

Project Number: Direct Liquid Cooling Qualification Test Report	Tracking Code: 2356820_Report_Rev_1
Requested by: Donnie Baldwin	Date: 2/22/2022
Part #: SFM-150-02-L-D/TFM-150-02-L-D	
Part description: SFM/TFM	Tech: Tony Wagoner
Test Start: 6/1/2020	Test Completed: 9/2/2020

DIRECT LIQUID COOLING QUALIFICATION TEST REPORT SFM/TFM SFM-150-02-L-D/TFM-150-02-L-D

Tracking Code: 2356820_Report_Rev_1	Part #: SFM-150-02-L-D/TFM-150-02-L-D						
Part description: SFM/TFM							

DATA	REV.NUM.	DESCRIPTION	ENG
2/22/2022	1	Initial Issue	КН

CERTIFICATION

All instruments and measuring equipment were calibrated to National Institute for Standards and Technology (NIST) traceable standards according to ISO 10012-1 and ANSI/NCSL 2540-1, as applicable.

All contents contained herein are the property of Samtec. No portion of this report, in part or in full shall be reproduced without prior written approval of Samtec.

SCOPE

To perform the following tests: Direct Liquid Cooling Qualification test. Please see test plan.

APPLICABLE DOCUMENTS

Standards: EIA Publication 364

TEST SAMPLES AND PREPARATION

- 1) All materials were manufactured in accordance with the applicable product specification.
- 2) All test samples were identified and encoded to maintain traceability throughout the test sequences.
- 3) After soldering, the parts to be used for LLCR and DWV/IR testing were cleaned according to CO-SC-WI-3029.
- 4) Either an automated cleaning procedure or an ultrasonic cleaning procedure may be used.
- 5) The automated procedure is used with aqueous compatible soldering materials.
- 6) Parts not intended for testing LLCR, and DWV/IR are visually inspected and cleaned if necessary.
- 7) Any additional preparation will be noted in the individual test sequences.
- 8) Solder Information: Lead Free
- 9) Samtec Test PCBs used: PCB-110757-TST/ PCB-110758-TST

Mating/Unmating/Durability

Step

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Group 1		Group 2		Group 3
SFM-150-02-L-D		SFM-150-02-L-D		SFM-150-02-L-D
TFM-150-02-L-D		TFM-150-02-L-D		TFM-150-02-L-D
8 Assemblies		8 Assemblies		8 Assemblies
Control In Air		ElectroCool EC-130		3M Fluorinert FC-43
Description	Step	Description	Step	Description
Contact Gaps	1.	LLCR (2)	1.	LLCR (2)
LLCR (2)	2.	Mating/Unmating Force (3)	2.	Mating/Unmating Force (3)
Mating/Unmating Force (3) Cycles	3.	Cycles Quantity = 50 Cycles	3.	Cycles Quantity = 50 Cycles
Quantity = 25 Cycles	4.	Mating/Unmating Force (3)	4.	Mating/Unmating Force (3)
Mating/Unmating Force (3) Cycles	5.	LLCR (2) Max Delta = 15 mOhm	5.	LLCR (2) Max Delta = 15 mOhm
Quantity = 25 Cycles	6.	Fluid Exposure	6.	Fluid Exposure
Mating/Unmating Force (3)		Note: Place parts in container with		Note: Place parts in container with
Cycles		ElectroCool EC-130 fluid. Allow samples to soak for 30 minutes		3M Fluorinert FC-43 fluid. Container MUST BE sealed before
Quantity = 25 Cycles		before proceeding to next step.		proceeding. Allow samples to
Mating/Unmating Force (3)	7.	LLCR (2)		soak for 30 minutes before
Cycles		Max Delta = 15 mOhm		proceeding to next step.
Quantity = 25 Cycles Mating/Unmating Force (3)		Note: Run while in ElectroCool EC-	7.	LLCR (2) Max Delta = 15 mOhm
Contact Gaps	8.	130 fluid Thermal Age (4)		Nax Delta = 15 mOnm Note: Run while in 3M Fluorinert
LLCR (2)	0.	Temperature = 50°C		FC-43 fluid
Max Delta = 15 mOhm		Time = 250 hrs	8.	Thermal Age (4)
Thermal Shock (5)	9.	LLCR (2) Max Delta = 15 mOhm		Temperature = 23°C Time = 250 hrs
LLCR (2)		Note: Run while in ElectroCool EC-		Note: Do not expose 3M Fluorinert
Max Delta = 15 mOhm		130 fluid after returning to Room		FC-43 to heat. Leave the containe
Humidity (1)		Temp.		in the Fume Hood for the exposure duration.
LLCR (2) Max Delta = 15 mOhm	10.	Remove Samples From Fluid	9.	LLCR (2)
Max Delta = 15 monm Mating/Unmating Force (3)		Note: Place samples over a pan and allow fluid to drain, until dry	5.	Max Delta = 15 mOhm
Macing/ Onnacing Force (3)		in the fume hood		Note: Run while in 3M Fluorinert
	11.	LLCR (2)	10	FC-43 fluid Romovo Somplos From Eluid
		Max Delta = 15 mOhm	10.	Remove Samples From Fluid Note: Place samples over a pan
	12.	Mating/Unmating Force (3)		and allow fluid to drain, until dry
	13.	Cycles Quantity = 50 Cycles		in the fume hood
	14.	Mating/Unmating Force (3)	11.	LLCR (2)
	15.	LLCR (2)		Max Delta = 15 mOhm
		Max Delta = 15 mOhm	12.	Mating/Unmating Force (3)
			13.	Cycles Quantity = 50 Cycles
			14.	Mating/Unmating Force (3)
			15.	LLCR (2) Max Delta = 15 mOhm

(1) Humidity = El.

Test Method = III (+25°C to +65°C @ 90% RH to 98% RH) Test Exceptions: ambient pre-condition and delete steps 7a and 7b

(2) LLCR = EIA-364-23 Open Circuit Voltage = 20 mV Max

Test Current = 100 mA Max

(3) Mating/Unmating Force = EIA-364-13 (4) Thermal Age = EIA-364-17

Test Condition = 4 (105°C)

Time Condition = B (250 Hours)

(5) Thermal Shock = EIA-364-32

Exposure Time at Temperature Extremes = 1/2 Hour Method A, Test Condition = I (-55°C to +85°C) Test Duration = A-3 (100 Cycles)

in-to-l	<u>Group 1</u> SFM-150-02-L-D TFM-150-02-L-D 2 Assemblies Control In Air		<u>Group 2</u> SFM-150-02-L-D TFM-150-02-L-D 2 Assemblies Control In Air		<u>Group 3</u> TFM-150-02-L-D 2 Assemblies Control In Air		<u>Group 4</u> SFM-150-02-L-D TFM-150-02-L-D 2 Assemblies Control In Air
Step 1.	Description DWV Breakdown (2)	Step 1.	Description DWV Breakdown (2)	Step 1.	Description DWV Breakdown (2)	Step 1. 2. 3. 4. 5. 6. 7. 8.	Description IR (4) DWV at Test Voltage (1) Thermal Shock (6) IR (4) DWV at Test Voltage (1) Humidity (3) IR (4) DWV at Test Voltage (1)
	<u>Group 5</u> SFM-150-02-L-D TFM-150-02-L-D 2 Assemblies ElectroCool EC-130		<u>Group 6</u> SFM-150-02-L-D TFM-150-02-L-D 2 Assemblies ElectroCool EC-130		<u>Group 7</u> TFM-150-02-L-D 2 Assemblies ElectroCool EC-130		<u>Group 8</u> SFM-150-02-L-D TFM-150-02-L-D 2 Assemblies ElectroCool EC-130
Step 1.	Description Fluid Exposure Note: Place parts in container with ElectroCool EC-130 fluid. Allow samples to soak for 30 minutes before proceeding to next step.	Step 1.	Description Fluid Exposure Note: Place parts in container with ElectroCool EC-130 fluid. Allow samples to soak for 30 minutes before proceeding to next step.	Step 1.	Description Fluid Eposure Note: Place parts in container with ElectroCool EC-130 fluid. Allow samples to soak for 30 minutes before proceeding to next step.	Step 1.	Description Fluid Exposure Note: Place parts in container with ElectroCool EC-130 fluid. Allow samples to soak for 30 minutes before proceeding to next step.
2.	DWV Breakdown (2)	2.	DWV Breakdown (2)	2.	DWV Breakdown (2)	2. 3. 4. 5.	IR (4) Note: Run while in ElectroCool EC- 130 fluid. DWV at Test Voltage (1) Note: Run while in ElectroCool EC- 130 fluid. Thermal Age (5) Temperature = 50°C Time = 250 hrs IR (4) Note: Run while in ElectroCool EC- 130 fluid after returning to Room Temp. DWV at Test Voltage (1) Note: Run while in ElectroCool EC- 130 fluid after returning to Room Temp.

Part #: SFM-150-02-L-D/TFM-150-02-L-D

<u>Row-to-Row</u>							
<u>Group 9</u> SFM-150-02-L-D TFM-150-02-L-D 2 Assemblies Control In Air	<u>Group 10</u> SFM-150-02-L-D TFM-150-02-L-D 2 Assemblies Control In Air		<u>Group 11</u> TFM-150-02-L-D 2 Assemblies Control In Air		<u>Group 12</u> SFM-150-02-L-D TFM-150-02-L-D 2 Assemblies Control In Air		
Step Description 1. DWV Breakdown (2)	Step Description 1. DWV Breakdown (2)	Step 1.	Description DWV Breakdown (2)	Step 1. 2. 3. 4. 5. 6. 7. 8.	Description IR (4) DWV at Test Voltage (1) Thermal Shock (6) IR (4) DWV at Test Voltage (1) Humidity (3) IR (4) DWV at Test Voltage (1)		
<u>Group 13</u> SFM-150-02-L-D TFM-150-02-L-D 2 Assemblies ElectroCool EC-130	<u>Group 14</u> SFM-150-02-L-D TFM-150-02-L-D 2 Assemblies ElectroCool EC-130		<u>Group 15</u> TFM-150-02-L-D 2 Assemblies ElectroCool EC-130		<u>Group 16</u> SFM-150-02-L-D TFM-150-02-L-D 2 Assemblies ElectroCool EC-130		
 Step Description Fluid Exposure Note: Place parts in container with ElectroCool EC-130 fluid. Allow samples to soak for 30 minutes before proceeding to next step. DWV Breakdown (2) 	 Step Description 1. Fluid Exposure Note: Place parts in container with ElectroCool EC-130 fluid. Allow samples to soak for 30 minutes before proceeding to next step. 2. DWV Breakdown (2) 	Step 1. 2.	Description Fluid Eposure Note: Place parts in container with ElectroCool EC-130 fluid. Allow samples to soak for 30 minutes before proceeding to next step. DWV Breakdown (2)	Step 1. 2. 3. 4. 5. 6.	Description Fluid Exposure Note: Place parts in container with ElectroCool EC-130 fluid. Allow samples to soak for 30 minutes before proceeding to next step. IR (4) Note: Run while in ElectroCool EC- 130 fluid. DWV at Test Voltage (1) Note: Run while in ElectroCool EC- 130 fluid. Thermal Age (5) Temperature = 50°C Time = 250 hrs IR (4) Note: Run while in ElectroCool EC- 130 fluid ofter returning to Room Temp. DWV at Test Voltage (1) Note: Run while in ElectroCool EC- 130 fluid ofter returning to Room Temp.		
Test voltage applied for 60 seco (2) DWV Breakdown = EIA-364-20 Test Condition = 1 (Sea Level) DWV test voltage is equal to 75 Test voltage applied for 60 seco (3) Humidity = EIA-364-31 Test Condition = B (240 Hours) Test Method = III (+25°C to +65°	% of the lowest breakdown voltage nds						
 (4) IR = EIA-364-21 Test Condition = 500 Vdc, 2 Min (5) Thermal Age = EIA-364-17 Test Condition = 4 (105°C) Time Condition = B (250 Hours) (6) Thermal Shock = EIA-364-32 	utes Max						
(6) Thermal Shock = EIA-364-32 Exposure Time at Temperature I	Extremes = 1/2 Hour						

ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

THERMAL:

- 1) EIA-364-17, Temperature Life with or without Electrical Load Test Procedure for Electrical Connectors.
- 2) Test Condition at 105° C.
- 3) Test Time Condition B for 250 hours.
- 4) All test samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

THERMAL SHOCK:

- 1) EIA-364-32, Thermal Shock (Temperature Cycling) Test Procedure for Electrical Connectors.
- 2) Test Condition: -55° C to $+85^{\circ}$ C
- 3) Test Time: $\frac{1}{2}$ hour dwell at each temperature extreme
- 4) Number of Cycles: 100
- 5) All test samples are pre-conditioned at ambient.
- 6) All test samples are exposed to environmental stressing in the mated condition.

HUMIDITY:

- 1) Reference document: EIA-364-31, Humidity Test Procedure for Electrical Connectors.
- 2) Test Condition B, 240 Hours.
- 3) Method III, $+25^{\circ}$ C to $+65^{\circ}$ C, 90% to 98% Relative Humidity excluding sub-cycles 7a and 7b.
- 4) All samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

MATING/UNMATING:

- 1) Reference document: EIA-364-13, Mating and Unmating Forces Test Procedure for Electrical Connectors.
- 2) The full insertion position was to within 0.003" to 0.004" of the plug bottoming out in the receptacle to prevent damage to the system under test.
- 3) One of the mating parts is secured to a floating X-Y table to prevent damage during cycling.

Tracking Code: 2356820_Report_Rev_1	Part #: SFM-150-02-L-D/TFM-150-02-L-D

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes

TEMPERATURE RISE (Current Carrying Capacity, CCC):

- 1) EIA-364-70, Temperature Rise versus Current Test Procedure for Electrical Connectors and Sockets.
- 2) When current passes through a contact, the temperature of the contact increases as a result of I^2R (resistive) heating.
- 3) The number of contacts being investigated plays a significant part in power dissipation and therefore temperature rise.
- 4) The size of the temperature probe can affect the measured temperature.
- 5) Copper traces on PC boards will contribute to temperature rise:
 - a. Self heating (resistive)
 - b. Reduction in heat sink capacity affecting the heated contacts
- 6) A de-rating curve, usually 20%, is calculated.
- 7) Calculated de-rated currents at four temperature points are reported:
 - a. Ambient
 - b. 85° C
 - c. 95° C
 - d. 115° C
- 8) Typically, neighboring contacts (in close proximity to maximize heat build up) are energized.
- 9) The thermocouple (or temperature measuring probe) will be positioned at a location to sense the maximum temperature in the vicinity of the heat generation area.
- 10) A computer program, TR 803.exe, ensures accurate stability for data acquisition.
- 11) Hook-up wire cross section is larger than the cross section of any connector leads/PC board traces, jumpers, etc.
- 12) Hook-up wire length is longer than the minimum specified in the referencing standard.

LLCR:

- 1) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 2) A computer program, LLCR 221.exe, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
 - a. <= +5.0 mOhms: -----Stable
 - b. +5.1 to +10.0 mOhms:-----Minor
 - c. +10.1 to +15.0 mOhms: -----Acceptable
 - d. +15.1 to +50.0 mOhms: -----Marginal
 - e. +50.1 to +1000 mOhms: -----Unstable
 - f. >+1000 mOhms:-----Open Failure

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes

INSULATION RESISTANCE (IR):

To determine the resistance of insulation materials to leakage of current through or on the surface of these materials when a DC potential is applied.

1) PROCEDURE:

- a. Reference document: EIA-364-21, Insulation Resistance Test Procedure for Electrical Connectors.
- b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Electrification Time 2.0 minutes
 - iii. Test Voltage (500 VDC) corresponds to calibration settings for measuring resistances.

2) MEASUREMENTS:

3) When the specified test voltage is applied (VDC), the insulation resistance shall not be less than 5000 megohms.

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

To determine if the sockets can operate at its rated voltage and withstand momentary over potentials due to switching, surges, and other similar phenomenon. Separate samples are used to evaluate the effect of environmental stresses so not to influence the readings from arcing that occurs during the measurement process.

1) PROCEDURE:

- a. Reference document: EIA-364-20, Withstanding Voltage Test Procedure for Electrical Connectors.
- b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Barometric Test Condition 1
 - iii. Rate of Application 500 V/Sec
 - iv. Test Voltage (VAC) until breakdown occurs

2) MEASUREMENTS/CALCULATIONS

- a. The breakdown voltage shall be measured and recorded.
- b. The dielectric withstanding voltage shall be recorded as 75% of the minimum breakdown voltage.
- c. The working voltage shall be recorded as one-third (1/3) of the dielectric withstanding voltage (one-fourth of the breakdown voltage).

RESULTS

Temperature Rise, CCC at a 20% de-rating

Control In Air

- CCC for a 30°C Temperature Rise------3.3 A per contact with 2 contacts (2x1) powered.
- CCC for a 30°C Temperature Rise-----2.8 A per contact with 4 contacts (2x2) powered.
- CCC for a 30°C Temperature Rise-----2.3 A per contact with 6 contacts (2x3) powered.
- CCC for a 30°C Temperature Rise-----2.1 A per contact with 8 contacts (2x4) powered.
- CCC for a 30°C Temperature Rise-----1.1 A per contact with 50 contacts (2x25) powered.

ElectroCool EC-130

- CCC for a 30°C Temperature Rise-----6.8 A per contact with 2 contacts (2x1) powered.
- CCC for a 30°C Temperature Rise-----5.9 A per contact with 4 contacts (2x2) powered.
- CCC for a 30°C Temperature Rise------5.3 A per contact with 6 contacts (2x3) powered.
- CCC for a 30°C Temperature Rise-----4.9 A per contact with 8 contacts (2x4) powered.
- CCC for a 30°C Temperature Rise-----4.4 A per contact with 50 contacts (2x25) powered.

	ntrol In		ability Group
Соі	ntrol In		······································
•		Air	
	Initial		
	0	Mating	
		•	Min14.40 lbs
		•	Max17.65 lbs
	0	Unmati	ng
		•	Min10.82 lbs
		•	Max15.78 lbs
•	After 2	5 Cycles	
	0	Mating	
		•	Min18.22 lbs
		•	Max22.27 lbs
	0	Unmati	
		•	Min16.02 lbs
		•	Max19.72 lbs
•	After 5	0 Cycles	
	0	Mating	
		•	Min20.42 lbs
		•	Max25.14 lbs
	0	Unmati	ng
		•	Min18.20 lbs
		•	Max22.09 lbs
•	After 7	5 Cycles	
	0	Mating	
		•	Min22.52 lbs
		•	Max26.75 lbs
	0	Unmati	ng
		•	Min18.75 lbs
		•	Max24.80 lbs
•	After 1	00 Cycles	5
	0	Mating	
		•	Min23.82 lbs
		•	Max27.85 lbs
	0	Unmati	ng
		•	Min19.27 lbs
		•	Max26.87 lbs
•	After H	Iumidity	
	0	Mating	
		•	Min20.72 lbs
		•	Max23.96 lbs
	0	Unmati	ng
		•	Min20.34 lbs
		•	Max22.86 lbs

		RESULTS Continued
ElectroCool	EC-130	
• Initial		
0	Mating	
	•	Min19.67 lbs
		Max22.31 lbs
0	Unmati	ng
		Min17.60 lbs
		Max21.32 lbs
• After 5	0 Cycles	
0	Mating	
	•	Min25.29 lbs
		Max28.68 lbs
0	Unmati	ng
		Min21.66 lbs
		Max24.92 lbs
• After T	hermal	
0	Mating	
		Min11.65 lbs
		Max14.48 lbs
0	Unmati	ng
	•	Min 9.41 lbs
	•	Max10.86 lbs
• After 5	0 Cycles	
0	Mating	
	•	Min14.69 lbs
		Max18.76 lbs
0	Unmati	ng
		Min12.81 lbs
	•	Max15.09 lbs

			RESULTS Continued
3M	Fluorin	ert FC-4	3
•	Initial		
	0	Mating	
		•	Min19.69 lbs
			Max22.45 lbs
	0	Unmati	ing
		•	Min18.46 lbs
		•	Max19.86 lbs
•	After 5	0 Cycles	
	0	Mating	
		•	Min24.47 lbs
		•	Max27.71 lbs
	0	Unmati	8
		•	Min22.65 lbs
		•	Max25.03 lbs
•	After T	Thermal	
	0	Mating	
		•	Min15.76 lbs
		•	Max24.49 lbs
	0	Unmati	8
		•	Min10.34 lbs
		•	Max16.52 lbs
•	After 5	0 Cycles	
	0	Mating	
		•	Min26.22 lbs
		•	Max32.33 lbs
	0	Unmati	8
		•	Min17.62 lbs
		•	Max23.01 lbs

$\begin{array}{llllllllllllllllllllllllllllllllllll$			RESULTS Continued
• Initial O Mated	sula	ation Re	esistance minimums, IR
• Initial O Mated	Cont	rol In Ai	r
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Pin	to Pin	
$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	٠	Initial	
• Thermal Shock • Mated		0	Mated Pa
$\begin{tabular}{ c c c c c } & Mated & & & & & & & & & & & & & & & & & & &$		0	Unmated $45000 \operatorname{Meg} \Omega$ Pa
$ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \bullet \text{Humidity} \\ \circ \text{Mated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \bullet \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \bullet \text{Initial} \\ \circ \text{Mated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \bullet \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \otimes \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \otimes \text{Mated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \otimes \text{Mated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \otimes \text{Mated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \otimes \text{Mated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \otimes \text{Mated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \otimes \text{Mated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \otimes \text{Mated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \otimes \text{Mated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \otimes \text{Mated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \otimes \text{Mated} \qquad 45000 \text{ Meg } \Omega \qquad Pa \\ \otimes \text{Mated} \qquad 45000 $	٠	Therm	
• Humidity • Mated 45000 Meg Ω 92 • Unmated 45000 Meg Ω 92 • Unmated 45000 Meg Ω 92 • Initial • Mated 45000 Meg Ω 92 • Unmated 45000 Meg Ω 92 • Mated 45000 Meg Ω 92 • Unmated 92 • Mated 92 • Unmated 92 • Unmated 92 • Mated 92 • Pa • Unmated 92 • Pa • Pa • Oumated 92 • Pa • Pa • Oumated 92 • Pa • Oumate		0	Mated Pa
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		0	Unmated $45000 \operatorname{Meg} \Omega$ Pa
$\circ Unmated \dots 45000 \text{ Meg }\Omega \dots Pa$ Row to Row $\bullet Initial \\ \circ Mated \dots 45000 \text{ Meg }\Omega \dots Pa$ $\circ Unmated \dots 45000 \text{ Meg }\Omega \dots Pa$	٠	Humid	
$\begin{array}{llllllllllllllllllllllllllllllllllll$		0	Mated Pa
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0	Unmated $45000 \operatorname{Meg} \Omega$ Pa
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Rov	w to Row	7
$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	٠	Initial	
$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$		0	Mated Pa
• Thermal Shock • Mated		0	Unmated Pa
$\circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa$ $\bullet \text{Humidity} \\ \circ \text{Mated} \qquad 45000 \text{ Meg } \Omega \qquad Pa$ $\circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa$ $\bullet \text{Unmated} \qquad$	٠	Therm	-
$\circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa$ $\bullet \text{Humidity} \\ \circ \text{Mated} \qquad 45000 \text{ Meg } \Omega \qquad Pa$ $\circ \text{Unmated} \qquad 45000 \text{ Meg } \Omega \qquad Pa$ $\bullet \text{Unmated} \qquad$		0	Mated Pa
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		0	Unmated Pa
$\circ \text{Unmated} \qquad \qquad$	٠	Humid	ity
$\circ \text{Unmated} \qquad \qquad$		0	Mated Pa
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0	Unmated Pa
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Elect	troCool I	EC-130
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pir	ı to Pin	
$ \begin{array}{c} \circ Unmated 45000 \ Meg \ \Omega Pa \\ \bullet Thermal \ Aging \\ \circ Mated 45000 \ Meg \ \Omega Pa \\ \circ Unmated 45000 \ Meg \ \Omega Pa \\ \bullet Unmated Pa \\ \bullet Initial \\ \circ Mated 45000 \ Meg \ \Omega Pa \\ \circ Unmated Pa \\ \bullet Unmated 45000 \ Meg \ \Omega Pa \\ \bullet Thermal \ Aging \\ \circ Mated 45000 \ Meg \ \Omega Pa \\ \bullet Thermal \ Aging \\ \circ Mated 45000 \ Meg \ \Omega Pa \\ \bullet Thermal \ Aging \\ \circ Mated 45000 \ Meg \ \Omega Pa \\ \bullet Thermal \ Aging \\ \circ Mated 45000 \ Meg \ \Omega Pa \\ \bullet Thermal \ Aging \\ \circ Mated $	٠	Initial	
$ \begin{array}{c} \circ Unmated 45000 \ Meg \ \Omega Pa \\ \bullet Thermal \ Aging \\ \circ Mated 45000 \ Meg \ \Omega Pa \\ \circ Unmated 45000 \ Meg \ \Omega Pa \\ \bullet Unmated Pa \\ \bullet Initial \\ \circ Mated 45000 \ Meg \ \Omega Pa \\ \circ Unmated Pa \\ \bullet Unmated 45000 \ Meg \ \Omega Pa \\ \bullet Thermal \ Aging \\ \circ Mated 45000 \ Meg \ \Omega Pa \\ \bullet Thermal \ Aging \\ \circ Mated 45000 \ Meg \ \Omega Pa \\ \bullet Thermal \ Aging \\ \circ Mated 45000 \ Meg \ \Omega Pa \\ \bullet Thermal \ Aging \\ \circ Mated 45000 \ Meg \ \Omega Pa \\ \bullet Thermal \ Aging \\ \circ Mated $		0	Mated Pa
 Mated 45000 Meg Ω Pa Unmated Pa Row to Row Initial Mated 45000 Meg Ω Pa Mated 45000 Meg Ω Pa Unmated 45000 Meg Ω Pa Thermal Aging 		0	
 Unmated Pa Row to Row Initial Mated 45000 Meg Ω Pa Unmated Pa Unmated Pa Thermal Aging Mated Pa 45000 Meg Ω Pa 	٠	Therm	al Aging
 Unmated Pa Row to Row Initial Mated 45000 Meg Ω Pa Unmated Pa Unmated Pa Thermal Aging Mated Pa 45000 Meg Ω Pa 		0	Mated Pa
 Initial Mated 45000 Meg Ω Pa Unmated Pa Thermal Aging Mated Pa 45000 Meg Ω Pa 		0	Unmated 45000 Meg Ω Pa
 Initial Mated 45000 Meg Ω Pa Unmated Pa Thermal Aging Mated Pa 45000 Meg Ω Pa 	Rov	w to Row	,
 Mated 45000 Meg Ω Pa Unmated Pa Thermal Aging Mated Pa 			
 O Unmated Pa Thermal Aging Mated Pa 			Mated $45000 \operatorname{Meg} \Omega$ Pa
 Thermal Aging Mated Pa 		-	Unmated $45000 \text{ Meg } \Omega$ Pa
\circ Mated Pa	•	Therm	-
		-	

RESULTS Continued

 Dielectric Withstanding Voltage minimums, DWV Control In Air Minimums Breakdown Voltage 1018 VAC
 Breakdown Voltage 1018 VAC Test Voltage765 VAC
• Working Voltage255 VAC
Pin to Pin
Initial DWVPassed
Thermal DWVPassed
Humidity DWVPassed
Row to Row Initial DWVPassed Thermal DWVPassed Humidity DWVPassed
ElectroCool EC-130
Minimums Breakdown Voltage 5000 VAC Test Voltage 3750 VAC Working Voltage
Pin to Pin
Initial DWVPassed
Thermal DWVPassed
Row to Row Initial DWVPassed Thermal DWVPassed

RESULTS Continued LLCR Durability (192 LLCR test points) **Control In Air** Initial -----7.80 mOhms Max • **Durability, 100 Cycles** <= +5.0 mOhms------ 192 Points ------ Stable 0 +5.1 to +10.0 mOhms ------ 0 Points ----- 0 Minor 0 +10.1 to +15.0 mOhms ------ 0 Points ------ Acceptable 0 +15.1 to +50.0 mOhms ------ 0 Points ------ Marginal 0 +50.1 to +1000 mOhms------- 0 Points ------ Unstable 0 >+1000 mOhms------ Open Failure 0 Thermal <= +5.0 mOhms------ 192 Points ------ Stable 0 +5.1 to +10.0 mOhms ------ Minor 0 +10.1 to +15.0 mOhms ------ 0 Points ------ Acceptable 0 +15.1 to +50.0 mOhms ------ 0 Points ------ Marginal 0 +50.1 to +1000 mOhms------- Unstable 0 >+1000 mOhms------ Open Failure 0 Humidity <= +5.0 mOhms------ 192 Points ------ Stable 0 +5.1 to +10.0 mOhms ------ Minor 0 +10.1 to +15.0 mOhms ------ 0 Points ------ Acceptable 0 +15.1 to +50.0 mOhms ------ 0 Points ------ Marginal 0 +50.1 to +1000 mOhms------- 0 Points ------ Unstable 0 >+1000 mOhms------ Open Failure \circ

RESULTS Continued

Initial		8.00 mOhms Max	
Durab	ility, 50 Cycles		
0	<= +5.0 mOhms	192 Points	Stable
0	+5.1 to +10.0 mOhms	0 Points	Minor
0	+10.1 to +15.0 mOhms	0 Points	Acceptable
0	+15.1 to +50.0 mOhms	0 Points	Marginal
0	+50.1 to +1000 mOhms	0 Points	Unstable
0	>+1000 mOhms	0 Points	Open Failu
Fluid 1	Exposure		_
0	<= +5.0 mOhms	192 Points	Stable
0	+5.1 to +10.0 mOhms	0 Points	Minor
0	+10.1 to +15.0 mOhms	0 Points	Acceptable
0	+15.1 to +50.0 mOhms	0 Points	Marginal
0	+50.1 to +1000 mOhms	0 Points	Unstable
0	>+1000 mOhms	0 Points	Open Failu
Therm			•
0	<= +5.0 mOhms	192 Points	Stable
0	+5.1 to +10.0 mOhms	0 Points	Minor
0	+10.1 to +15.0 mOhms	0 Points	Acceptable
0	+15.1 to +50.0 mOhms	0 Points	Marginal
0	+50.1 to +1000 mOhms	0 Points	Unstable
0	>+1000 mOhms	0 Points	Open Failu
Remov	e Samples from Fluid		-
0	<= +5.0 mOhms	192 Points	Stable
0	+5.1 to +10.0 mOhms	0 Points	Minor
0	+10.1 to +15.0 mOhms	0 Points	Acceptable
0	+15.1 to +50.0 mOhms		
0	+50.1 to +1000 mOhms		
0	>+1000 mOhms		
Durab	ility, 50 Cycles		1
0	<= +5.0 mOhms	192 Points	Stable
0	+5.1 to +10.0 mOhms		
0	+10.1 to +15.0 mOhms		
0	+15.1 to +50.0 mOhms		
0	+50.1 to +1000 mOhms		8
0	>+1000 mOhms		

RESULTS Continued

Initial		8.33 mOhms Max	
Durab	lity, 50 Cycles		
0	<= +5.0 mOhms	192 Points	Stable
0	+5.1 to +10.0 mOhms	0 Points	Minor
0	+10.1 to +15.0 mOhms	0 Points	Acceptable
0	+15.1 to +50.0 mOhms	0 Points	Marginal
0	+50.1 to +1000 mOhms	0 Points	Unstable
0	>+1000 mOhms	0 Points	Open Failu
Fluid I	Exposure		-
0	<= +5.0 mOhms	192 Points	Stable
0	+5.1 to +10.0 mOhms		
0	+10.1 to +15.0 mOhms	0 Points	Acceptable
0	+15.1 to +50.0 mOhms	0 Points	Marginal
0	+50.1 to +1000 mOhms	0 Points	Unstable
0	>+1000 mOhms	0 Points	Open Failu
Therm	al		-
0	<= +5.0 mOhms	192 Points	Stable
0	+5.1 to +10.0 mOhms	0 Points	Minor
0	+10.1 to +15.0 mOhms	0 Points	Acceptable
0	+15.1 to +50.0 mOhms		
0	+50.1 to +1000 mOhms	0 Points	Unstable
0	>+1000 mOhms	0 Points	Open Failu
Remov	e Samples from Fluid		-
0	<= +5.0 mOhms	192 Points	Stable
0	+5.1 to +10.0 mOhms	0 Points	Minor
0	+10.1 to +15.0 mOhms	0 Points	Acceptable
0	+15.1 to +50.0 mOhms	0 Points	Marginal
0	+50.1 to +1000 mOhms	0 Points	Unstable
0	>+1000 mOhms	0 Points	Open Failu
Durab	lity, 50 Cycles		-
0	<= +5.0 mOhms	192 Points	Stable
0	+5.1 to +10.0 mOhms		
0	+10.1 to +15.0 mOhms		
0	+15.1 to +50.0 mOhms		
0	+50.1 to +1000 mOhms		
0	>+1000 mOhms		

DATA SUMMARIES

TEMPERATURE RISE (Current Carrying Capacity, CCC):

- 1) High quality thermocouples whose temperature slopes track one another were used for temperature monitoring.
- 2) The thermocouples were placed at a location to sense the maximum temperature generated during testing.
- 3) Temperature readings recorded are those for which three successive readings, 15 minutes apart, differ less than 1° C (computer-controlled data acquisition).
- 4) Adjacent contacts were powered:

Control in Air

a.

Linear configuration with 2 adjacent conductors/contacts powered

DATA SUMMARIES Continued

b. Linear configuration with 4 adjacent conductors/contacts powered

2356820 4 (2x2) Contacts in Series - Control (Air) Part Numbers: SFM-150-02-L-D / TFM-150-02-L-D Current Rating per Contact (30 Deg. Rise, 20% Derated) = 2.8 Amps 8.0 Room Temp= 23.2°C 7.0 6.4 5.1 125°C Limit 4.0 3.5 3.2 2.8 2.0 .6 1.0 0.0 20 40 60 80 100 120 140 Ambient Temperature (°C) Base Curve Derated 20 % Measured Current RT Peak Amp RT Derated Amp 85°C Peak Amp • 85°C Derated Amp 95°C Peak Amp 95°C Derated Amp 115°C Peak Amp 115°C Derated Amp • Limit 2356820 4 (2x2) Contacts in Series - Control (Air) Part Numbers: SFM-150-02-L-D / TFM-150-02-L-D 50 45 ٠ 40 Temperature Rise (°C above ambient) 32 52 52 12 12 10

Actual 20% Derated

2.5

3

3.5

2

4

4.5

5

0

0

====

1

0.5

1.5

DATA SUMMARIES Continued

c. Linear configuration with 6 adjacent conductors/contacts powered

2356820 6 (2x3) Contacts in Series - Control (Air) Part Numbers: SFM-150-02-L-D / TFM-150-02-L-D

DATA SUMMARIES Continued

d. Linear configuration with 8 adjacent conductors/contacts powered

2356820 8 (2x4) Contacts in Series - Control (Air) Part Numbers: SFM-150-02-L-D / TFM-150-02-L-D

DATA SUMMARIES Continued

e. Linear configuration with 50 adjacent conductors/contacts powered

2356820 50 (2x25)(All Power) Contacts in Series - Control (Air) Part Numbers: SFM-150-02-L-D / TFM-150-02-L-D

DATA SUMMARIES Continued

ElectroCool EC-130

f. Linear configuration with 2 adjacent conductors/contacts powered

2356820 2 (2x1) Contacts in Series - Immersion Cooling (EC-130) Part Numbers: SFM-150-02-L-D / TFM-150-02-L-D

2356820 2 (2x1) Contacts in Series - Immeriosn Cooling (EC-130) Part Numbers: SFM-150-02-L-D / TFM-150-02-L-D

DATA SUMMARIES Continued

g. Linear configuration with 4 adjacent conductors/contacts powered

2356820 4 (2x2) Contacts in Series - Immersion Cooling (EC-130) Part Numbers: SFM-150-02-L-D / TFM-150-02-L-D Current Rating per Contact (30 Deg. Rise, 20% Derated) = 5.9 Amps 20.0 Room Temp= 47.7°C 18.0 16.0 0.41 Contact 13.0 **Maximum Current, Amps per** 0.0 **Maximum Current** 125°C Limit 8.8 10.4 7.0 5.9 3.6 4.0 2.0 0.0 40 60 80 100 120 20 140 Ambient Temperature (°C) RT Peak Amp Base Curve Derated 20 % Measured Curre RT Derated Amp 85°C Peak Amp . -----. 85°C Derated Amp • 95°C Peak Amp • 95°C Derated Amp 115°C Peak Amp 115°C Derated Amp • Limit 2356820 4 (2x2) Contacts in Series - Immeriosn Cooling (EC-130) Part Numbers: SFM-150-02-L-D / TFM-150-02-L-D

DATA SUMMARIES Continued

h. Linear configuration with 6 adjacent conductors/contacts powered

2356820 6 (2x3) Contacts in Series - Immersion Cooling (EC-130) Part Numbers: SFM-150-02-L-D / TFM-150-02-L-D

2356820 6 (2x3) Contacts in Series - Immeriosn Cooling (EC-130) Part Numbers: SFM-150-02-L-D / TFM-150-02-L-D

DATA SUMMARIES Continued

i. Linear configuration with 8 adjacent conductors/contacts powered

2356820 8 (2x4) Contacts in Series - Immersion Cooling (EC-130) Part Numbers: SFM-150-02-L-D / TFM-150-02-L-D

1 Part #: SFM-150-02-L-D/TFM-150-02-L-D Part description: SFM/TFM

DATA SUMMARIES Continued

j. Linear configuration with 50 adjacent conductors/contacts powered

2356820 50 (2x25)(All Power) Contacts in Series - Immersion Cooling (EC-130) Part Numbers: SFM-150-02-L-D / TFM-150-02-L-D

2356820 50 (2x25)(All Power) Contacts in Series - Immeriosn Cooling (EC-130) Part Numbers: SFM-150-02-L-D / TFM-150-02-L-D

DATA SUMMARIES Continued

MATING/UNMATING: Mating/Unmating Durability Group Control In Air

		AII						
		Initial				25 C	ycles	
	M	ating	Uni	mating	M	ating	Uni	mating
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)
Minimum	64.05	14.40	48.13	10.82	81.04	18.22	71.26	16.02
Maximum	78.51	17.65	70.19	15.78	99.06	22.27	87.71	19.72
Average	72.62	16.33	62.71	14.10	88.10	19.81	78.36	17.62
St Dev	4.29	0.96	7.32	1.65	6.24	1.40	5.57	1.25
Count	8	8	8	8	8	8	8	8
		50 C	ycles			75 C	ycles	
	M	ating	Uni	mating	Μ	ating	Uni	mating
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)
Minimum	90.83	20.42	80.95	18.20	100.17	22.52	83.53	18.78
Maximum	111.82	25.14	98.26	22.09	118.98	26.75	110.31	24.80
Average	98.07	22.05	87.57	19.69	106.19	23.87	95.57	21.49
St Dev	6.89	1.55	5.84	1.31	6.61	1.49	8.32	1.87
Count	8	8	8	8	8	8	8	8
		100 C	cycles		After Humidity			
	M	ating	Uni	mating	M	ating	Uni	mating
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)
Minimum	105.95	23.82	85.71	19.27	92.16	20.72	90.47	20.34
Maximum	123.88	27.85	119.52	26.87	106.57	23.96	101.68	22.86
Average	112.11	25.21	102.29	23.00	100.76	22.65	96.87	21.78
St Dev	7.25	1.63	10.27	2.31	4.20	0.94	3.49	0.78
Count	8	8	8	8	8	8	8	8

DATA SUMMARIES Continued

ElectroC	ElectroCool EC-130							
		Ini	tial		After 50 Cycles			
	Ма	ating	Unr	nating	M	ating	Uni	mating
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)
Minimum	87.49	19.67	78.28	17.60	112.49	25.29	96.34	21.66
Maximum	99.23	22.31	94.83	21.32	127.57	28.68	110.84	24.92
Average	94.03	21.14	85.52	19.23	117.62	26.44	104.19	23.42
St Dev	3.68	0.83	5.06	1.14	5.24	1.18	4.90	1.10
Count	8	8	8	8	8	8	8	8
		After Th	nermals		50 Cycles			
	Ма	ating	Unr	nating	M	ating	Uni	mating
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)
Minimum	51.82	11.65	41.86	9.41	65.34	14.69	56.98	12.81
Maximum	64.41	14.48	48.31	10.86	83.44	18.76	67.12	15.09
Average	56.38	12.68	45.90	10.32	72.36	16.27	62.82	14.12
St Dev	4.54	1.02	2.36	0.53	5.65	1.27	3.57	0.80
Count	8	8	8	8	8	8	8	8

3M Fluorinert FC-43

	Initial				After 50 Cycles			
	Ма	ating	Unr	nating	Μ	ating	Unr	mating
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)
Minimum	87.58	19.69	82.11	18.46	108.84	24.47	100.75	22.65
Maximum	99.86	22.45	88.34	19.86	123.25	27.71	111.33	25.03
Average	92.75	20.85	84.84	19.07	115.23	25.91	104.78	23.56
St Dev	3.85	0.87	2.31	0.52	4.49	1.01	3.25	0.73
Count	8	8	8	8	8	8	8	8
		After Th	nermals		50 Cycles			
	Ма	ating	Unr	nating	M	ating	Unr	nating
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)
Minimum	70.10	15.76	45.99	10.34	116.63	26.22	78.37	17.62
Maximum	108.93	24.49	73.48	16.52	143.80	32.33	102.35	23.01
Average	89.40	20.10	65.57	14.74	125.40	28.19	95.43	21.46
St Dev	12.20	2.74	9.02	2.03	11.55	2.60	7.87	1.77
Count	8	8	8	8	8	8	8	8

DATA SUMMARIES Continued

INSULATION RESISTANCE (IR): Control In Air

		Pin to Pin	
	Mated	Unmated	Unmated
Minimum	SFM/TFM	SFM	TFM
Initial	45000	45000	45000
Thermal	45000	45000	45000
Humidity	45000	45000	45000

	Row to Row				
	Mated Unmated Unmated				
Minimum	SFM/TFM	SFM	TFM		
Initial	45000	45000	45000		
Thermal	45000	45000	45000		
Humidity	45000	45000	45000		

ElectroCool EC-130

	Pin to Pin			
	Mated Unmated Unmated			
Minimum	SFM/TFM	SFM	TFM	
Initial	45000	45000	45000	
Thermal	45000	45000	45000	

	Row to Row				
_	Mated	Unmated	Unmated		
Minimum	SFM/TFM	SFM	TFM		
Initial	45000	45000	45000		
Thermal	45000	45000	45000		

DATA SUMMARIES Continued

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

Control In Air

Voltage Rating Summary			
Minimum	SFM/TFM		
Break Down Voltage	1018		
Test Voltage	765		
Working Voltage	255		
Pin to Pin			
Initial Test Voltage	Passed		
After Thermal Test Voltage	Passed		
After Humidity Test Voltage	Passed		
Row to Row			

Row to Row					
Initial Test Voltage	Passed				
After Thermal Test Voltage	Passed				
After Humidity Test Voltage	Passed				

ElectroCool EC-130

Voltage Rating Summary					
Minimum SFM/TFM					
Break Down Voltage	5000				
Test Voltage	3750				
Working Voltage	1250				

Pin to Pin				
Initial Test Voltage	Passed			
After Thermal Test Voltage	Passed			

Row to Row				
Initial Test Voltage Passed				
After Thermal Test Voltage	Passed			

DATA SUMMARIES Continued

LLCR Durability:

- 1) A total of 192 points were measured.
- 2) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. <= +5.0 mOhms: -----Stable
 - b. +5.1 to +10.0 mOhms: -----Minor
 - c. +10.1 to +15.0 mOhms:-----Acceptable
 - d. +15.1 to +50.0 mOhms:-----Marginal
 - e. +50.1 to +1000 mOhms------Unstable
 - f. >+1000 mOhms:-----Open Failure

Control In Air

Control III / III							
	LLCR Measurement Summaries by Pin Type						
Date	2020/6/1	020/6/1 2020/6/9 2020/6/29		2020/7/9			
Room Temp (Deg C)	22	22	22	22			
Rel Humidity (%)	41	52	53	55			
Technician	Tony Wagoner	Tony Wagoner	Tony Wagoner	Tony Wagoner			
mOhm values	Actual	Delta	Delta	Delta			
	Initial	Cycles	Therm Shck	Humidity			
	Pin Type: Signal 1						
Average	6.94	0.89	0.73	0.72			
St. Dev.	0.29	0.77	0.7	0.77			
Min	6.38	0.02	0	0			
Max	7.8	3.28	2.73	3.09			
Summary Count	192	192	192	192			
Total Count	192	192	192	192			

LLCR Delta Count by Category								
	Stable Minor Acceptable Marginal Unstable O							
mOhms	<=5.0	>5.1 & <=10.0	>10.1 & <=15.0	>15.1 & <=50.0	>50.1 & <=1000	>1000		
100 Cycles	192	0	0	0	0	0		
Therm Shck	192	0	0	0	0	0		
Humidity	192	0	0	0	0	0		

Part description: SFM/TFM

				0000000000				
ElectroCool EC-130								
	LLCR Measurement Summaries by Pin Type							
Date	2020/6/1	2020/7/7	2020/7/7	2020/7/21	2020/9/1	2020/9/2		
Room Temp (Deg C)	23	22	22	23	23	22		
Rel Humidity (%)	39	55	55	53	52	52		
Technician	ian Tony Tony Tony Wagoner Wagoner Wagone		Tony Wagoner	Tony Wagoner	Tony Wagoner	Tony Wagoner		
mOhm values	Actual	Delta	Delta	Delta	Delta	Delta		
	Initial	50 Cycles	Fluid Exposure	Thermal Age	Ambient (Air Dried)	50 Cycles		
			Pin Typ	e: Signal 1				
Average	6.91	0.66	0.65	0.86	0.97	0.92		
St. Dev.	0.3	0.62	0.65	0.77	0.78	0.71		
Min	6.26	0	0	0	0	0.01		
Max	8	3.27	3.48	3.92	3.88	3.5		
Summary Count	192	192	192	192	192	192		
Total Count	192	192	192	192	192	192		
LLCR Delta Count by Category								
	1		1					

DATA SUMMARIES Continued

LLCR Delta Count by Category						
	Stable	Minor	Acceptable	ceptable Marginal Unstable		Open
mOhms	<=5.0	>5.1 & <=10.0	>10.1 & <=15.0	>15.1 & <=50.0	>50.1 & <=1000	>1000
50 Cycles	192	0	0	0	0	0
Fluid Exposure	192	0	0	0	0	0
Thermals	192	0	0	0	0	0
Remove/Fluid	192	0	0	0	0	0
50 Cycles	192	0	0	0	0	0

Thermals

50 Cycles

Remove/Fluid

Part description: SFM/TFM

		Diffield		onunuou				
3M Fluorinert H	FC-43							
	LLCR Measurement Summaries by Pin Type							
Date	2020/6/1	2020/7/7	2020/7/7	2020/7/21	2020/9/1	202	0/9/2	
Room Temp (Deg C)	23	22	22	23	23	2	22	
Rel Humidity (%)	39	53	55	53	50	5	56	
Technician	Tony Wagoner	Tony Wagoner	Tony Wagoner	Tony Wagoner	Tony Wagoner		ony goner	
mOhm values	Actual	Delta	Delta	Delta	Delta	De	elta	
-	Initial	50 Cycles	Fluid Exposure	Thermal Age	Ambient (Air Dried)	50 C	ycles	
			Pin Typ	e: Signal 1				
Average	6.8	1.08	0.96	1.18	1.31	0.	.78	
St. Dev.	0.3	0.77	0.74	0.79	0.82	0.	.65	
Min	6.1	0	0.02	0.01	0.04	0.	.01	
Max	8.33	3.27	3.12	3.54	3.77	3.	.01	
Summary Count	192	192	192	192	192 192		92	
Total Count	192	192	192	192	192	1	92	
		LLCR De	elta Count by Ca	ategory				
	Stable	Minor	Acceptable	Margin	al Unstat	ble	Open	
mOhms	<=5.0	>5.1 & <=10.0	>10.1 & <=15.	0 >15.1 & <:	=50.0 >50.1 & <:	=1000	>1000	
50 Cycles	192	0	0	0	0		0	
Fluid Exposure	192	0	0	0	0		0	

DATA SUMMARIES Continued

EQUIPMENT AND CALIBRATION SCHEDULES

Equipment #: TCT-04 Description: Dillon Quantrol TC21 25-1000 mm/min series test stand Manufacturer: Dillon Quantrol Model: TC2 I series test stand Serial #: 04-1041-04 Accuracy: Speed Accuracy: +/- 5% of indicated speed; Speed Accuracy: +/- 5% of indicated speed; ... Last Cal: 05/29/2021, Next Cal: 05/29/2022

Equipment #: MO-11 Description: Switch/Multimeter Manufacturer: Keithley Model: 3706 Serial #: 120169 Accuracy: See Manual ... Last Cal: 09/11/2021, Next Cal: 09/11/2022

Equipment #: THC-05 Description: Temperature/Humidity Chamber (Chamber Room) Manufacturer: Thermotron Model: SM-8-3800 Serial #: 05 23 00 02 Accuracy: See Manual ... Last Cal: 11/14/2021, Next Cal: 11/14/2022

Equipment #: TSC-01 Description: Vertical Thermal Shock Chamber Manufacturer: Cincinnati Sub Zero Model: VTS-3-6-6-SC/AC Serial #: 10-VT14993 Accuracy: See Manual ... Last Cal: 06/30/2021, Next Cal: 06/30/2022

Equipment #: HPT-01 Description: Hipot Safety Tester Manufacturer: Vitrek Model: V73 Serial #: 019808 Accuracy: ... Last Cal: 05/15/2021, Next Cal: 05/15/2022

Equipment #: OV-05 Description: Forced Air Oven, 5 Cu. Ft., 120 V (Chamber Room) Manufacturer: Sheldon Mfg. Model: CE5F Serial #: 02008008 Accuracy: +/- 5 deg. C ... Last Cal: 02/05/2022, Next Cal: 02/05/2023

EQUIPMENT AND CALIBRATION SCHEDULES

Equipment #: MO-04 Description: Multimeter /Data Acquisition System Manufacturer: Keithley Model: 2700 Serial #: 0798688 Accuracy: See Manual ... Last Cal: 09/11/2021, Next Cal: 09/11/2022

Equipment #: PS-02 Description: Power Supply Manufacturer: Hewlett-Packer Model: 6033A Serial #: N/A Accuracy: See Manual ... Last Cal: NOT CALIBRATED