Designing DC-Blocking Capacitor Transitions to Enable 56Gbps NRZ & 112Gbps PAM4

Scotty Neally, Samtec Teraspeed Consulting Scott McMorrow, Samtec Teraspeed Consulting

Speakers

Scotty Neally

Signal Integrity Consultant
Samtec Teraspeed Consulting

Scotty Neally is an experienced signal integrity consultant with a background in high density PCB design and measurement, automation of signal integrity design flows, and currently focuses on system design for emerging technologies.

Scott McMorrow

CTO, Signal Integrity Products
Samtec Teraspeed Consulting

Scott McMorrow is an expert in high-performance design and signal integrity engineering, with a broad background in complex system design, interconnect and signal integrity engineering, modeling and measurement methodology, and professional training, spanning over 25 years.

System Design

- Tradeoffs
 - Cost
 - Leadtime
 - o Performance
 - Reliability

Decision Diagram

Traditional Capacitor Models

Shorting Resistor

PEC Plane

RLC Model

DC Blocking Capacitor Design Layout

Design Optimization

Test Vehicle Preview

De-embedded Reference Plane

MLCC SEM Measurements

A. Side View

E. 220nF Front View

B. Top View

C. Cross-Section

G. 47nF Front View

D. Line Scan

H. 22nF Front View

HFSS Model

$$C = \frac{E_o * E_r * n * A}{d}$$

C = capacitance

 E_o = vacuum permittivity

 $E_{\rm r}$ = relative dielectric constant

n = number of layers (n + 1 electrodes)

A = area of electrode overlap

d = dielectric thickness between layers

Case Size Capacitor Value (nF)		MFG, P/N	n Plates	Er	Estimated Capacitance (nF)	Tolerance (%)
201	220	TDK, C0603X7S0J224K030BC	90	5000	214.48	-2.51%
201	150	TDK, C0603X7S0J154K030BC	64	5000	151.82	1.21%
201	47	TDK, C0603X7S0J473M030BB	40	2500	46.99	-0.02%
201	22	TDK, C0603X7S0J223K030BB	20	2500	22.89	4.06%

Shunt Simulation

$$C = \frac{1}{2\pi * f * X_c}$$

	Simulated	Simulated	Capacitance	Difference from	
١	Reactance X (Ω)	Capacitance C (nF)	Target C (nF)	Nominal (%)	
Ì	0.3282	242.47	220	9.3%	
	0.4451	178.79	150	16.1%	
	1.4920	53.34	47	11.9%	
	3.3543	23.72	22	7.3%	

0201 PKG Family

 Using the test vehicle with 4 different capacitor values and 2 structures (VOID & SOLID) we compare the insertion loss of each

o 220nF, 150nF, 47nF, 22nF

Terminal S Parameter Plot 3 1

17.1000 -3.1205

32.9000

21.6000

21.2000

m5 m6

m7

-4.3977

-3.4508

-4.1063

fixture_complexCAP_220nF

220nF VOID

Capacitor Modeling

Sim to Measurement Comparison

	Simulated Measured Both					
	Value	Complex VOID	Complex SOLID	Shorted VOID	Simple VOID	
5	220nF	X	Х	Х	Х	1
\neg	150nF	Χ	Χ			
	47nF	Χ	X			
	22nF	X	X			

Compare Capacitor Models

- 1. SIM 220nF All Model Types
- 2. SIM 220nF/MEAS All Values Complex Model (VOID)
- 3. SIM 220nF/MEAS All Values Complex Model (SOLID)

Channel Exploration

- 4. SIM & MEAS 220nF, Chip to Module Host TX Pkg Only (high loss pkg)
- 5. SIM & MEAS 220nF, Chip to Module Optimistic TX/RX (low loss pkg)

What To Pay Attention To

- How do simulation results vary between modeling structures?
- How do capacitor values for a given case size (0201) affect inductance?
- How does the transition geometry (SOLID vs VOID) impact channel performance?
- What impact does loop inductance have on these geometries?

1. SIM - 220nF Capacitor, All Model Types

1. SIM - 220nF Capacitor, All Model Types

Simulated Measured Both	Capacitor Models						
Value	Complex VOID	Complex SOLID	Shorted VOID	Simple VOID			
220nF	Х	Х	Х	Х	1		
150nF	Χ	Χ					
47nF	Χ	Χ					
22nF	X	X					

1. SIM - 220nF Capacitor, All Model Types

Simulated Measured Both		Capacitor Models						
Value	Complex VOID	Complex SOLID	Shorted VOID	Simple VOID				
220nF	X	Х	Х	X				
150nF	Χ	Χ		7				
47nF	X	Χ						
22nF	X	X						

Model Comparison 56G Single Bit Response

COMPLEX VOID

SIMPLE VOID

2 & 3. SIM / MEAS - All Measured Values (VOID & SOLID Configuration)

2. SIM vs MEAS - SDD11 (VOID)

Simulated Measured Both				
Value	Complex VOID	Complex SOLID	Shorted VOID	Simple VOID
220nF	X	Х	Х	Х
150nF	Χ	X		
47nF	X	X		
22nF	X	X		

2

SIMULATION Signature of the control of the control

3. SIM vs MEAS - SDD11 (SOLID)

Simulated Measured Both	Capacitor Models					
Value	Complex VOID	Complex SOLID	Shorted VOID	Simple VOID		
220nF	X	Х	Х	х)		
150nF	Χ	X				
47nF	Χ	Χ				
22nF	Х	X				

2. SIM vs MEAS - SDD21 (VOID)

Simulated Measured Both				
Value	Complex VOID	Complex SOLID	Shorted VOID	Simple VOID
220nF	X	X	Х	Х
150nF	Χ	X		
47nF	Χ	X		
22nF	X	X		

2

SIMULATION

3. SIM vs MEAS - SDD21 (SOLID)

Simulated Measured Both	Capacitor Models					
Value	Complex VOID	Complex SOLID	Shorted VOID	Simple VOID		
220nF	X	Х	Х	х)		
150nF	Χ	X				
47nF	Χ	Χ				
22nF	Х	X				

2. SIM vs MEAS – TDR, 12ps RT (VOID)

Simulated Measured Both	Capacitor Models				
Value	Complex VOID	Complex SOLID	Shorted VOID	Simple VOID	
220nF	X	Х	Х	Х	
150nF	Х	Χ			
47nF	Χ	X			
22nF	X	X			

2

SIMULATION

3. SIM vs MEAS - TDR, 12ps RT (SOLID)

Simulated Measured Both	Capacitor Models					
Value	Complex VOID	Complex SOLID	Shorted VOID	Simple VOID		
220nF	X	X	Х	X		
150nF	Χ	Χ				
47nF	Χ	X				
22nF	X	X				

SIMULATION

4. Chip to Module Exploration

Simulation to Measurement Comparison

220nF DC Blocking cap with Host Board package only:

- 56G NRZ
- 112G PAM4
- 112G PAM4, 1 TAP DFE
- 112G PAM4, 3 TAP DFE
- 112G PAM4, 12 TAP DFE

	Simulated Measured Both	Capacitor Models					
	Value	Complex VOID	Complex SOLID	Shorted VOID	Simple VOID		
4	220nF	X	Х	Х	Х		
	150nF	Χ	Χ				
	47nF	Χ	Χ				
	22nF	X	X				

4. Host Package Only Study

Includes TX Package & 220nF Cap

56G NRZ

Voltage Bathtub - All Cases

1_VSR_ETx6_150mm_FQSFP_DD_COMPLEX_VOID
4_VSR_ETx6_150mm_FQSFP_DD_COMPLEX_SOLID
1_Meas_220nF_VOID_C1_C2_VSR_ETx6_150mm_FQSFP_DD_COMPLEX
1_Meas_220nF_SOLID_C1_C2_VSR_ETx6_150mm_FQSFP_DD_COMPLEX

112G PAM4

Voltage Bathtub - All Cases

Measured VOID

1_VSR_ETx6_150mm_FQSFP_DD_COMPLEX_VOID
4_VSR_ETx6_150mm_FQSFP_DD_COMPLEX_SOLID
1_Meas_220nF_VOID_C1_C2_VSR_ETx6_150mm_FQSFP_DD_COMPLEX
1_Meas_220nF_SOLID_C1_C2_VSR_ETx6_150mm_FQSFP_DD_COMPLEX

112G PAM4 3 TAP DFE

Voltage Bathtub - All Cases

5. Chip to Module Exploration

Simulation to Measurement Comparison

220nF DC Blocking cap with optimistic TX/RX package:

- 56G NRZ
- 112G PAM4
- 112G PAM4, 1 TAP DFE
- 112G PAM4, 3 TAP DFE
- 112G PAM4, 12 TAP DFE

	Simulated Measured Both	Capacitor Models			
5	Value	Complex VOID	Complex SOLID	Shorted VOID	Simple VOID
	220nF	X	Х	Χ	Х
	150nF	Χ	Χ		
	47nF	Χ	Χ		
	22nF	X	X		

5. Optimistic Host/Module Package Study

Includes TX/RX Package & 220nF Cap

FQSFP PKG

DIE PIN ARx6

56G NRZ

Voltage Bathtub - All Cases

Measured VOID

112G PAM4

Voltage Bathtub - All Cases

Measured VOID

112G PAM4 3 TAP DFE

Voltage Bathtub - All Cases

Measured VOID

Test Vehicle Correlation Work VOID, SOLID, & CAL Layouts

Test Vehicle Correlation Work

220nF VOID Measurements

Test Vehicle Correlation Work

220nF VOID Simulation v2.0

Thank you!

QUESTIONS?

