 7.6 mil) Trace Antipad (0.94 mm), LowerAntipadOffset (0.06 mm)

Trace SE-to-Diff transition 0.1 mm after Antipad Crossing to accommodate manufacturing variation

Trace geometry modified to Route through 1 mm via field

90-degree filet

JAN. 30 - FEB. 1, 2024

#DesignCon

Recap

- Simplified Theory of Periodically Loaded Transmission Lines
- Trace Design
- Zones of Control
- Step-by-Step near-optimal optimization process
- Step 1 Create a thru design with launch on top and bottom.
 - o Signal Via Drill Size
 - o Antipad Diameter for thick and thin plane layers.
 - o Ground Via Drill Size (optional).

Step 2 – Create trace escapes on selected layers

- o Optimize plane antipads above and below trace layers.
- Fine tune via pitch.
- Fine tune thick and thin plane antipad diameters.

Diagonal Offset Variant (Rapid Iteration)

Vias offset from BGA pads by (0.5 mm, 0.5 mm)

JAN. 30 - FEB. 1, 2024

#DesignCon

IL/RL Comparison without Further Optimization

JAN. 30 – FEB. 1, 2024

\ ||||

34

#DesignCon

informa markets

112 GBPs TDR from Trace Side

35

Loss Factor (1 – IS12I² x IS11I²)

36

Diagonal Offset with Modified SE-to-Diff Transition (Rapid Iteration)

Trace SE-to-Diff transition moved closer to vias

Vias offset from BGA pads by (0.5 mm, 0.5 mm) Diff transition point placed within the antipad region

#DesignCon

JAN. 30 - FEB. 1, 2024

IL/RL Comparison without Further Optimization

JAN. 30 – FEB. 1, 2024

// _/

#DesignCon

informa markets

112 GBPs TDR from Trace Side

39

Loss Factor (1 – IS12I² x IS11I²) Fast Proxy for Potential Crosstalk

40

Part 1 Summary

- Simplified Theory of Periodically Loaded Transmission Lines
- Trace Design
- Zones of Control
- Step-by-Step near-optimal optimization process
- Step 1 Create a thru design with launch on top and bottom.
 - o Signal Via Drill Size
 - o Antipad Diameter for thick and thin plane layers.
 - o Ground Via Drill Size (optional).
- Step 2 Create trace escapes on selected layers
 - o Optimize plane antipads above and below trace layers.
 - o Fine tune via pitch.
 - Fine tune thick and thin plane antipad diameters.
- Rapid Iteration of Design Variants (BOR Offset and SE-to-Diff Breakpoint)
- Loss Factor as Proxy for Crosstalk (Facilitates rapid evaluation, since no additional simulations required.)
- Thru and Trace Escape designs are computationally efficient (Fast to simulate with high accuracy.)

41

Interregnum: The Finite Element Method in Electromagnetics

Background on the FEM Simulation Technique

Discuss the finite element method and the key underlying technologies developed to enable it for 3D full-wave electromagnetic simulation and network (S,Y,Z) parameter extractions

Key Technologies for Electromagnetic FEM

Spurious Free Vector Basis Functions:

- Reliable FEM solutions of Maxwell's Equations
- M. L. Barton, Z. J. Cendes, "New vector finite elements for three-dimensional magnetic fiel, computation", J. Appl. Phys., vol. 61, no. 8, pp. 3919-3921, 1987

Automatic Adaptive Meshing:

- o Accurate, efficient, and reliable results
- Z. J. Cendes and D.N. Shenton, "Adaptive mesh refinement in the finite element computation of magnetic field", IEEE Trans. Magn., vol. MAG-21, pp. 1811-1816, Sept. 1985

Transfinite Element Method:

- Accurate and efficient extraction of S,Y,Z parameter
- Z. J. Cendes and J. F. Lee, "The transfinite element method for modelling MMIC devices", IEEE Trans. on Microwave Theory and Techniques, vol. 36, no. 12, pp. 1639-1649, December 1988
- Domain Decomposition Method:
 - Distributed memory computing and key for many advanced solver features
 - M. N. Vouvakis, Z. J. Cendes, and Jin-Fa Lee, "A FEM domain decomposition method for

JAN. 30 - FEB. 1, 2024

#DesignCon 43

(i) informa markets

10.50 11.00 11.50 12.00 12.50 13. Freq [GHz]

V٦

B(S(p1

Ansoft Corporat XY Plot 1

-20.00

 e_3

Some FEM Theory

- Maxwell's Equation, 2nd Order Vector Wav $\nabla \times \mu_r^{-1} \nabla \times \vec{E} (\omega^2 / c^2) \varepsilon_r \vec{E} = -j\omega\mu_0 \vec{J}_{imp} \implies L \vec{E} = \vec{f}$
- The electric field is expanded in terms of basis functions:
 - The basis functions reside in finite elements such as tetrahedra
 - Residual of wave equation is non-zero due to approximation functions

$$\circ \quad \mathsf{Matter ix} \iint_{V} \mathsf{Spall}_{k,q} \mathsf{L}_{W}^{1} \mathsf{M} \mathsf{Xh}_{f} \mathsf{d} \mathsf{W} \mathsf{win}(\mathfrak{goe} r \mathsf{tree}^{2}) \\ \iiint_{V} \mathcal{W}_{i} \mathcal{E}_{r} \mathcal{W}_{j} dV + j \left(\frac{\omega}{c}\right) \left(\frac{\eta_{0}}{Z_{s}}\right) \underbrace{\mathfrak{M}}_{IBC} \hat{n} \times \mathcal{W}_{i} \cdot \hat{n} \times \mathcal{W}_{j} dS$$

- Impedance boundary, IBC, assumed $\hat{n} \times \hat{n} \times \hat{E} = Z_{c} \hat{n} \times \hat{H}$
 - e.g., non-solve inside metals:

$$R_i = \iiint_V \vec{W}_i \cdot \vec{r} = 0$$

Spurious Free Vector Basis Functions: Context

- Solving for electric field quantities at locations in the tetrahedration
- Element orders: 0th, 1st, 2nd, mixed
- The count starts at "0" because it is an H0 curl element &
 - o H stands for magnetic field
 - 1st order accurate in E
 - $\circ~0^{th}$ order accurate in H due to taking derivative of E to compute H
 - Other solutions start order counting at 1st, causes some confusion

Element orders can be hierarchical

- o Allows for mixed-order elements
- Allows for hp refinement (size AND order)

The component of a field that is tangential to the face of an element and norm al to an edge is explicitly stored at the midpoint of selected edges.

The value of a vector field at an interior point is interpolated from the nodal values

2024

#DesignCon

45 (O) informamarkets

Spurious Free Vector Basis Functions

Scalar Basis Functions

- Vertex based where each basis function has one unknown coefficient for each field variable (ex,ey,ez)
- Tangential and normal continuity of the electric field is enforced across elements
 - But normal continuity of electric field **should not exist** across dielectric interfaces!
 - Results in unphysical spurious modes
- These issues caused FEM to be impractical as an industrial EM simulation method

Curl Confirming Vector Basis Functions

- Edge based where each basis function has one unknown complex scalar coefficient
- Only tangential continuity of the electric field is enforced across elements
- Proper representation of the curl removes the spurious modes!
- These improved basis functions made FEM practical as an industrial EM simulation method

Automatic Adaptive Meshing

- Mesh is automatically adapted according to the electromagnetics
 - Removes burden of accurate mesh generation from the end-user
 - Technology is key for reliable accuracy
- Local error indicator drives the h and hp-refinement for optimal solution efficiency for desired level of accuracy
 - h-refinement selectively makes element size smaller
 - p-refinement selectively changes order of basis functions
 - hp-refinement selectively changes both order of basis functions and element size; aka, mixed order elements

 Refinement of patch antenna: Mesh refinement occurs in regions of highest strength and gradient of electric field, the perimeter of the

patch antenna

#DesignCon

JAN. 30 - FEB. 1, 2024

\ ||||

informa markets

Transfinite Element Method

Transfinite Element Method

- Port modes are the basis functions on a port surface
- Exact numerical port truncation
- Yields very low noise floor with high computational efficiency
- Is very efficient when only solving for S-0 parameters
- Alternative Method: PML Backed Ports
 - Less accurate 0
 - Less efficient with additional defined modes
 - Limited efficiency boost when only solving 0 for S-parameters

Fields on port expanded in terms of Eigen Modes of waveguide:

#DesignCor

- Each mode serves as a basis function on the port (accurate and efficient) By exciting the *i*th mode ($\alpha_i = \delta_{ij}$), solver obtains *i*th column of *S* Additional modes come at a modest incremental cost in computational effort

JAN. 30 - FEB. 1, 2024

Simulation Model

48

Physical Mode

FEM Domain Decomposition Method, DDM

Domain Decomposition solver

- o Efficient solution for electrically very large problems
- Distributed memory: Large simulation clusters can be used to conquer huge designs
- o Rigorous: No simplified field coupling at interfaces
- Automatic generation of domains by mesh partitioning
- Is a key technology baseline for more advanced solver technologies

Advanced Solver Technology

Boundary Element/MoM Domains

- o FE-BI Solver for Radiation/Scattering Projects
 - Solves interior domain using FEM, exterior space using MoM
 - Enables a highly accurate and efficient solution for radiation
- o IE (MoM) Regions
 - Solve for objects in exterior space using MoM
 - Efficient for large metallic structures
 - Fully couples to FEM domains with FE-BI boundaries

Mesh Fusion

- o A breakthrough FEM solver technology
- Regions meshed independently and in parallel
- Mesh conformal to geometry, non-conformal at domain boundaries
- Appropriate CAD-type mesh algorithm and units for each domain
- o Improves mesh success of multiscale assemblies
- o Requires non-conformal direct sparse matrix solver
- o Rigorous, matrix level, field coupling across domain interfaces

DDM foundational to both technologies

#DesignCor

JAN. 30 - FEB. 1, 2024

Evolving Simulation Techniques

Platforms: 3D or Layout, pick the right one

- 3D if design is in mechanical CAD (MCAD)
- Layout if design is in layout CAD (ECAD)
- o 3D Components can embed into Layout
- Layout Components (new) can embed into 3D

And Layout is 3D!

Any difference in results is due to differences in CAD or mesh

Cut out the Cutouts

- o Smaller does not always mean faster
- Simpler rectangular cutouts can solve as fast or faster with less uncertainty

JAN. 30 - FEB. 1, 2024

#DesignCon////

Access the Capacity

- B. Boots, Simulation Technologies that Solve Complex IC Designs
 - Solving models with up to 100M+ Matrix Size
 - o Solve more of your system

Improved layout translation Reduced memory footprint for Distributed Solver

Phi Mesher – IC Mode RaptorH Introduced Ansys Cloud

30 mm²

102M Matrix Size

Access the Capacity

Part 2 – The Tool

Whereby We Show a Tool Which Can Be Used to Generate, Visualize, Optimize and Develop PCB Package and Component Launches

JAN. 30 – FEB. 1, 2024

#DesignCon

() informa markets

Launch Script and Choose Component

🚺 Run Script				×
Look in:	BOR_Script	s 💌	← 🗈 📸 🎟 -	
Quick access Desktop Libraries This PC	Name backup backup_11 create_RF_ createBOR saveGlobal	^ _17_2023 BOR.py .py ParametricVariables.py balParametricVariables.py	Date modified 10/18/2023 5:17 PM 11/17/2023 6:41 PM 10/18/2023 3:56 PM 12/14/2023 1:57 PM 11/14/2023 5:26 PM 11/29/2024 5:58 AM 11/15/2023 3:35 PM	Type File fc PY Fil PY Fil PY Fil PY Fil
	 File name: Files of type: Script Arguments: 	SI-Borg.py IronPython Script Files (".py)	▼ 0 ▼ Ca	> pen ncel

JAN. 30 - FEB. 1, 2024

#DesignCon/

Select a Generic Stackup

🚺 Select a File				
🗧 🔶 🕤 🛧 📙 > Thi	s PC > SIG (V:) > User > ScottM > Share > Programm:	ableBOR > GenericStackups > p	programmableDiele	tricStackups
Organize 👻 New folde	r			
🔒 PersonalLib 🖈 🐴	Name	Date modified	Туре	Size
ADX6_2gnd_GGS	📔 4-Layer_ProgrammableDielectricStackup.xml	5/11/2023 11:20 AM	XML File	2 KB
APX6_2gnd_GGS	📓 6-Layer_ProgrammableDielectricStackup.xml	5/11/2023 11:20 AM	XML File	2 KB
ConfigurationTa	8-Layer_ProgrammableDielectricStackup.xml	5/11/2023 11:20 AM	XML File	3 KB
👳 Network Drive (\	📔 10-Layer_ProgrammableDielectricStackup.xml	5/8/2023 7:05 PM	XML File	3 KB
	📔 12-Layer_ProgrammableDielectricStackup.xml	5/10/2023 3:30 PM	XML File	4 KB
💻 This PC	📔 14-Layer_ProgrammableDielectricStackup.xml	5/11/2023 11:20 AM	XML File	4 KB
🧊 3D Objects 🔤	📔 16-Layer_ProgrammableDielectricStackup.xml	5/11/2023 11:20 AM	XML File	5 KB
📃 Desktop	📔 18-Layer_ProgrammableDielectricStackup.xml	5/11/2023 11:20 AM	XML File	5 KB
🔮 Documents	📔 20-Layer_ProgrammableDielectricStackup.xml	5/11/2023 11:20 AM	XML File	6 KB
👃 Downloads	📔 22-Layer_ProgrammableDielectricStackup.xml	5/11/2023 11:20 AM	XML File	7 KB
h Music	24-Layer_ProgrammableDielectricStackup.xml	5/11/2023 11:20 AM	XML File	7 KB
Dictures	📔 26-Layer_ProgrammableDielectricStackup.xml	5/11/2023 11:20 AM	XML File	8 KB
Fictures	📔 28-Layer_ProgrammableDielectricStackup.xml	5/11/2023 11:20 AM	XML File	8 KB
Videos	📔 30-Layer_ProgrammableDielectricStackup.xml	5/11/2023 11:20 AM	XML File	9 KB
🏪 Local Disk (C:)	📔 32-Layer_ProgrammableDielectricStackup.xml	5/11/2023 11:20 AM	XML File	9 KB
🛖 data (\\engr-1) (📔 34-Layer_ProgrammableDielectricStackup.xml	5/11/2023 11:20 AM	XML File	10 KB
🛖 sys1 (\\home1) (📔 36-Layer_ProgrammableDielectricStackup.xml	5/11/2023 11:20 AM	XML File	10 KB
🛖 Chicago Cluster	📔 38-Layer_ProgrammableDielectricStackup.xml	10/5/2023 1:32 PM	XML File	11 KB
- Chicago Cluster	📔 40-Layer_ProgrammableDielectricStackup.xml	10/5/2023 1:34 PM	XML File	11 KB
ECAD Library (O	📔 42-Layer_ProgrammableDielectricStackup.xml	10/5/2023 1:36 PM	XML File	12 KB
- TestLab Electrica	📔 frog.xml	10/9/2023 2:01 PM	XML File	4 KB

Enter Trace Transition Layer(s)

JAN. 30 - FEB. 1, 2024

#DesignCon

Select Additional Arrays for Routing and Crosstalk Evaluation

JAN. 30 - FEB. 1, 2024

#DesignCon

Generated Designs – Top View

JAN. 30 - FEB. 1, 2024

#DesignCon

Generated Designs - Side View

#DesignCon

Generated Design - Top Layer

7 JAN. 30 – FEB. 1, 2024

#DesignCon

Generated Design – Trace Escape Layer

62

Rapidly Modify Top Ball Antipad

#DesignCon

Rapidly Render Via-in-Pad Design

64

() informa markets

Generate NovaRay Design (FEXT, NEXT, 4x4)

informa markets

Dielectric Variables

Name	Value	Unit	Evaluated Value	Description		
Anisotropic_Dielectric_Variables						
\$Dk	3		3	Dk for programmable djordjevic-sarkar dielectric to replace materials in design. Use average of prepreg/core		
\$Df	0.0023		0.0023	Df for programmable djordjevic-sarkar dielectric to replace materials in design. Use average of prepreg/core		
\$DS_XYcorrection	1.12		1.12	Anisotropic correction factor for layered dielectric in XY-axis direction.		
\$DS_Zcorrection	0.9625		0.9625	Anisotropic correction factor for layered dielectric in Z-axis direction.		
\$DS_measFreq	1000000000		1e+09	Measured Frequency for Djordjevic-Sarkar model		

JAN. 30 - FEB. 1, 2024

#DesignCon

PCB Manufacturing Variables

PCB_Manufacturing_Variables					
\$backdrillOversize	6	mil	6mil	Backdrill Drill Size = \$viaDiameter_SigVia + \$backdrillOversize	
\$backdrillStub	6	mil	6mil	Nominal Backdrill stub from Trace layer (4 mil +/- 2 mil)	
\$minAnnularClearance	0.1	mm	0.1mm	Manufacturing clearance between pad and pad or trace	
\$minimumViaClearance	10	mil	10mil	Manufacturing via barrel-to-barrel clearance for placing ground vias adjacent to each other	
\$padAnnularRing	0.115	mm	0.115mm	Manufacturing pad annular ring around via. (standard 0.115mm, advanced 0.090mm, developmental 0.076mm)	

JAN. 30 - FEB. 1, 2024

#DesignCon

informa markets

BGA Pad Geometry Variables

BGA_Pad_Geometry_Variables					
\$bgaGndPitch	0.8	mm	0.8mm	Center-to-center pitch between ground ball and signal ball	
\$bgaSigPitch	0.8	mm	0.8mm	Center-to-Center pitch between signal balls.	
\$padDiameter_BGA	0.45	mm	0.45mm	NVAx BGA Pad Diameter defined by manufacturer	

JAN. 30 - FEB. 1, 2024

#DesignCon

informa markets

Via Geometry Variables

Via_Geometry_Variables					
\$viaDiameter_GndStitchVia	0.2	mm	0.2mm	Ground Stitch Via Drill Diameter (0.15mm,0.18mm,0.2mm,0.225mm,0.25mm,0.3mm	
\$viaDiameter_GndVia	0.2	mm	0.2mm	Ground Via Drill Diameter (0.15mm,0.18mm,0.2mm,0.225mm,0.25mm,0.3mm	
\$viaDiameter_SigVia	0.2	mm	0.2mm	Signal Via Drill Diameter (0.15mm,0.18mm,0.2mm,0.225mm,0.25mm,0.3mm	
<pre>\$padDiameter_GndStitchVia</pre>	\$viaDiame		0.43mm	Ground Vias that are not incorporated into BGA component pad	
\$padDiameter_GndVia	\$viaDiame		0.43mm	gnd via Pad Diameter	
\$padDiameter_SigVia	\$viaDiame		0.43mm	Via in BGA signalPad via diameter + 2 x 0.115 mm (0.115 = 4.5 mil annular ring)	
\$antiPad_Backdrill	\$viaDiame		0.4524mm	Antipad around backdrill	
\$backdrillDiameter	\$viaDiame		0.3524mm	Calculated Backdrill drill size based on \$viaDiameter_SigVia+\$backdrillOversize	
\$gndViaInLineOffset	\$viaDiame		0.454mm	calculation for minimum DFM center-to-center via-to-via clearance on the same net. For example ground vias.	
\$viaMetalConductivity	5300000		5300000	Used to define lower conductivity via plating.	

JAN. 30 - FEB. 1, 2024

69

Antipad Sizing Variables

Antipad_Sizing_Variables

\$antiPad_TopLaunch	1.2	mm	1.2mm	Antipad for Top BGA pads
<pre>\$antiPad_BelowTopLaunch</pre>	0.9	mm	0.9mm	Antipad Below the top of the board
\$antiPad_ThinTraceLayers	0.65	mm	0.65mm	Antipad for thin signal routing layer signal and ground metal
<pre>\$antiPad_ThickPlanes</pre>	0.85	mm	0.85mm	Antipad for Power/Ground Planes with thick metal
\$antiPad_AboveTrace	0.65	mm	0.65mm	Antipad in plane above trace layer
\$antiPad_BelowTrace	0.65	mm	0.65mm	Antipad in plane below trace layer
<pre>\$antiPad_BelowTrace_Offset</pre>	0	mm	Omm	Shift antipad under trace to provide more continuous ground on exit

JAN. 30 - FEB. 1, 2024

#DesignCon

Trace Geometry Variables

Trace_Geometry_Variables						
\$diffPitch	14	mil	14mil	Differential Signal Trace Pitch (0.36 mm = 14.17 mil for 1067 fiberglass weave)		
\$diffTraceWidth	0.17	mm	0.17mm	Trace width for differentially coupled traces		
\$seTraceWidth	0.2	mm	0.2mm	Obvious		
\$rowPairPitch	3*\$bgaGn		3.2mm	center-to-center Pitch between differential pairs in-row		

JAN. 30 - FEB. 1, 2024

#DesignCon

informa markets

Launch Geometry Variables

Launch_Geometry_Variables						
\$launchGndPitch	0.65	mm	0.65mm	Center-to-center pitch between ground via and signal via		
\$launchSigPitch	0.65	mm	0.65mm	Center-to-Center pitch between signal vias		
\$launchYOffset	0.43	mm	0.43mm	Y-axis Breakout Offset of BGA pattern from signal and ground vias for offset launch		
\$launchXOffsetOddColumn	0	mm	Omm	X-axis Breakout Offset of BGA pattern from signal and ground vias for offset launch		
\$launchXOffsetEvenColumn	0	mm	Omm	X-axis Breakout Offset of BGA pattern from signal and ground vias for offset launch		
\$se_to_diff_transitionPoint	-0.1	mm	-0.1mm	used to move the diff transition to a point before or after the antipad crossing		

JAN. 30 - FEB. 1, 2024

#DesignCon

BOR Array Generation Variables

BOR_Array_Generation_Variables										
\$rowXOffset_Even	-1.2	mm	-1.2mm	XDifset of pair placement on Even rows						
\$rowXOffset_Odd	0	mm	Omm	XOffset of pair placement on odd rows						
\$rowSpace_Oto1	1.8	mm	1.8mm location of second row							
\$rowSpace_Oto2	3.6	mm	3.6mm	location of third row						
\$direction_allNorth	[1.1.1.1.1.1.1.1.1.1.1		[1, 1, 1, 1, 1, 1,	-1 = breakout to the South. 1 = breakout to the north, Other values will scale at the \$launchYOffset value						
\$direction_allSouth	[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		[-1, -1, -1, -1, -1,	-1 = breakout to the South						
\$direction_South_North_byRow	[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		[-1, -1, -1, -1, -1,	-1 = breakout to the South						
\$direction_South_South_North_North_byRow	[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		[-1, -1, -1, -1, -1,	-1 = breakout to the South						
\$direction_North_North_South_South_byRow	[1.1.1.1.1.1.1.1.1.1.1		[1, 1, 1, 1, 1, 1,	-1 = breakout to the South						
\$direction_North_South_byRow	$[1,1,1,1,1,1,1,1,1,1,1,1,1,1,\dots]$		[1, 1, 1, 1, 1, 1,	-1 = breakout to the South						
\$direction_North_South_byColumn	[1, -1, 1, -1, 1, -1, 1, -1, 1, -1, 1,		[1, -1, 1, -1, 1,	-1 = breakout to the South						
\$direction_South_North_byColumn	[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		[-1, 1, -1, 1, -1,	-1 = breakout to the South						
\$breakoutDirection	\$direction_South_South_North		[-1, -1, -1, -1, -1,	Breakout Direction Vector						
\$routingDirection	\$direction_allNorth		[1, 1, 1, 1, 1, 1,	Breakout Direction Vector						

JAN. 30 - FEB. 1, 2024

#DesignCon

informa markets

Embedded video included. To view, download file to desktop then open with Adobe Acrobat. No audio included.

Examples As	e Close Restore Archive	Copy № Redo Paste X Delete	Q3D Circuit EMIT	Icepak Maxwell Simplorer Mechanical	Datasets	General Help Ansys Options		
Desktop View Simulation	Automation Ansys Minerva	Learning and Support						0
Project Manager	4 x							
Properties	# ×							
Ready							Show 0 Messages	- Show Progre
neudy							Show o messages	Show Flogles

 \simeq

Embedded video included. To view, download file to desktop then open with Adobe Acrobat. No audio included.

Thank you!

QUESTIONS?

JAN. 30 - FEB. 1, 2024

#DesignCon

informa markets