

Project Number: Design Qualification Test Report	Tracking Code: 2350899_Report_Rev_1
Requested by: Tim Clare	Date: 6/22/2020
Part #: 185-J-P-EP-ST-CM-X /RF086-18SP-505050-0304	Tech: Tony Wagoner
Part description: 185 / RF086	Qty to test: 20
Test Start: 04/10/2020	Test Completed: 04/25/2020

DESIGN QUALIFICATION TEST REPORT

185/ RF086
185-J-P-EP-ST-CM-X /RF086-18SP-505050-0304

REVISION HISTORY

DATA	REV.NUM.	DESCRIPTION	ENG
6/22/2020	1	Initial Issue	PC

CERTIFICATION

All instruments and measuring equipment were calibrated to National Institute for Standards and Technology (NIST) traceable standards according to ISO 10012-1 and ANSI/NCSL 2540-1, as applicable.

All contents contained herein are the property of Samtec. No portion of this report, in part or in full shall be reproduced without prior written approval of Samtec.

SCOPE

To perform the following tests: Design Qualification test. Please see test plan.

APPLICABLE DOCUMENTS

Standards: EIA Publication 364

TEST SAMPLES AND PREPARATION

- 1) All materials were manufactured in accordance with the applicable product specification.
- 2) All test samples were identified and encoded to maintain traceability throughout the test sequences.
- 3) Either an automated cleaning procedure or an ultrasonic cleaning procedure may be used.
- 4) The automated procedure is used with aqueous compatible soldering materials.
- 5) Parts not intended for testing LLCR and DWV/IR are visually inspected and cleaned if necessary.
- 6) Any additional preparation will be noted in the individual test sequences.
- 7) Solder Information: Lead free
- 8) Samtec Test PCBs used: PCB-110419-TST-XX.

FLOWCHARTS

Mating/Unmating/Durability

Group 1

185-J-P-EP-ST-CM-X

RF086-18SP-505050-0304

8 Assemblies

Step Description

1. Contact Gaps

*Note: A. Measure and record Initial gap, (distance) of closure between the fingers of the socket contact.
B. Measure and record the interface dimension from the reference plane to the socket contact. Should not exceed .000" to -.003".*

2. LLCR (1)

3. Cycles

Quantity = 100

Note: Torque to 8 to 10 in/lbs.

4. Visual Inspection

Note: Inspect for any damage, shake out or blow out any debris. Do not use any chemicals.

5. Cycles

Quantity = 100

Note: Torque to 8 to 10 in/lbs.

6. Visual Inspection

Note: Inspect for any damage, shake out or blow out any debris. Do not use any chemicals.

7. Cycles

Quantity = 100

Note: Torque to 8 to 10 in/lbs.

8. Visual Inspection

Note: Inspect for any damage, shake out or blow out any debris. Do not use any chemicals.

9. Cycles

Quantity = 100

Note: Torque to 8 to 10 in/lbs.

10. Visual Inspection

Note: Inspect for any damage, shake out or blow out any debris. Do not use any chemicals.

11. Cycles

Quantity = 100

Note: Torque to 8 to 10 in/lbs.

12. Visual Inspection

Note: Inspect for any damage, shake out or blow out any debris. Do not use any chemicals.

13. Contact Gaps

*Note: A. Measure and record Initial gap, (distance) of closure between the fingers of the socket contact.
B. Measure and record the interface dimension from the reference plane to the socket contact, should not exceed .000" to -.003".*

14. LLCR (1)

Max Delta = 15 mOhm

15. Thermal Shock (2) - Non Standard

16. LLCR (1)

Max Delta = 15 mOhm

1) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max

Test Current = 100 mA Max

2) Thermal Shock = Other

Exposure Time at Temperature Extremes = 1/2 Hour

Method A, Test Condition = 1 (-55°C to +125°C)

Test Duration = A-3 (10 Cycles)

FLOWCHARTS Continued

IR/DWV

Pin-to-Closest Metallic Hardware

<u>Group 1</u> 185-J-P-EP-ST-CM-X RF086-18SP-505050-0304 2 Assemblies	<u>Group 2</u> 185-J-P-EP-ST-CM-X 2 Assemblies	<u>Group 3</u> RF086-18SP-505050-0304 2 Assemblies	<u>Group 4</u> 185-J-P-EP-ST-CM-X RF086-18SP-505050-0304 2 Assemblies
Step	Description	Step	Description
1.	DWV Breakdown (2)	1.	DWV Breakdown (2)
			1. IR (3) 2. DWV at Test Voltage (1) 3. Thermal Shock (4) 4. IR (3) 5. DWV at Test Voltage (1)

(1) DWV at Test Voltage = EIA-364-20

Test Condition = 1 (Sea Level)

DWV test voltage is equal to 75% of the lowest breakdown voltage

Test voltage applied for 60 seconds

(2) DWV Breakdown = EIA-364-20

Test Condition = 1 (Sea Level)

DWV test voltage is equal to 75% of the lowest breakdown voltage

Test voltage applied for 60 seconds

(3) IR = EIA-364-21

Test Condition = 500 Vdc, 2 Minutes Max

(4) Thermal Shock = FIA-364-32

Exposure Time at Temperature Extremes = 1/2 Hour

Exposure Time at Temperature Extremes = 1/2

Socket Contact Retention

Group 1

Group 1

10 Assemblies

Step Description

SECRET CONTACT RETENTION

Apply force to the center socket contact until captivation failure, (push contact from flange side), record force

ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

THERMAL SHOCK Durability:

- 1) Other request, *Thermal Shock (Temperature Cycling) Test Procedure for Electrical Connectors*.
- 2) Test Condition 1: -55°C to +125°C
- 3) Test Time: ½ hour dwell at each temperature extreme
- 4) Number of Cycles: 10
- 5) All test samples are pre-conditioned at ambient.
- 6) All test samples are exposed to environmental stressing in the mated condition.

THERMAL SHOCK IR_DWV:

- 7) EIA-364-32, *Thermal Shock (Temperature Cycling) Test Procedure for Electrical Connectors*.
- 8) Test Condition 1: -55°C to +85°C
- 9) Test Time: ½ hour dwell at each temperature extreme
- 10) Number of Cycles: 100
- 11) All test samples are pre-conditioned at ambient.
- 12) All test samples are exposed to environmental stressing in the mated condition.

LLCR:

- 1) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
 - a. <= +5.0 mOhms: -----Stable
 - b. +5.1 to +10.0 mOhms: -----Minor
 - c. +10.1 to +15.0 mOhms: -----Acceptable
 - d. +15.1 to +50.0 mOhms: -----Marginal
 - e. +50.1 to +1000 mOhms: -----Unstable
 - f. >+1000 mOhms: -----Open Failure

INSULATION RESISTANCE (IR):

To determine the resistance of insulation materials to leakage of current through or on the surface of these materials when a DC potential is applied.

- 1) PROCEDURE:
 - a. Reference document: EIA-364-21, *Insulation Resistance Test Procedure for Electrical Connectors*.
 - b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Electrification Time 2.0 minutes
 - iii. Test Voltage (500 VDC) corresponds to calibration settings for measuring resistances.
- 2) MEASUREMENTS:
- 3) When the specified test voltage is applied (VDC), the insulation resistance shall not be less than 1000 megohms.

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

To determine if the sockets can operate at its rated voltage and withstand momentary over potentials due to switching, surges, and other similar phenomenon. Separate samples are used to evaluate the effect of environmental stresses so not to influence the readings from arcing that occurs during the measurement process.

1) PROCEDURE:

- a. Reference document: EIA-364-20, *Withstanding Voltage Test Procedure for Electrical Connectors*.
- b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Barometric Test Condition 1
 - iii. Rate of Application 500 V/Sec
 - iv. Test Voltage (VAC) until breakdown occurs

2) MEASUREMENTS/CALCULATIONS

- a. The dielectric withstanding voltage shall be recorded as 750VAC.

The working voltage shall be recorded as one-third (1/3) of the dielectric withstanding voltage (one-fourth of the breakdown voltage).

Socket Contact Retention

Apply force to the center socket contact until captativation failure,(push contact from flange side),record force.

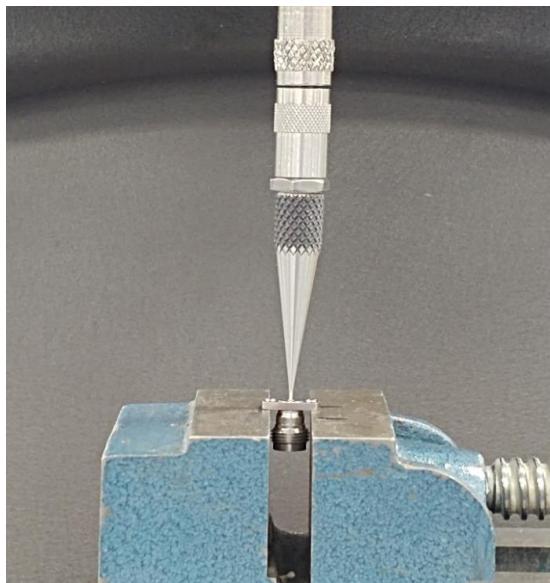


Fig 1

RESULTS

Socket Contact Retention

- Initial
 - Min ----- 23.68 Lbs
 - Max ----- 27.04 Lbs

Insulation Resistance minimums, IR

- Initial
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed
- Thermal Shock
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed

Dielectric Withstanding Voltage minimums, DWV

- Minimums
 - Breakdown Voltage ----- 880 VAC
 - Test Voltage ----- 665 VAC
 - Working Voltage ----- 220 VAC
- Initial DWV ----- Passed
- Thermal DWV ----- Passed

LLCR Mating/Unmating Durability Group (16 LLCR test points)

Signal Pin:

- Initial ----- 26.49 mOhms Max

Ground Pin:

- Initial ----- 10.30 mOhms Max
- Durability, 500 Cycles
 - <= +5.0 mOhms ----- 16 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +1000 mOhms ----- 0 Points ----- Unstable
 - >+1000 mOhms ----- 0 Points ----- Open Failure
- Thermal Shock
 - <= +5.0 mOhms ----- 16 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +1000 mOhms ----- 0 Points ----- Unstable
 - >+1000 mOhms ----- 0 Points ----- Open Failure

DATA SUMMARIES

Socket Contact Retention

Force (lbs)	
Minimum	23.68
Maximum	27. 04
Average	25. 40

INSULATION RESISTANCE (IR):

Pin to Closest Metallic Hardware			
	Mated	Unmated	Unmated
Minimum	185/RF086	185	RF086
Initial	45000	45000	45000
Thermal	45000	45000	45000

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

Voltage Rating Summary	
Minimum	185/RF086
Break Down Voltage	880
Test Voltage	665
Working Voltage	220

Pin to Closest Metallic Hardware	
Initial Test Voltage	Passed
After Thermal Test Voltage	Passed

DATA SUMMARIES Continued

LLCR Mating/Unmating Durability Group

- 1). A total of 16 points were measured.
- 2). EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3). A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4). The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. <= +5.0 mOhms: -----Stable
 - b. +5.1 to +10.0 mOhms: -----Minor
 - c. +10.1 to +15.0 mOhms: -----Acceptable
 - d. +15.1 to +50.0 mOhms: -----Marginal
 - e. +50.1 to +1000 mOhms: -----Unstable
 - f. > +1000 mOhms: -----Open Failure

		LLCR Measurement Summaries by Pin Type			
		4/16/2020	4/24/2020	4/25/2020	
Date	Room Temp (Deg C)	22	23	22	
	Rel Humidity (%)	25	39	40	
mOhm values	Technician	Tony Wagoner	Tony Wagoner	Tony Wagoner	
	Actual Initial	Delta 500 Cycles	Delta Therm Shck	Delta	
Pin Type 1: Signal					
Average	25.39	0.57	2.16		
	St. Dev.	0.46	0.43	1.18	
Min	25.04	0.02	0.38		
	Max	26.49	1.35	3.71	
Summary Count	8	8	8		
	Total Count	8	8	8	
Pin Type 2: Ground					
Average	10.15	1.90	0.42		
	St. Dev.	0.13	0.45	0.22	
Min	9.84	1.49	0.07		
	Max	10.30	2.69	0.64	
Summary Count	8	8	8		
	Total Count	8	8	8	

LLCR Delta Count by Category						
mOhms	Stable	Minor	Acceptable	Marginal	Unstable	Open
500 Cycles	16	0	0	0	0	0
Therm Shck	16	0	0	0	0	0

EQUIPMENT AND CALIBRATION SCHEDULES

Equipment #: MO-11

Description: Switch/Multimeter

Manufacturer: Keithley

Model: 3706

Serial #: 120169

Accuracy: See Manual

... Last Cal: 09/11/2019, Next Cal: 09/11/2020

Equipment #: TSC-01

Description: Vertical Thermal Shock Chamber

Manufacturer: Cincinnati Sub Zero

Model: VTS-3-6-6-SC/AC

Serial #: 10-VT14993

Accuracy: See Manual

... Last Cal: 06/30/2019, Next Cal: 06/30/2020

Equipment #: HPT-01

Description: Hipot Safety Tester

Manufacturer: Vitrek

Model: V73

Serial #: 019808

Accuracy:

... Last Cal: 05/15/2020, Next Cal: 05/15/2021