

Project Number: Design Qualification Test Report	Tracking Code: 1833524_Report_Rev_1
Requested by: Roy Luo	Date: 12/27/2019
Part #: T1XD-10-28-GF-XX.X-XX /S1SD-10-28-GF-XX. XX-L	Tech: Peter Chen
Part description: T1XD/S1SD	Qty to test: 95
Test Start: 12/15/2018	Test Completed: 1/30/2019

DESIGN QUALIFICATION TEST REPORT

T1XD /S1SD
T1XD-10-28-GF-XX.X-XX /S1SD-10-28-GF-XX. XX-L

REVISION HISTORY

DATA	REV.NUM.	DESCRIPTION	ENG
12/10/2019	1	Initial Issue	PC

CERTIFICATION

All instruments and measuring equipment were calibrated to National Institute for Standards and Technology (NIST) traceable standards according to ISO 10012-1 and ANSI/NCSL 2540-1, as applicable.

All contents contained herein are the property of Samtec. No portion of this report, in part or in full shall be reproduced without prior written approval of Samtec.

SCOPE

To perform the following tests: Design Qualification test. Please see test plan.

APPLICABLE DOCUMENTS

Standards: EIA Publication 364

TEST SAMPLES AND PREPARATION

- 1) All materials were manufactured in accordance with the applicable product specification.
- 2) All test samples were identified and encoded to maintain traceability throughout the test sequences.
- 3) After soldering, the parts to be used for LLCR and DWV/IR testing were cleaned according to TLWI-0001.
- 4) Either an automated cleaning procedure or an ultrasonic cleaning procedure may be used.
- 5) The automated procedure is used with aqueous compatible soldering materials.
- 6) Parts not intended for testing LLCR and DWV/IR are visually inspected and cleaned if necessary.
- 7) Any additional preparation will be noted in the individual test sequences.
- 8) Solder Information: Lead free
- 9) Samtec Test PCBs used: PCB-103219-TST.

FLOWCHARTS

Gas Tight

Group 1

T1SD-10-28-GF-06.0

S1SD-10-28-GF-06.00-L

8 Assemblies

Step Description

1. LLCR ⁽²⁾
2. Gas Tight ⁽¹⁾
3. LLCR ⁽²⁾
Max Delta = 15 mOhm

(1) Gas Tight = EIA-364-36

(2) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max

Test Current = 100 mA Max

Thermal Aging

Group 1

T1SD-10-28-GF-06.0

S1SD-10-28-GF-06.00-L

8 Assemblies

Step Description

1. Contact Gaps
2. Mating/Unmating Force ⁽²⁾
3. LLCR ⁽¹⁾
4. Thermal Age ⁽³⁾
5. LLCR ⁽¹⁾
Max Delta = 15 mOhm
6. Mating/Unmating Force ⁽²⁾
7. Contact Gaps

(1) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max

Test Current = 100 mA Max

(2) Mating/Unmating Force = EIA-364-13

(3) Thermal Age = EIA-364-17

Test Condition = 4 (105°C)

Time Condition = B (250 Hours)

FLOWCHARTS Continued

Mating/Unmating/DurabilityGroup 1

T1SD-10-28-GF-06.0

S1SD-10-28-GF-06.00-L

8 Assemblies

Group 2

T1SD-02-28-GF-06.0

S1SD-02-28-GF-06.00-L

8 Assemblies

Step **Description**

1. Contact Gaps
2. LLCR (2)
3. Mating/Unmating Force (3)
4. Cycles
Quantity ■ 25 Cycles
5. Mating/Unmating Force (3)
6. Cycles
Quantity ■ 25 Cycles
7. Mating/Unmating Force (3)
8. Cycles
Quantity ■ 25 Cycles
9. Mating/Unmating Force (3)
10. Cycles
Quantity ■ 25 Cycles
11. Mating/Unmating Force (3)
12. Contact Gaps
13. LLCR (2)
Max Delta ■ 15 mOhm
14. Thermal Shock (4)
15. LLCR (2)
Max Delta ■ 15 mOhm
16. Humidity (1)
17. LLCR (2)
Max Delta ■ 15 mOhm
18. Mating/Unmating Force (3)

Step **Description**

1. Contact Gaps
2. Mating/Unmating Force (3)
3. Cycles
Quantity ■ 25 Cycles
4. Mating/Unmating Force (3)
5. Cycles
Quantity ■ 25 Cycles
6. Mating/Unmating Force (3)
7. Cycles
Quantity ■ 25 Cycles
8. Mating/Unmating Force (3)
9. Cycles
Quantity ■ 25 Cycles
10. Mating/Unmating Force (3)

(1) Humidity = EIA-364-31

Test Condition = B (240 Hours)

Test Method = III (+25°C to +65°C @ 90% RH to 98% RH)

Test Exceptions: ambient pre-condition and delete steps 7a and 7b

(2) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max

Test Current = 100 mA Max

(3) Mating/Unmating Force = EIA-364-13

(4) Thermal Shock = EIA-364-32

Exposure Time at Temperature Extremes = 1/2 Hour

Method A, Test Condition = I (-55°C to +85°C)

Test Duration = A-3 (100 Cycles)

FLOWCHARTS Continued

IR/DWV

Pin-to-Pin

<u>Group 1</u>		<u>Group 2</u>		<u>Group 3</u>		<u>Group 4</u>	
T1SD-10-28-GF-06.0		T1SD-10-28-GF-06.0		T1SD-10-28-GF-06.0		T1SD-10-28-GF-06.0	
S1SD-10-28-GF-06.00-L		S1SD-10-28-GF-06.00-L		S1SD-10-28-GF-06.00-L		S1SD-10-28-GF-06.00-L	
2 Assemblies		2 Assemblies		2 Assemblies		2 Assemblies	
Step	Description	Step	Description	Step	Description	Step	Description
1.	DWV Breakdown ⁽²⁾	1.	DWV Breakdown ⁽²⁾	1.	DWV Breakdown ⁽²⁾	1.	IR ⁽⁴⁾
							DWV at Test Voltage ⁽¹⁾
							Thermal Shock ⁽⁵⁾
							IR ⁽⁴⁾
							DWV at Test Voltage ⁽¹⁾
							Humidity ⁽³⁾
							IR ⁽⁴⁾
							DWV at Test Voltage ⁽¹⁾

Row-to-Row

<u>Group 5</u>		<u>Group 6</u>		<u>Group 7</u>		<u>Group 8</u>	
T1SD-10-28-GF-06.0		T1SD-10-28-GF-06.0		T1SD-10-28-GF-06.0		T1SD-10-28-GF-06.0	
S1SD-10-28-GF-06.00-L		S1SD-10-28-GF-06.00-L		S1SD-10-28-GF-06.00-L		S1SD-10-28-GF-06.00-L	
2 Assemblies		2 Assemblies		2 Assemblies		2 Assemblies	
Step	Description	Step	Description	Step	Description	Step	Description
1.	DWV Breakdown ⁽²⁾	1.	DWV Breakdown ⁽²⁾	1.	DWV Breakdown ⁽²⁾	1.	IR ⁽⁴⁾
							DWV at Test Voltage ⁽¹⁾
							Thermal Shock ⁽⁵⁾
							IR ⁽⁴⁾
							DWV at Test Voltage ⁽¹⁾
							Humidity ⁽³⁾
							IR ⁽⁴⁾
							DWV at Test Voltage ⁽¹⁾

(1) DWV at Test Voltage = EIA-364-20

Test Condition = 1 (Sea Level)

DWV test voltage is equal to 75% of the lowest breakdown voltage

Test voltage applied for 60 seconds

(2) DWV Breakdown = EIA-364-20

Test Condition = 1 (Sea Level)

DWV test voltage is equal to 75% of the lowest breakdown voltage

Test voltage applied for 60 seconds

(3) Humidity = EIA-364-31

Test Condition = B (240 Hours)

Test Method = III (+25°C to +65°C @ 90% RH to 98% RH)

Test Exceptions: ambient pre-condition and delete steps 7a and 7b

(4) IR = EIA-364-21

Test Condition = 500 Vdc, 2 Minutes Max

(5) Thermal Shock = EIA-364-32

Exposure Time at Temperature Extremes = 1/2 Hour

Method A, Test Condition = I (-55°C to +85°C)

Test Duration = A-3 (100 Cycles)

FLOWCHARTS Continued

Current Carrying Capacity

Group 1
 T1SD-10-28-GF-12.0
 S1SD-10-28-GF-12.00-L
 2 Pins Powered
 Power

Group 2
 T1SD-10-28-GF-12.0
 S1SD-10-28-GF-12.00-L
 4 Pins Powered
 Power

Group 3
 T1SD-10-28-GF-12.0
 S1SD-10-28-GF-12.00-L
 6 Pins Powered
 Power

Group 4
 T1SD-10-28-GF-12.0
 S1SD-10-28-GF-12.00-L
 8 Pins Powered
 Power

Step **Description**
 1. CCC⁽¹⁾
 Rows = 2
 Number of Positions = 1

Step **Description**
 1. CCC⁽¹⁾
 Rows = 2
 Number of Positions = 2

Step **Description**
 1. CCC⁽¹⁾
 Rows = 2
 Number of Positions = 3

Step **Description**
 1. CCC⁽¹⁾
 Rows = 2
 Number of Positions = 4

Group 5
 T1SD-10-28-GF-12.0
 S1SD-10-28-GF-12.00-L
 20 Pins Powered
 Power

Step **Description**
 1. CCC⁽¹⁾
 Rows = 2
 Number of Positions = 10

(1) CCC = EIA-364-70
 Method 2, Temperature Rise Versus Current Curve
 (TIN PLATING) - Tabulate calculated current at RT, 65°C, 75°C and 95°C after derating 20% and based on 105°C
 (GOLD PLATING) - Tabulate calculated current at RT, 85°C, 95°C and 115°C after derating 20% and based on 125°C

Mechanical Shock/Random Vibration/LLCR

Group 1
 T1PD-10-28-GF-12.0-A
 S1SD-10-28-GF-12.00-L
 8 Assemblies
 0.033" PANEL THICKNESS

Step **Description**
 1. LLCR⁽¹⁾
 2. Mechanical Shock⁽²⁾
 3. Random Vibration⁽³⁾
 4. LLCR⁽¹⁾
 Max Delta = 15 mOhm

(1) LLCR = EIA-364-23
 Open Circuit Voltage = 20 mV Max
 Test Current = 100 mA Max

(2) Mechanical Shock = EIA-364-27
 Test Condition = C (100 G Peak, 6 milliseconds, Half Sine)
 Number of Shocks = 3 Per Direction, Per Axis, 18 Total

(3) Random Vibration = EIA-364-28
 Condition = VB (7.56 gRMS Average, 2 Hours/Axis)

FLOWCHARTS Continued

Mechanical Shock/Random Vibration/Event Detection

Group 1

T1PD-10-28-GF-12.0-A

S1SD-10-28-GF-12.00-L

60 Points

0.033" PANEL THICKNESS**Step Description**

1. Nanosecond Event Detection (Mechanical Shock)⁽¹⁾
2. Nanosecond Event Detection (Random Vibration)⁽²⁾

(1) Nanosecond Event Detection (Mechanical Shock)

Use EIA-364-87 for Nanosecond Event Detection:

Test Condition = F (50 nanoseconds at 10 ohms)

Use EIA-364-27 for Mechanical Shock:

Test Condition = C (100 G Peak, 6 milliseconds, Half Sine)

Number of Shocks = 3 Per Direction, Per Axis, 18 Total

(2) Nanosecond Event Detection (Random Vibration)

Use EIA-364-87 for Nanosecond Event Detection:

Test Condition = F (50 nanoseconds at 10 ohms)

Use EIA-364-28 for Random Vibration:

Condition = VB (7.56 gRMS Average, 2 Hours/Axis)

Cable Pull*Note: Pull on T1PD cable to test panel mount latching system.***0.033" PANEL THICKNESS**Group 1

T1PD-10-28-GF-12.0-A

S1SD-10-28-GF-06.00-L

5 Assemblies

0 Degrees

Group 2

T1PD-10-28-GF-12.0-A

S1SD-10-28-GF-06.00-L

5 Assemblies

90 Degrees

Step Description

1. Cable Pull⁽¹⁾

Step Description

1. Cable Pull⁽¹⁾

0.090" PANEL THICKNESSGroup 3

T1PD-10-28-GF-12.0-A

S1SD-10-28-GF-06.00-L

5 Assemblies

0 Degrees

Group 4

T1PD-10-28-GF-12.0-A

S1SD-10-28-GF-06.00-L

5 Assemblies

90 Degrees

Step Description

1. Cable Pull⁽¹⁾

Step Description

1. Cable Pull⁽¹⁾

(1) Cable Pull = EIA-364-38

Measure and Record Force Required to Failure

Failure = Discontinuity >1 microsecond at 10 ohms

FLOWCHARTS Continued

Cable Pull

Note: Pull on T1PD cable to test panel mount latching system.

0.033" PANEL THICKNESS

Group 1

T1PD-10-28-GF-12.0-A

S1SD-10-28-GF-06.00-L

5 Assemblies

0 Degrees

Group 2

T1PD-10-28-GF-12.0-A

S1SD-10-28-GF-06.00-L

5 Assemblies

90 Degrees

Step Description

1. Cable Pull₍₁₎

Step Description

1. Cable Pull₍₁₎

0.090" PANEL THICKNESS

Group 3

T1PD-10-28-GF-12.0-A

S1SD-10-28-GF-06.00-L

5 Assemblies

0 Degrees

Group 4

T1PD-10-28-GF-12.0-A

S1SD-10-28-GF-06.00-L

5 Assemblies

90 Degrees

Step Description

1. Cable Pull₍₁₎

Step Description

1. Cable Pull₍₁₎

(1) Cable Pull = EIA-364-38

Measure and Record Force Required to Failure

Failure = Discontinuity >1 microsecond at 10 ohms

ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

THERMAL SHOCK:

- 1) EIA-364-32, *Thermal Shock (Temperature Cycling) Test Procedure for Electrical Connectors*.
- 2) Test Condition 1: -55°C to +85°C
- 3) Test Time: ½ hour dwell at each temperature extreme
- 4) Number of Cycles: 100
- 5) All test samples are pre-conditioned at ambient.
- 6) All test samples are exposed to environmental stressing in the mated condition.

THERMAL:

- 1) EIA-364-17, *Temperature Life with or without Electrical Load Test Procedure for Electrical Connectors*.
- 2) Test Condition 4 at 105°C
- 3) Test Time Condition B for 250 hours.
- 4) All test samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

HUMIDITY:

- 1) Reference document: EIA-364-31, *Humidity Test Procedure for Electrical Connectors*.
- 2) Test Condition B, 240 Hours.
- 3) Method III, +25°C to +65°C, 90% to 98% Relative Humidity excluding sub-cycles 7a and 7b.
- 4) All samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

MATING/UNMATING:

- 1) Reference document: EIA-364-13, *Mating and Unmating Forces Test Procedure for Electrical Connectors*.
- 2) The full insertion position was to within 0.003" to 0.004" of the plug bottoming out in the receptacle to prevent damage to the system under test.
- 3) One of the mating parts is secured to a floating X-Y table to prevent damage during cycling.

MECHANICAL SHOCK (Specified Pulse):

- 1) Reference document: EIA-364-27, *Mechanical Shock Test Procedure for Electrical Connectors*
- 2) Test Condition C
- 3) Peak Value: 100 G
- 4) Duration: 6 Milliseconds
- 5) Wave Form: Half Sine
- 6) Velocity: 12.3 ft/s
- 7) Number of Shocks: 3 Shocks / Direction, 3 Axis (18 Total)

VIBRATION:

- 1) Reference document: EIA-364-28, *Vibration Test Procedure for Electrical Connectors*
- 2) Test Condition V, Letter B
- 3) Power Spectral Density: 0.04 G² / Hz
- 4) G 'RMS': 7.56
- 5) Frequency: 50 to 2000 Hz
- 6) Duration: 2.0 Hours per axis (3 axis total)

NANOSECOND-EVENT DETECTION:

- 1) Reference document: EIA-364-87, *Nanosecond-Event Detection for Electrical Connectors*
- 2) Prior to test, the samples were characterized to assure the low nanosecond event being monitored will trigger the detector.
- 3) After characterization it was determined the test samples could be monitored for 50 nanosecond events

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

TEMPERATURE RISE (Current Carrying Capacity, CCC):

- 1) EIA-364-70, *Temperature Rise versus Current Test Procedure for Electrical Connectors and Sockets*.
- 2) When current passes through a contact, the temperature of the contact increases as a result of I^2R (resistive) heating.
- 3) The number of contacts being investigated plays a significant part in power dissipation and therefore temperature rise.
- 4) The size of the temperature probe can affect the measured temperature.
- 5) Copper traces on PC boards will contribute to temperature rise:
 - a. Self heating (resistive)
 - b. Reduction in heat sink capacity affecting the heated contacts
- 6) A de-rating curve, usually 20%, is calculated.
- 7) Calculated de-rated currents at four temperature points are reported:
 - a. Ambient
 - b. 40° C
 - c. 50° C
 - d. 70° C
- 8) Typically, neighboring contacts (in close proximity to maximize heat build up) are energized.
- 9) The thermocouple (or temperature measuring probe) will be positioned at a location to sense the maximum temperature in the vicinity of the heat generation area.
- 10) A computer program, *TR 803.exe*, ensures accurate stability for data acquisition.
- 11) Hook-up wire cross section is larger than the cross section of any connector leads/PC board traces, jumpers, etc.
- 12) Hook-up wire length is longer than the minimum specified in the referencing standard.

LLCR:

- 1) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
 - a. $\leq +5.0$ mOhms: ----- Stable
 - b. $+5.1$ to $+10.0$ mOhms: ----- Minor
 - c. $+10.1$ to $+15.0$ mOhms: ----- Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: ----- Marginal
 - e. $+50.1$ to $+1000$ mOhms: ----- Unstable
 - f. $>+1000$ mOhms: ----- Open Failure

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

GAS TIGHT:

To provide method for evaluating the ability of the contacting surfaces in preventing penetration of harsh vapors which might lead to oxide formation that may degrade the electrical performance of the contact system.

- 1) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
 - a. $\leq +5.0$ mOhms: ----- Stable
 - b. $+5.1$ to $+10.0$ mOhms: ----- Minor
 - c. $+10.1$ to $+15.0$ mOhms: ----- Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: ----- Marginal
 - e. $+50.1$ to $+1000$ mOhms: ----- Unstable
 - f. $>+1000$ mOhms: ----- Open Failure
- 4) Procedure:
 - a. Reference document: EIA-364-36, *Test Procedure for Determination of Gas-Tight Characteristics for Electrical Connectors, Sockets and/or Contact Systems*.
 - b. Test Conditions:
 - i. Class II--- Mated pairs of contacts assembled to their plastic housings.
 - ii. Reagent grade Nitric Acid shall be used of sufficient volume to saturate the test chamber
 - iii. The ratio of the volume of the test chamber to the surface area of the acid shall be 10:1.
 - iv. The chamber shall be saturated with the vapor for at least 15 minutes before samples are added.
 - v. Exposure time, 55 to 65 minutes.
 - vi. The samples shall be no closer to the chamber walls than 1 inches and no closer to the surface of the acid than 3 inches.
 - vii. The samples shall be dried after exposure for a minimum of 1 hour.
 - viii. Drying temperature 50°C
 - ix. The final LLCR shall be conducted within 1 hour after drying.

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes

INSULATION RESISTANCE (IR):

To determine the resistance of insulation materials to leakage of current through or on the surface of these materials when a DC potential is applied.

- 1) PROCEDURE:
 - a. Reference document: EIA-364-21, *Insulation Resistance Test Procedure for Electrical Connectors*.
 - b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Electrification Time 2.0 minutes
 - iii. Test Voltage (500 VDC) corresponds to calibration settings for measuring resistances.
- 2) MEASUREMENTS:
- 3) When the specified test voltage is applied (VDC), the insulation resistance shall not be less than 1000 megohms.

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

To determine if the sockets can operate at its rated voltage and withstand momentary over potentials due to switching, surges, and other similar phenomenon. Separate samples are used to evaluate the effect of environmental stresses so not to influence the readings from arcing that occurs during the measurement process.

- 1) PROCEDURE:
 - a. Reference document: EIA-364-20, *Withstanding Voltage Test Procedure for Electrical Connectors*.
 - b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Barometric Test Condition 1
 - iii. Rate of Application 500 V/Sec
 - iv. Test Voltage (VAC) until breakdown occurs
- 2) MEASUREMENTS/CALCULATIONS
 - a. The breakdown voltage shall be measured and recorded.
 - b. The dielectric withstand voltage shall be recorded as 75% of the minimum breakdown voltage.
 - c. The working voltage shall be recorded as one-third (1/3) of the dielectric withstand voltage (one-fourth of the breakdown voltage).

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

CONNECTOR PULL:

- 1) Secure cable near center and pull on connector
 - a. At 90°, right angle to cable
 - b. At 0°, in-line with cable

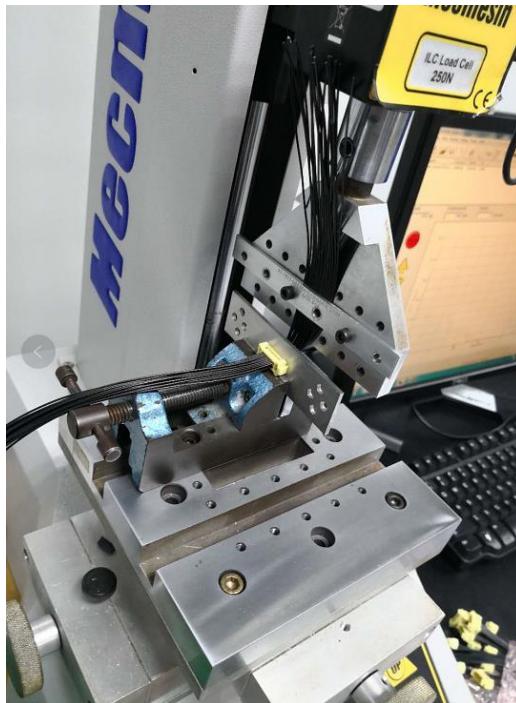


Fig. 1

90° Connector pull, notice the electrical continuity hook-up wires.

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

CABLE DURABILITY:

- 1) Oscillate and monitor electrical continuity for open circuit indication.
 - a. $\pm 70^\circ$ Pendulum Mode, bend up to 500 cycles with 8 oz. load on cable end.

Fig. 2

RESULTS

Temperature Rise, CCC at a 20% de-rating

- CCC for a 30°C Temperature Rise-----2.7 A per contact with 2 contacts (2x1) powered
- CCC for a 30°C Temperature Rise-----2.0 A per contact with 4 contacts (2x2) powered
- CCC for a 30°C Temperature Rise-----1.9 A per contact with 6 contacts (2x3) powered
- CCC for a 30°C Temperature Rise-----1.6 A per contact with 8 contacts (2x4) powered
- CCC for a 30°C Temperature Rise-----1.3 A per contact with 20 contacts (2x10) powered

Mating – Unmating Forces

Thermal Aging Group

- Initial
 - Mating
 - Min ----- 2.78 Lbs
 - Max----- 3.24 Lbs
 - Unmating
 - Min ----- 1.42 Lbs
 - Max----- 1.89 Lbs
- After Thermal
 - Mating
 - Min ----- 1.98 Lbs
 - Max----- 2.35 Lbs
 - Unmating
 - Min ----- 1.35 Lbs
 - Max----- 1.67 Lbs

RESULTS Continued

Mating – Unmating Forces

Mating-Unmating Durability Group

- **Initial**
 - Mating
 - Min ----- 2.46 Lbs
 - Max----- 3.29 Lbs
 - Unmating
 - Min ----- 1.49 Lbs
 - Max----- 2.73 Lbs
- **After 25 Cycles**
 - Mating
 - Min ----- 2.39 Lbs
 - Max----- 3.16 Lbs
 - Unmating
 - Min ----- 1.48 Lbs
 - Max----- 2.41 Lbs
- **After 50 Cycles**
 - Mating
 - Min ----- 2.15 Lbs
 - Max----- 3.05 Lbs
 - Unmating
 - Min ----- 1.49 Lbs
 - Max----- 2.15 Lbs
- **After 75 Cycles**
 - Mating
 - Min ----- 2.11 Lbs
 - Max----- 2.96 Lbs
 - Unmating
 - Min ----- 1.59 Lbs
 - Max----- 2.10 Lbs
- **After 100 Cycles**
 - Mating
 - Min ----- 2.15 Lbs
 - Max----- 3.01 Lbs
 - Unmating
 - Min ----- 1.68 Lbs
 - Max----- 2.19 Lbs
- **Humidity**
 - Mating
 - Min ----- 1.58 Lbs
 - Max----- 2.25 Lbs
 - Unmating
 - Min ----- 1.13 Lbs
 - Max----- 1.76 Lbs

RESULTS Continued

Mating – Unmating Forces

Mating-Unmating Basic (T1SD-02-28-GF-06.0 / S1SD-02-28-GF-06.00-L)

- **Initial**
 - **Mating**
 - Min ----- 0.97 Lbs
 - Max ----- 1.23 Lbs
 - **Unmating**
 - Min ----- 0.36 Lbs
 - Max ----- 0.54 Lbs
- **After 25 Cycles**
 - **Mating**
 - Min ----- 0.70 Lbs
 - Max ----- 1.06 Lbs
 - **Unmating**
 - Min ----- 0.34 Lbs
 - Max ----- 0.42 Lbs
- **After 50 Cycles**
 - **Mating**
 - Min ----- 0.64 Lbs
 - Max ----- 0.93 Lbs
 - **Unmating**
 - Min ----- 0.34 Lbs
 - Max ----- 0.73 Lbs
- **After 75 Cycles**
 - **Mating**
 - Min ----- 0.63 Lbs
 - Max ----- 0.85 Lbs
 - **Unmating**
 - Min ----- 0.37 Lbs
 - Max ----- 0.49 Lbs
- **After 100 Cycles**
 - **Mating**
 - Min ----- 0.63 Lbs
 - Max ----- 0.87 Lbs
 - **Unmating**
 - Min ----- 0.39 Lbs
 - Max ----- 0.49 Lbs

Cable pull force

0.033-inch Panel Thickness

- **0° Pull**
 - Min ----- 7.98 Lbs
 - Max ----- 9.79 Lbs
- **90° Pull**
 - Min ----- 14.33 Lbs
 - Max ----- 16.54 Lbs

0.090-inch Panel Thickness

- **0° Pull**
 - Min ----- 8.56 Lbs
 - Max ----- 10.65 Lbs
- **90° Pull**
 - Min ----- 15.35 Lbs
 - Max ----- 17.78 Lbs

RESULTS Continued**Insulation Resistance minimums, IR****Pin to Pin**

- **Initial**
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed
- **Thermal Shock**
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed
- **Humidity**
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed

Row to Row

- **Initial**
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed
- **Thermal Shock**
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed
- **Humidity**
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed

Dielectric Withstanding Voltage minimums, DWV

- **Minimums**
 - Breakdown Voltage ----- 901 VAC
 - Test Voltage ----- 680 VAC
 - Working Voltage ----- 225 VAC

Pin to Pin

- **Initial DWV** ----- Passed
- **Thermal DWV** ----- Passed
- **Humidity DWV** ----- Passed

Row to Row

- **Initial DWV** ----- Passed
- **Thermal DWV** ----- Passed
- **Humidity DWV** ----- Passed

RESULTS Continued

CABLE FLEX

Insulation Resistance minimums, IR

Pin to Pin

- Initial
 - Mated ----- 45000 Meg Ω ----- Passed
- After flex test
 - Mated ----- 45000 Meg Ω ----- Passed

Row to Row

- Initial
 - Mated ----- 45000 Meg Ω ----- Passed
- After flex test
 - Mated ----- 45000 Meg Ω ----- Passed

Dielectric Withstanding Voltage minimums, DWV

Pin to Pin

- Initial DWV ----- Passed
- After Flex DWV ----- Passed

Row to Row

- Initial DWV ----- Passed
- After Flex DWV ----- Passed

LLCR Thermal Aging Group (160 LLCR test points)

- Initial ----- 73.73 mOhms Max
- Thermal
 - <= +5.0 mOhms ----- 150 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 10 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

LLCR Mating/Unmating Durability Group (160 LLCR test points)

- Initial ----- 76.65 mOhms Max
- Durability, 100 Cycles
 - <= +5.0 mOhms ----- 159 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 1 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure
- Thermal Shock
 - <= +5.0 mOhms ----- 142 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 18 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

RESULTS Continued

- **Humidity**

○ <= +5.0 mOhms -----	142 Points -----	Stable
○ +5.1 to +10.0 mOhms -----	37 Points -----	Minor
○ +10.1 to +15.0 mOhms -----	0 Points -----	Acceptable
○ +15.1 to +50.0 mOhms -----	0 Points -----	Marginal
○ +50.1 to +2000 mOhms -----	0 Points -----	Unstable
○ >+2000 mOhms -----	0 Points -----	Open Failure

LLCR Gas Tight Group (160 LLCR test points)

- Initial ----- 76.93 mOhms Max

- **Gas-Tight**

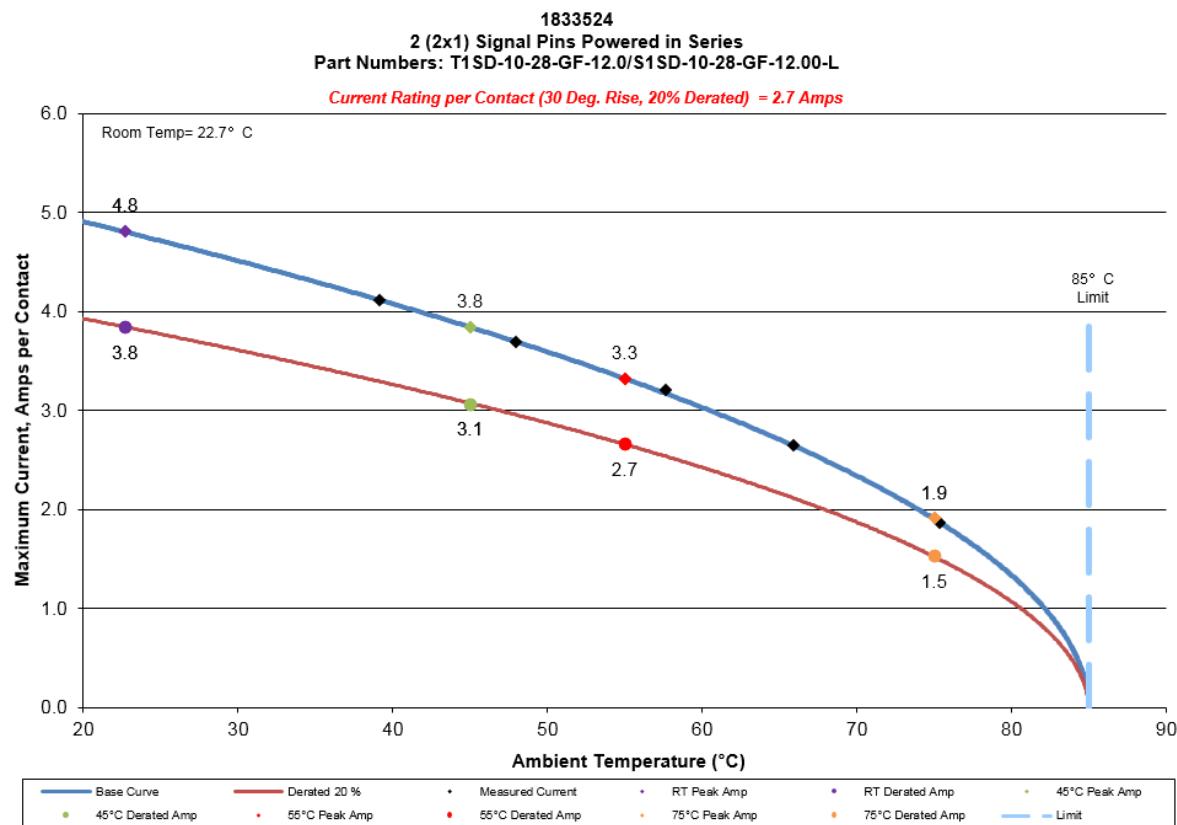
○ <= +5.0 mOhms -----	152 Points -----	Stable
○ +5.1 to +10.0 mOhms -----	8 Points -----	Minor
○ +10.1 to +15.0 mOhms -----	0 Points -----	Acceptable
○ +15.1 to +50.0 mOhms -----	0 Points -----	Marginal
○ +50.1 to +2000 mOhms -----	0 Points -----	Unstable
○ >+2000 mOhms -----	0 Points -----	Open Failure

LLCR Shock & Vibration Group (160 LLCR test points)

- Initial ----- 10.260 mOhms Max

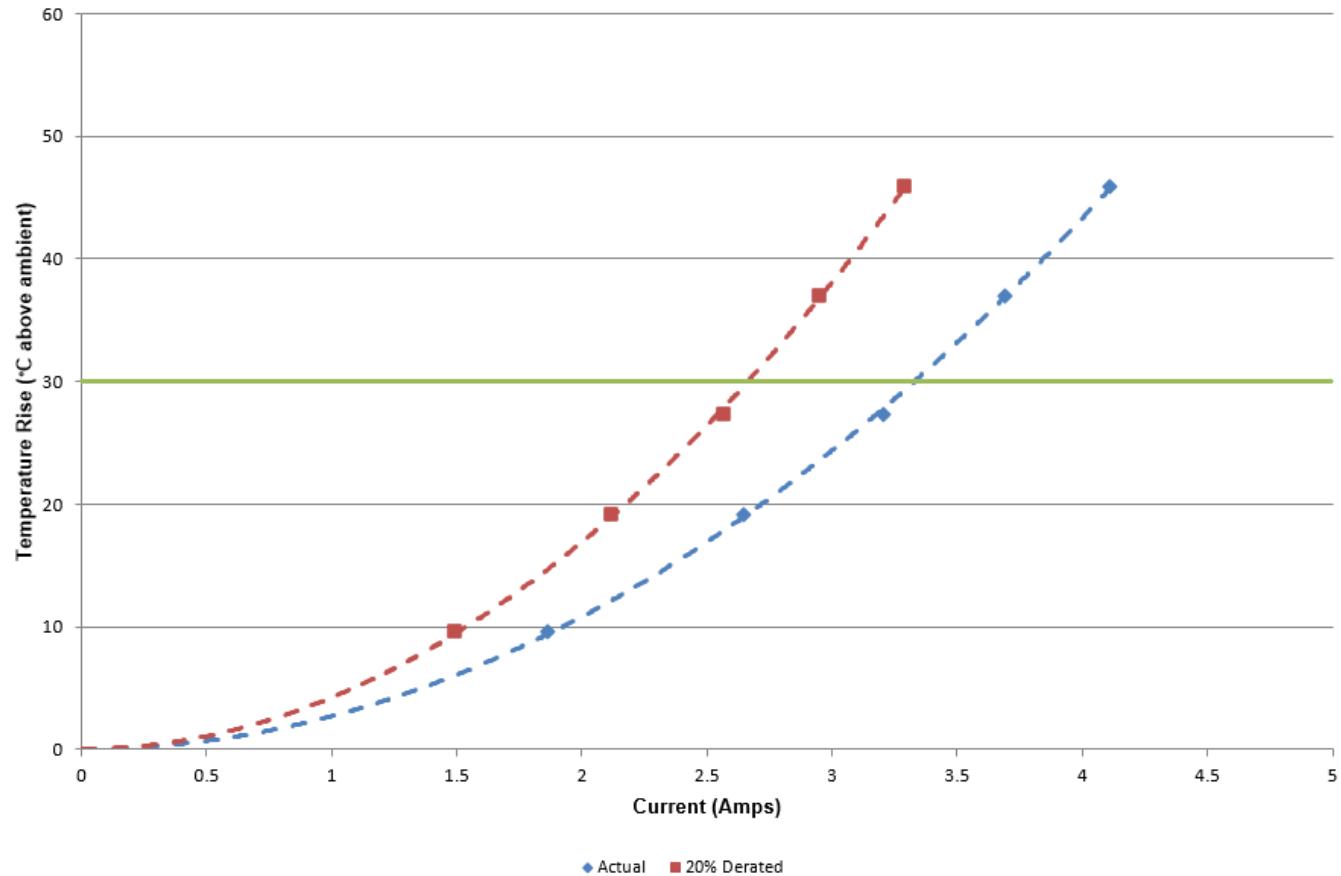
- **Shock & Vibration**

○ <= +5.0 mOhms -----	160 Points -----	Stable
○ +5.1 to +10.0 mOhms -----	0 Points -----	Minor
○ +10.1 to +15.0 mOhms -----	0 Points -----	Acceptable
○ +15.1 to +50.0 mOhms -----	0 Points -----	Marginal
○ +50.1 to +2000 mOhms -----	0 Points -----	Unstable
○ >+2000 mOhms -----	0 Points -----	Open Failure

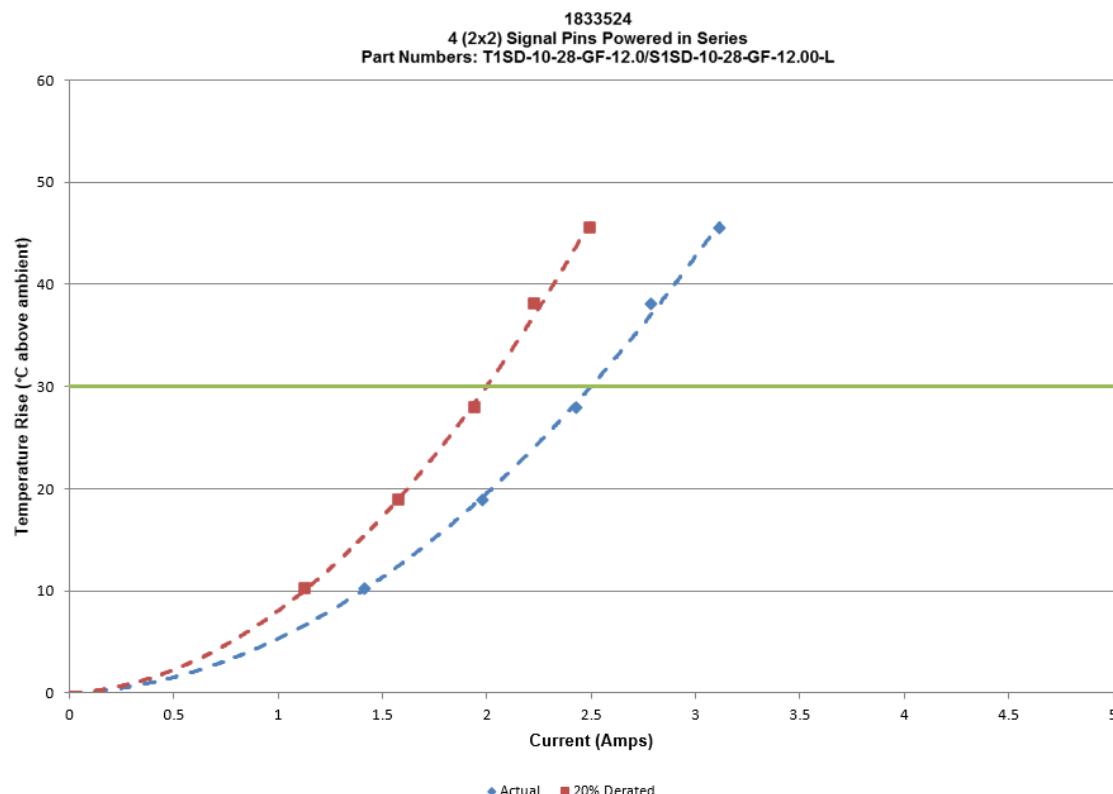
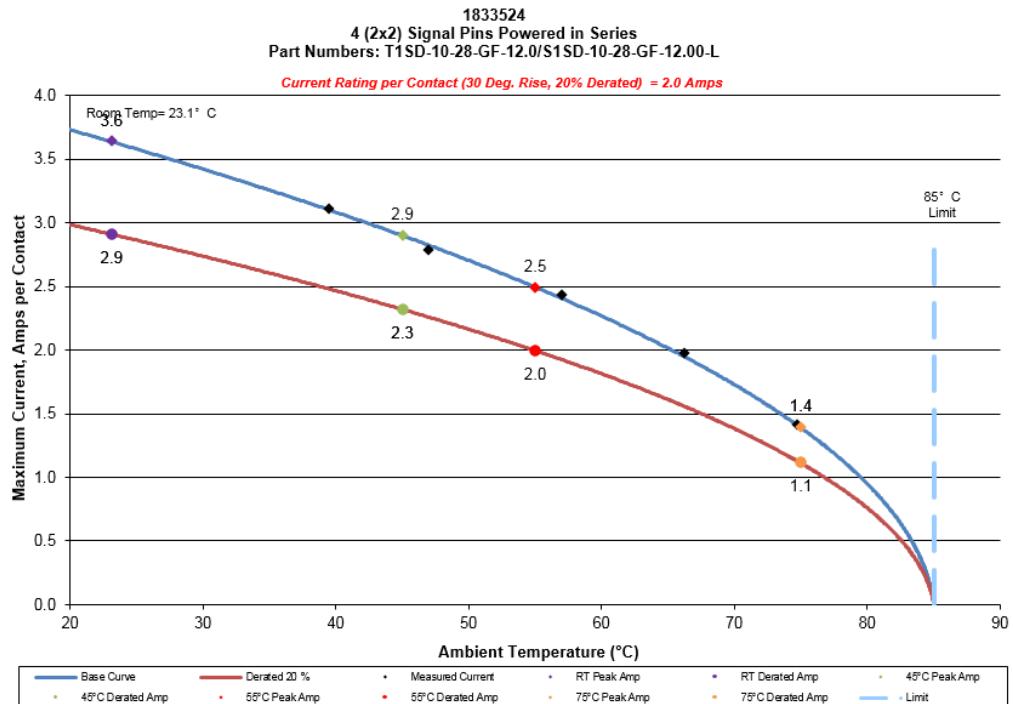

Mechanical Shock & Random Vibration:

○ Shock	<ul style="list-style-type: none"> ▪ No Damage----- ----- ▪ 50 Nanoseconds----- ----- 	<ul style="list-style-type: none"> ----- Passed ----- Passed
○ Vibration	<ul style="list-style-type: none"> ▪ No Damage----- ----- ▪ 50 Nanoseconds----- ----- 	<ul style="list-style-type: none"> ----- Passed ----- Passed

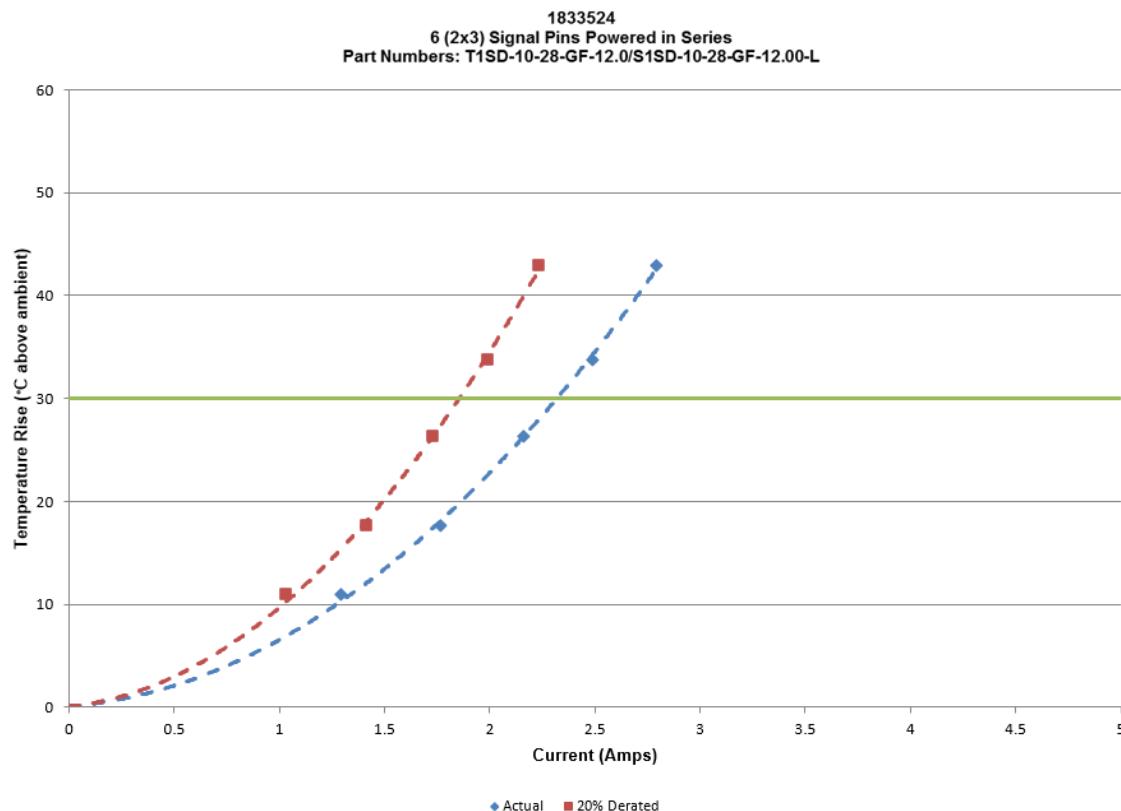
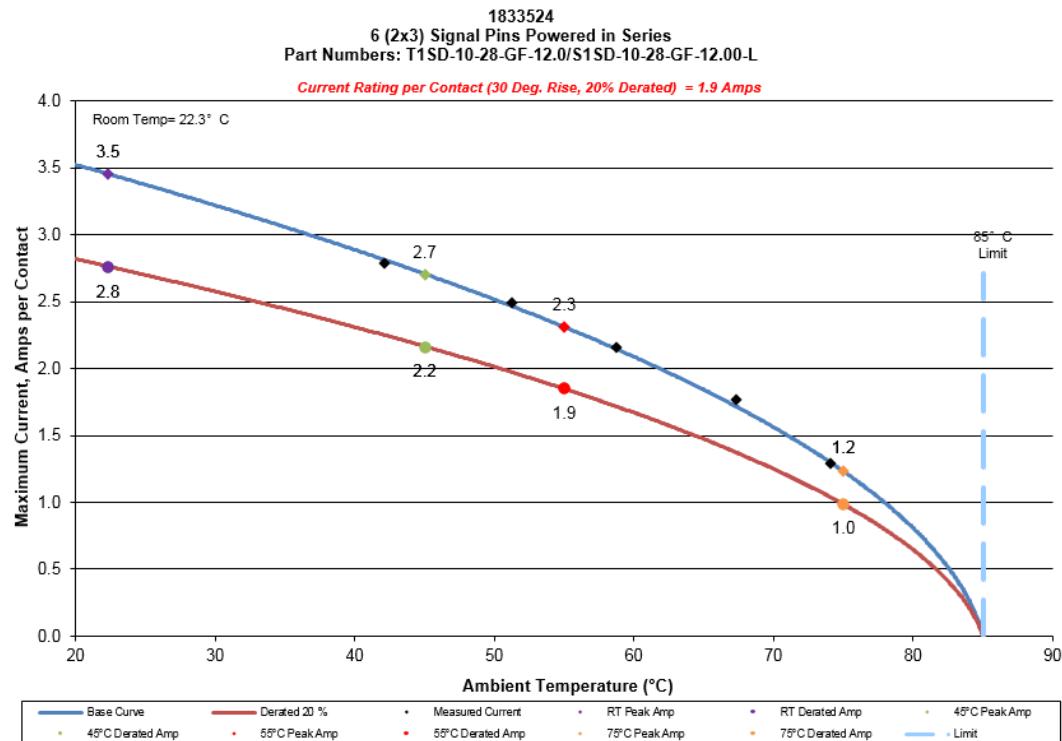
DATA SUMMARIES


TEMPERATURE RISE (Current Carrying Capacity, CCC):

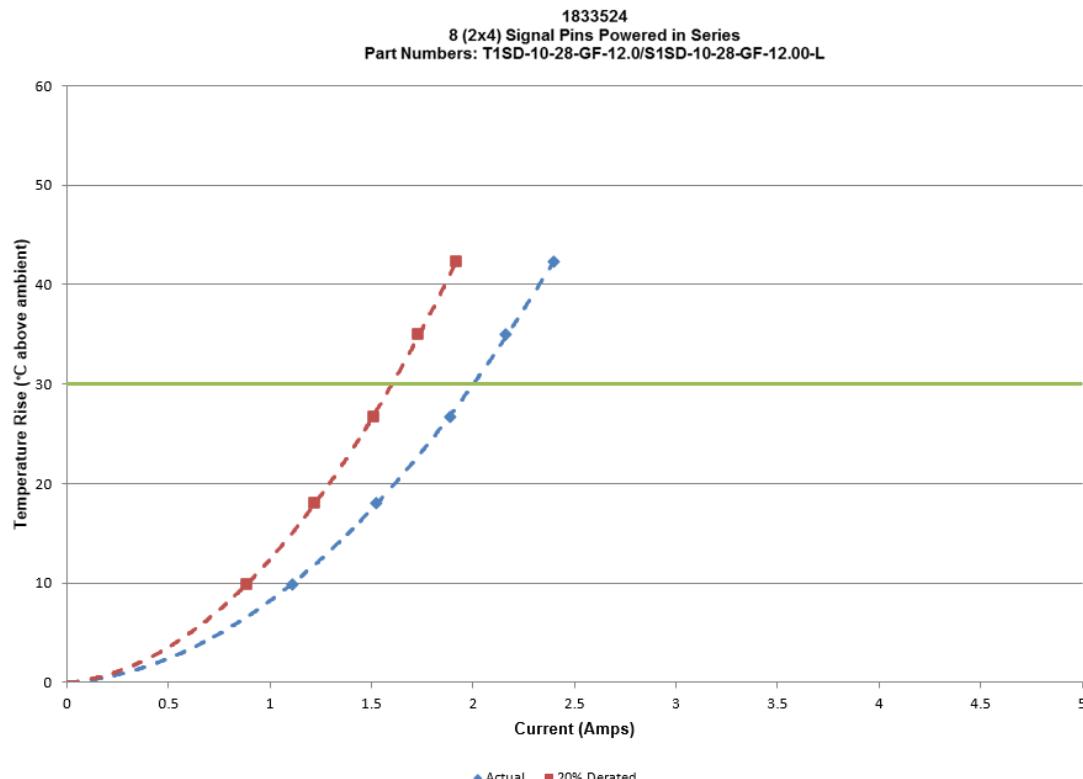
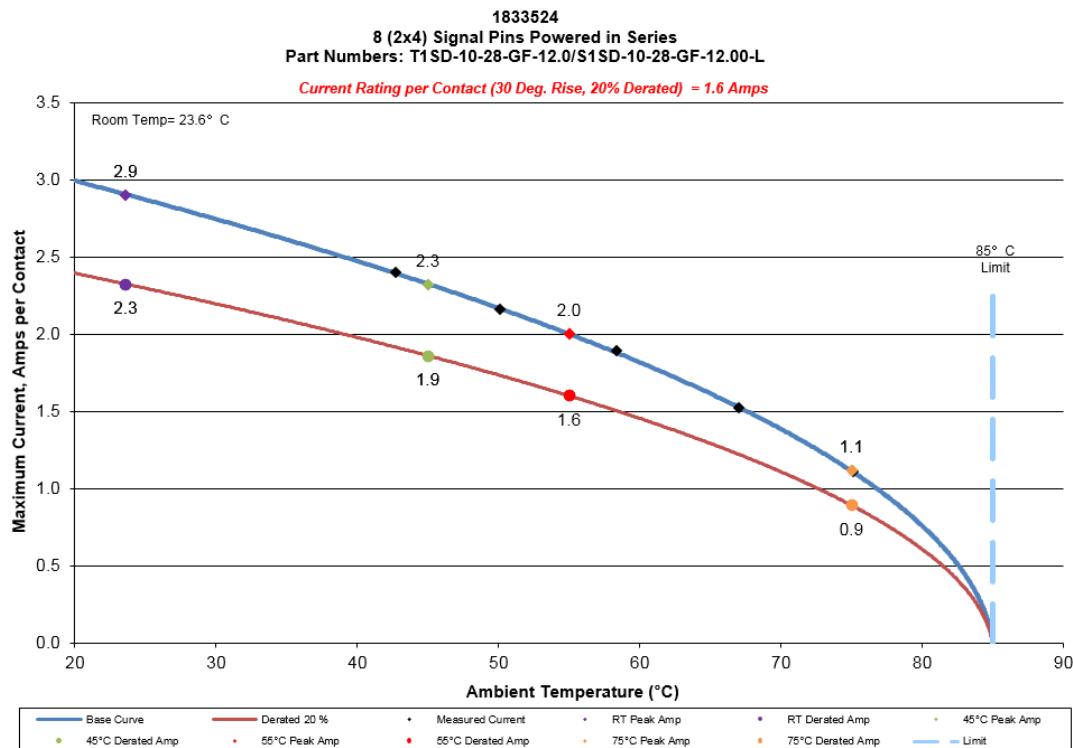
- 1) High quality thermocouples whose temperature slopes track one another were used for temperature monitoring.
- 2) The thermocouples were placed at a location to sense the maximum temperature generated during testing.
- 3) Temperature readings recorded are those for which three successive readings, 15 minutes apart, differ less than 1°C (computer controlled data acquisition).
- 4) Adjacent contacts were powered:
 - a. Linear configuration with 2 adjacent conductors/contacts powered



DATA SUMMARIES Continued

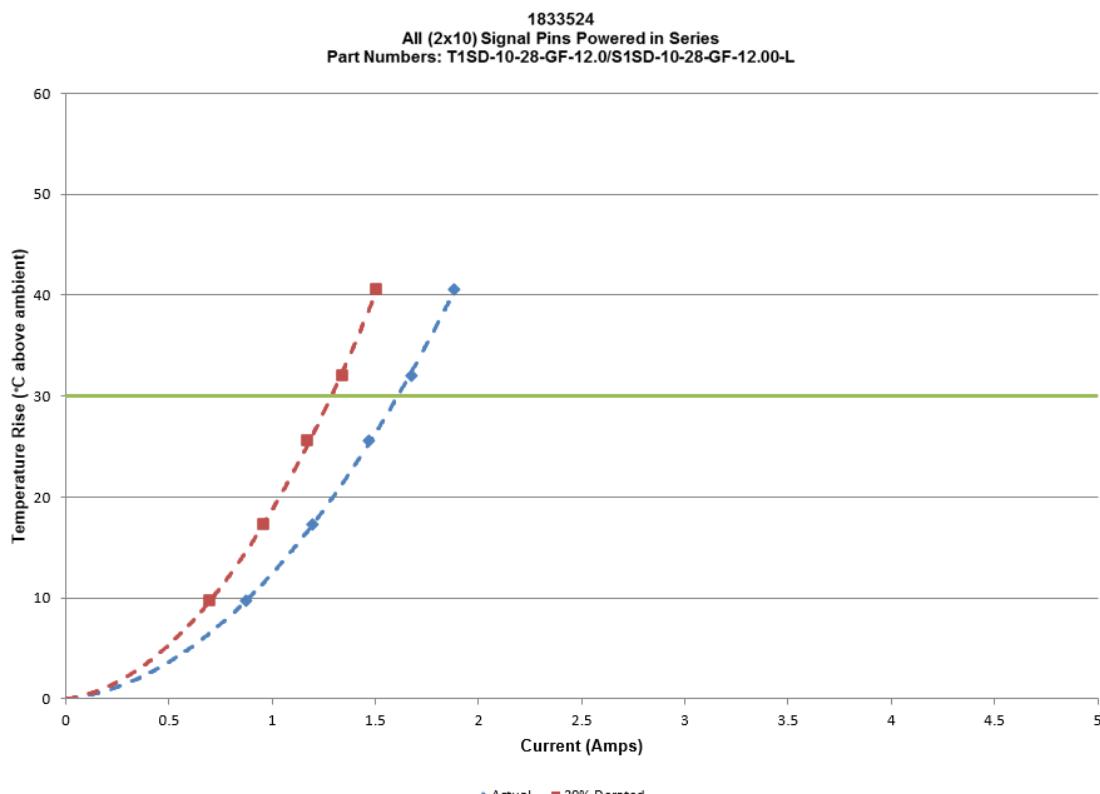
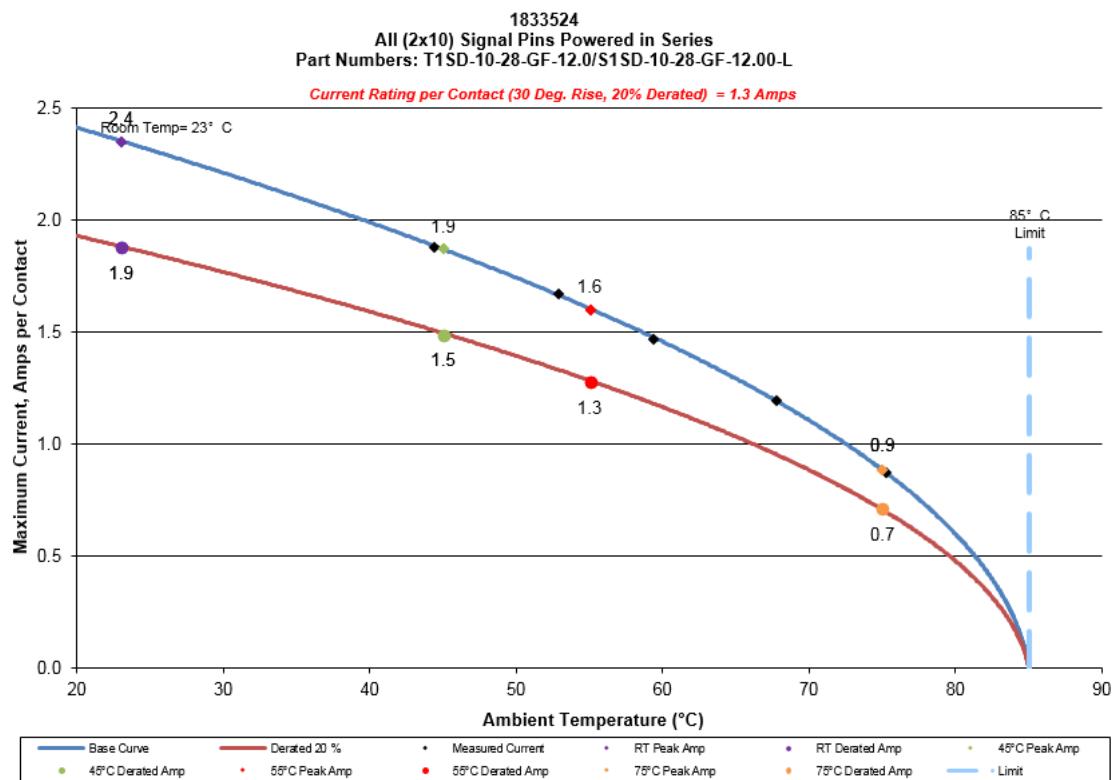
1833524
2 (2x1) Signal Pins Powered in Series
Part Numbers: T1SD-10-28-GF-12.0/S1SD-10-28-GF-12.00-L



DATA SUMMARIES Continued

b. Linear configuration with 4 adjacent conductors/contacts powered



DATA SUMMARIES Continued

c. Linear configuration with 6 adjacent conductors/contacts powered



DATA SUMMARIES Continued

d. Linear configuration with 8 adjacent conductors/contacts powered

DATA SUMMARIES Continued

e. Linear configuration with all adjacent conductors/contacts powered

DATA SUMMARIES Continued**MATING-UNMATING FORCE:**

Thermal Aging Group (T1SD-10-28-GF-06.0 / S1SD-10-28-GF-06.00-L)

	Initial				After Thermals			
	Mating		Unmating		Mating		Unmating	
	Newton	Force (Lbs)	Newton	Force (Lbs)	Newton	Force (Lbs)	Newton	Force (Lbs)
Minimum	12.37	2.78	6.89	1.55	8.81	1.98	6.00	1.35
Maximum	14.41	3.24	8.41	1.89	10.45	2.35	7.43	1.67
Average	13.51	3.04	7.80	1.75	9.39	2.11	6.67	1.50
St Dev	0.59	0.13	0.52	0.12	0.55	0.12	0.45	0.10
Count	8	8	8	8	8	8	8	8

Mating-Unmating Durability Group (T1SD-10-28-GF-06.0 / S1SD-10-28-GF-06.00-L)

	Initial				After 25 Cycles			
	Mating		Unmating		Mating		Unmating	
	New tons	Force (Lbs)	New tons	Force (Lbs)	New tons	Force (Lbs)	New tons	Force (Lbs)
Minimum	10.94	2.46	6.63	1.49	10.63	2.39	6.58	1.48
Maximum	14.63	3.29	12.14	2.73	14.06	3.16	10.72	2.41
Average	13.39	3.01	8.56	1.93	12.47	2.80	8.31	1.87
St Dev	1.16	0.26	1.75	0.39	1.24	0.28	1.35	0.30
Count	8	8	8	8	8	8	8	8
	After 50 Cycles				After 75 Cycles			
	Mating		Unmating		Mating		Unmating	
	New tons	Force (Lbs)	New tons	Force (Lbs)	New tons	Force (Lbs)	New tons	Force (Lbs)
Minimum	9.56	2.15	6.63	1.49	9.39	2.11	7.07	1.59
Maximum	13.57	3.05	9.56	2.15	13.17	2.96	9.34	2.10
Average	11.69	2.63	8.22	1.85	11.66	2.62	8.33	1.87
St Dev	1.44	0.32	1.00	0.22	1.41	0.32	0.83	0.19
Count	8	8	8	8	8	8	8	8
	After 100 Cycles				After Humidity			
	Mating		Unmating		Mating		Unmating	
	New tons	Force (Lbs)	New tons	Force (Lbs)	New tons	Force (Lbs)	New tons	Force (Lbs)
Minimum	9.56	2.15	7.47	1.68	7.03	1.58	5.03	1.13
Maximum	13.39	3.01	9.74	2.19	10.01	2.25	7.83	1.76
Average	11.74	2.64	8.70	1.96	8.18	1.84	6.31	1.42
St Dev	1.27	0.28	0.83	0.19	0.98	0.22	0.97	0.22
Count	8	8	8	8	8	8	8	8

DATA SUMMARIES Continued**Mating-Unmating Basic (T1SD-02-28-GF-06.0 / S1SD-02-28-GF-06.00-L)**

	Initial				After 25 Cycles						
	Mating		Unmating		Mating		Unmating				
	New tons	Force (Lbs)	New tons	Force (Lbs)	New tons	Force (Lbs)	New tons	Force (Lbs)			
Minimum	4.31	0.97	1.60	0.36	3.11	0.70	1.51	0.34			
Maximum	5.47	1.23	2.40	0.54	4.71	1.06	1.87	0.42			
Average	4.83	1.09	1.92	0.43	3.76	0.85	1.68	0.38			
St Dev	0.45	0.10	0.28	0.06	0.52	0.12	0.13	0.03			
Count	8	8	8	8	8	8	8	8			
After 50 Cycles				After 75 Cycles							
	Mating		Unmating		Mating		Unmating				
	New tons	Force (Lbs)	New tons	Force (Lbs)	New tons	Force (Lbs)	New tons	Force (Lbs)			
	Minimum	2.85	0.64	1.51	0.34	2.80	0.63	1.65	0.37		
Maximum	4.14	0.93	3.25	0.73	3.78	0.85	2.18	0.49			
Average	3.17	0.71	1.95	0.44	3.17	0.71	1.88	0.42			
St Dev	0.41	0.09	0.55	0.12	0.34	0.08	0.19	0.04			
Count	8	8	8	8	8	8	8	8			
After 100 Cycles											
	Mating		Unmating								
	New tons	Force (Lbs)	New tons	Force (Lbs)							
	Minimum	2.80	0.63	1.73	0.39						
Maximum	3.87	0.87	2.18	0.49							
Average	3.14	0.71	1.96	0.44							
St Dev	0.32	0.07	0.17	0.04							
Count	8	8	8	8							

DATA SUMMARIES Continued**Cable Pull force****0.033 Panel Thickness****0° Pull**

		Force (lbs)
Minimum		7.98
Maximum		9.79
Average		8.88

90° Pull

		Force (lbs)
Minimum		14.33
Maximum		16.54
Average		15.39

0.090 Panel Thickness**0° Pull**

		Force (lbs)
Minimum		8.56
Maximum		10.65
Average		9.33

90° Pull

		Force (lbs)
Minimum		15.35
Maximum		17.78
Average		16.51

DATA SUMMARIES Continued**INSULATION RESISTANCE (IR):**

		Pin to Pin		
		Mated	Unmated	Unmated
Minimum		T1SD/S1SD	T1SD	S1SD
Initial		45000	45000	45000
Thermal		45000	45000	45000
Humidity		45000	45000	45000

		Row to Row		
		Mated	Unmated	Unmated
Minimum		T1SD/S1SD	T1SD	S1SD
Initial		45000	45000	45000
Thermal		45000	45000	45000
Humidity		45000	45000	45000

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

Voltage Rating Summary	
Minimum	T1SD/S1SD
Break Down Voltage	901
Test Voltage	680
Working Voltage	225

Pin to Pin	
Initial Test Voltage	Passed
After Thermal Test Voltage	Passed
After Humidity Test Voltage	Passed

Row to Row	
Initial Test Voltage	Passed
After Thermal Test Voltage	Passed
After Humidity Test Voltage	Passed

DATA SUMMARIES Continued**Cable Flex test****INSULATION RESISTANCE (IR):**

Pin to Pin	
Mated	
Minimum	
Initial	45000
After 500 Flex Cycles	45000

Row to Row	
Mated	
Minimum	
Initial	45000
After 500 Flex Cycles	45000

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

Voltage Rating Summary	
Minimum	
Break Down Voltage	901
Test Voltage	680
Working Voltage	225

Pin to Pin	
Initial Test Voltage	Passed
After 500 Flex Cycles Test Voltage	Passed

Row to Row	
Initial Test Voltage	Passed
After 500 Flex Cycles Test Voltage	Passed

DATA SUMMARIES Continued

LLCR Thermal Aging Group

- 1) A total of 160 points were measured.
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. $\leq +5.0$ mOhms: ----- Stable
 - b. $+5.1$ to $+10.0$ mOhms: ----- Minor
 - c. $+10.1$ to $+15.0$ mOhms: ----- Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: ----- Marginal
 - e. $+50.1$ to $+2000$ mOhms ----- Unstable
 - f. $>+2000$ mOhms: ----- Open Failure

		LLCR Measurement Summaries by Pin Type			
		12/27/2018	1/8/2019	Delta	Delta
mOhm values	Room Temp (Deg C)	23	23		
	Rel Humidity (%)	56	56		
	Technician	Peter Chen	Peter Chen		
	Actual	Delta	Delta	Delta	
	Initial	Thermal			
	Pin Type 1: Signal				
	Average	70.88	2.23		
	St. Dev.	0.88	1.79		
	Min	68.41	0.01		
	Max	73.73	8.24		
Summary Count		160	160		
Total Count		160	160		

LLCR Delta Count by Category						
mOhms	Stable	Minor	Acceptable	Marginal	Unstable	Open
	≤ 5	$>5 \text{ & } \leq 10$	$>10 \text{ & } \leq 15$	$>15 \text{ & } \leq 50$	$>50 \text{ & } \leq 1000$	>1000
Thermal	150	10	0	0	0	0

DATA SUMMARIES Continued

LLCR Mating/Unmating Durability Group

- 1). A total of 160 points were measured.
- 2). EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3). A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4). The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. <= +5.0 mOhms: ----- Stable
 - b. +5.1 to +10.0 mOhms: ----- Minor
 - c. +10.1 to +15.0 mOhms: ----- Acceptable
 - d. +15.1 to +50.0 mOhms: ----- Marginal
 - e. +50.1 to +2000 mOhms ----- Unstable
 - f. > +2000 mOhms: ----- Open Failure

		LLCR Measurement Summaries by Pin Type			
		12/24/2018	12/26/2018	1/3/2019	1/24/2019
mOhm values	Room Temp (Deg C)	23	23	23	23
	Rel Humidity (%)	56	54	56	56
Technician	Peter Chen	Peter Chen	Peter Chen	Peter Chen	Peter Chen
	Actual	Delta 100 Cycles	Delta	Delta	
Average	Initial	Initial	Therm Shck	Humidity	
		Pin Type 1: Signal			
St. Dev.	70.94	0.64	2.29	3.58	
	0.99	0.72	1.98	1.91	
Min	69.15	0.00	0.00	0.63	
	76.65	6.13	9.27	8.63	
Summary Count	160	160	160	160	
	Total Count	160	160	160	160

LLCR Delta Count by Category						
mOhms	Stable	Minor	Acceptable	Marginal	Unstable	Open
	<=5	>5 & <=10	>10 & <=15	>15 & <=50	>50 & <=1000	>1000
100 Cycles	159	1	0	0	0	0
Therm Shck	142	18	0	0	0	0
Humidity	123	37	0	0	0	0

DATA SUMMARIES Continued

LLCR Gas Tight Group

- 1) A total of 160 points were measured.
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. $\leq +5.0$ mOhms: ----- Stable
 - b. $+5.1$ to $+10.0$ mOhms: ----- Minor
 - c. $+10.1$ to $+15.0$ mOhms: ----- Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: ----- Marginal
 - e. $+50.1$ to $+2000$ mOhms: ----- Unstable
 - f. $>+2000$ mOhms: ----- Open Failure

		LLCR Measurement Summaries by Pin Type			
		1/9/2019	1/10/2019	Delta	Delta
mOhm values	Room Temp (Deg C)	24	23		
	Rel Humidity (%)	65	56		
	Technician	Peter Chen	Peter Chen		
	Actual Initial	Delta Acid Vapor		Delta	Delta
Pin Type 1: Signal					
Summary Count	Average	72.73	1.61		
	St. Dev.	1.26	1.41		
	Min	70.27	0.00		
	Max	76.93	6.42		
	Total Count	160	160		
	Total Count	160	160		

LLCR Delta Count by Category						
mOhms	Stable	Minor	Acceptable	Marginal	Unstable	Open
	≤ 5	$>5 \text{ & } \leq 10$	$>10 \text{ & } \leq 15$	$>15 \text{ & } \leq 50$	$>50 \text{ & } \leq 1000$	>1000
Acid Vapor	152	8	0	0	0	0

DATA SUMMARIES Continued

LLCR Shock & Vibration Group

- 1) A total of 160 points were measured.
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. $\leq +5.0$ mOhms: ----- Stable
 - b. $+5.1$ to $+10.0$ mOhms: ----- Minor
 - c. $+10.1$ to $+15.0$ mOhms: ----- Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: ----- Marginal
 - e. $+50.1$ to $+2000$ mOhms ----- Unstable
 - f. $>+2000$ mOhms: ----- Open Failure

		LLCR Measurement Summaries by Pin Type			
mOhm values	Date	5/28/2019	5/30/2019		
	Room Temp (Deg C)	23	22		
	Rel Humidity (%)	50	45		
	Technician	Tony Wagoner	Tony Wagoner		
	Actual	Delta		Delta	Delta
	Initial	Shock-Vib			
	Pin Type 1: Signal				
	Average	100.10	0.51		
	St. Dev.	1.02	0.50		
	Min	98.14	0.00		
	Max	102.60	3.49		
	Summary Count	160	160		
	Total Count	160	160		

LLCR Delta Count by Category						
mOhms	Stable	Minor	Acceptable	Marginal	Unstable	Open
	≤ 5	$>5 \text{ & } \leq 10$	$>10 \text{ & } \leq 15$	$>15 \text{ & } \leq 50$	$>50 \text{ & } \leq 1000$	>1000
Shock-Vib	160	0	0	0	0	0

Nanosecond Event Detection:

Shock and Vibration Event Detection Summary	
Contacts tested	60
Test Condition	C, 100g's, 6ms, Half-Sine
Shock Events	0
Test Condition	V-B, 7.56 rms g
Vibration Events	0
Total Events	0

EQUIPMENT AND CALIBRATION SCHEDULES

Equipment #: HZ-HPM-01

Description: IR/DWV Tester

Manufacturer: AN9636H

Model: AN9636H

Serial #: 089601091

Accuracy: Last Cal: 2019-7-6, Next Cal: 2020-7-5

Equipment #: HZ-TCT-01

Description: Normal force analyzer

Manufacturer: Mecmesin Multitester

Model: Mecmesin Multitester 2.5-i

Serial #: 08-1049-04

Accuracy: Last Cal: 2019-4-28, Next Cal: 2020-4-27

Equipment #: HZ-OV-01

Description: Oven

Manufacturer: Huida

Model: CS101-1E

Serial #: CS101-1E-B

Accuracy: Last Cal: 2019-12-14, Next Cal: 2020-12-13

Equipment #: HZ-THC-01

Description: Humidity transmitter

Manufacturer: Thermtron

Model: HMM30C

Serial #: D0240037

Accuracy: Last Cal: 2019-3-3, Next Cal: 2020-3-2

Equipment #: HZ-TSC-01

Description: Thermal Shock transmitter

Manufacturer: CSZ

Model: 10-VT14994

Serial #: VTS-3-6-6-SC/AC

Accuracy: Last Cal: 2019-11-1, Next Cal: 2020-11-1

Equipment #: HZ-MO-05

Description: Micro-ohmmeter

Manufacturer: Keithley

Model: 3706

Serial #: 297288

Accuracy: Last Cal: 2019-8-6, Next Cal: 2020-8-5

EQUIPMENT AND CALIBRATION SCHEDULES

Equipment #: MO-02

Description: Multimeter /Data Acquisition System

Manufacturer: Keithley

Model: 2700

Serial #: 0780546

Accuracy: Last Cal: 2019-6-16, Next Cal: 2020-6-16

Equipment #: PS-01

Description: Power Supply

Manufacturer: Hewlett Packard

Model: 6033A

Serial #: 3329A-07330

Accuracy: Last Cal: 2019-6-12, Next Cal: 2020-6-12

Equipment #: PS-02

Description: Power Supply

Manufacturer: Hewlett Packard

Model: 6033A

Serial #: 2847A-04167

Accuracy: Last Cal: 2019-6-12, Next Cal: 2020-6-12

Equipment #: SVC-01

Description: Shock & Vibration Table

Manufacturer: Data Physics

Model: LE-DSA-10-20K

Serial #: 10037

Accuracy: See Manual

... Last Cal: 2019-11-31, Next Cal: 2020-11-31

Equipment #: ACLM-01

Description: Accelerometer

Manufacturer: PCB Piezotronics

Model: 352C03

Serial #: 115819

Accuracy: See Manual

... Last Cal: 2019-07-9, Next Cal: 2020-7-9

Equipment #: ED-03

Description: Event Detector

Manufacturer: Analysis Tech

Model: 32EHD

Serial #: 1100604

Accuracy: See Manual

... Last Cal: 2019-06-4, Next Cal: 2020-06-4