

Project Number: Design Qualification Test Report	Tracking Code: 239773_Report_Rev_1
Requested by: Catie Eichhorn	Date: 06/20/2013
Part #: HLE-125-02-L-DV-A/HTSW-125-06-L-D	
Part description: HLE/HTSW	Tech: Kason He
Test Start: 03/17/2013	Test Completed: 06/10/2013

DESIGN QUALIFICATION TEST REPORT

HLE/HTSW HLE-125-02-L-DV-A/HTSW-125-06-L-D

Tracking Code: 239773_Report_Rev_1	Part #: HLE-125-02-L-DV-A/HTSW-125-06-L-D		
Part description: HLE/HTSW			

DATA	REV.NUM.	DESCRIPTION	ENG
06/20/2013	1	Initial Issue	КН
	l		1

CERTIFICATION

All instruments and measuring equipment were calibrated to National Institute for Standards and Technology (NIST) traceable standards according to ISO 10012-1 and ANSI/NCSL 2540-1, as applicable.

All contents contained herein are the property of Samtec. No portion of this report, in part or in full shall be reproduced without prior written approval of Samtec.

SCOPE

To perform the following tests: Design Qualification test. Please see test plan.

APPLICABLE DOCUMENTS

Standards: EIA Publication 364

TEST SAMPLES AND PREPARATION

- 1) All materials were manufactured in accordance with the applicable product specification.
- 2) All test samples were identified and encoded to maintain traceability throughout the test sequences.
- 3) After soldering, the parts to be used for LLCR testing were cleaned according to TLWI-0001.
- 4) Either an automated cleaning procedure or an ultrasonic cleaning procedure may be used.
- 5) The automated procedure is used with aqueous compatible soldering materials.
- 6) Parts not intended for testing LLCR are visually inspected and cleaned if necessary.
- 7) Any additional preparation will be noted in the individual test sequences.
- 8) Solder Information: Lead Free
- 9) Re-Flow Time/Temp: See accompanying profile.
- 10) Samtec Test PCBs used: PCB-104241-TST/ PCB-104242-TST/ PCB-104243-TST

Tracking Code: 239773_Report_Rev_1	Part #: HLE-125-02-L-DV-A/HTSW-125-06-L-D			
Part description: HLE/HTSW				

FLOWCHARTS

<u>Gas Tight</u>

TEST	GROUP A1	
STEP	8 Assemblies	
01	LLCR-1	
02	Gas Tight	
03	LLCR-2	

Gas Tight = EIA-364-36A

LLCR = EIA-364-23, LLCR

20 mV Max, 100 mA Max

Use Keithley 580 or 3706 in 4 wire dry circuit mode

Normal Force

TEST	GROUP A1	GROUP A2
STEP	Individual Contacts (8-10 min)	Individual Contacts (8-10 min)
01	Contact Gaps	Contact Gaps
02	Setup Approved	Thermal Aging (Mated and Undisturbed)
03	Normal Force (in the body and soldered on PCB unless otherwise specified)	Contact Gaps
04		Setup Approved
05		Normal Force (in the body and soldered on PCB unless otherwise specified)

Thermal Aging = EIA-364-17, Test Condition 4 (105°C)

Time Condition 'B' (250 Hours)

Normal Force = EIA-364-04

(Perpendicular) Displacement Force = 12.7 mm/min ± 6 mm/min

Spec is 50 N @ 1 mm displacement

Contact Gaps / Height - No standard method. Usually measured optically

Gaps to be taken on a minimum of 20% of each part tested

FLOWCHARTS Continued

Thermal Aging

TEST	GROUP A1		
STEP	8 Assemblies		
	Thermal Aging (Mated)		
01	Contact Gaps		
02	Forces - Mating / Unmating		
03	LLCR-1		
04	Thermal Aging (Mated and Undisturbed)		
05	LLCR-2		
06	Forces - Mating / Unmating		
07	Contact Gaps		

Thermal Aging = EIA-364-17, Test Condition 4 (105 °C)

Time Condition 'B' (250 Hours)

Mating / Unmating Forces = EIA-364-13

 $\label{eq:contact} \textbf{Contact Gaps} \ \textit{/} \ \textbf{Height - No standard method. Usually measured optically.}$

Gaps to be taken on a minimum of 20% of each part tested

LLCR = EIA-364-23, LLCR

20 mV Max, 100 mA Max

Use Keithley 580 or 3706 in 4 wire dry circuit mode

FLOWCHARTS Continued

Durability/Mating/Unmating/Gaps

TEST	GROUP B1	GROUP B2	GROUP B3	
STEP	8 Assemblies (HLE-125-02-L-DV-A)	8 Assemblies (HLE-150-02-L-DV-A)	8 Assemblies (HLE-110-02-L-DV-A)	
01	Contact Gaps	Contact Gaps	Contact Gaps	
02	LLCR-1	Forces - Mating / Unmating	Forces - Mating / Unmating	
03	Forces - Mating / Unmating	25 Cycles	25 Cycles	
04	25 Cycles	Forces - Mating / Unmating	Forces - Mating / Unmating	
05	Forces - Mating / Unmating	25 Cycles (50 Total)	25 Cycles (50 Total)	
06	25 Cycles (50 Total)	Forces - Mating / Unmating	Forces - Mating / Unmating	
07	Forces - Mating / Unmating 25 Cycles (75 Total)		25 Cycles (75 Total)	
08	08 25 Cycles (75 Total) Forces - Mating / Unmating		Forces - Mating / Unmating	
09	Forces - Mating / Unmating	25 Cycles (100 Total)	25 Cycles (100 Total)	
10	25 Cycles (100 Total)	Forces - Mating / Unmating	Forces - Mating / Unmating	
11	Forces - Mating / Unmating			
12	Clean w/Compressed Air			
13	Contact Gaps			
14	LLCR-2			
15	Thermal Shock (Mated and Undisturbed)			
16	LLCR-3			
17	Cyclic Humidity (Mated and Undisturbed)			
18	LLCR-4			
19	Forces - Mating / Unmating			

Thermal Shock = EIA-364-32, Table II, Test Condition I:

-55°C to +85°C 1/2 hour dwell, 100 cycles

Humidity = EIA-364-31, Test Condition B (240 Hours)

and Method III (+25 °C to +65 °C @ 90% RH to 98% RH)

ambient pre-condition and delete steps 7a and 7b

```
Mating / Unmating Forces = EIA-364-13
```

Contact Gaps / Height - No standard method. Usually measured optically.

Gaps to be taken on a minimum of 20% of each part tested

LLCR = EIA-364-23, LLCR

20 mV Max, 100 mA Max

Use Keithley 580 or 3706 in 4 wire dry circuit mode

FLOWCHARTS Continued

IR & DWV

TEST	GROUP A1	GROUP A2	GROUP A3	GROUP B1
STEP	2 Mated Sets	2 Unmated of Part # Being Tested	2 Unmated of Mating Part #	2 Mated Sets
	Break Down Pin-to-Pin	Break Down Pin-to-Pin	Break Down Pin-to-Pin	Pin-to-Pin
01	DWV/Break Down Voltage	DWV/Break Down Voltage	DWV/Break Down Voltage	IR & DWV at test voltage (on both mated sets and on each connector unmated)
02				Thermal Shock (Mated and Undisturbed)
03				IR & DWV at test voltage (on both mated sets and on each connector unmated)
04				Cyclic Humidity (Mated and Undisturbed)
05				IR & DWV at test voltage (on both mated sets and on each connector unmated)

TEST	GROUP C1	GROUP C2	GROUP C3	GROUP D1
STEP	2 Mated Sets	2 Unmated of Part # Being Tested	2 Unmated of Mating Part #	2 Mated Sets
	Break Down Row-to-Row	Break Down Row-to-Row	Break Down Row-to-Row	Row-to-Row
01	DWV/Break Down Voltage	DWV/Break Down Voltage	DWV/Break Down Voltage	IR & DWV at test voltage (on both mated sets and on each connector unmated)
02				Thermal Shock (Mated and Undisturbed)
03				IR & DWV at test voltage (on both mated sets and on each connector unmated)
04				Cyclic Humidity (Mated and Undisturbed)
05				IR & DWV at test voltage (on both mated sets and on each connector unmated)

DWV on Group B1 to be performed at Test Voltage

DWV test voltage is equal to 75% of the lowest break down voltage from Groups A1, A2 or A3

Thermal Shock = EIA-364-32, Table II, Test Condition I:

-55°C to +85°C 1/2 hour dwell, 100 cycles

Humidity = EIA-364-31, Test Condition B (240 Hours)

and Method III (+25 °C to +65 °C @ 90% RH to 98% RH)

ambient pre-condition and delete steps 7a and 7b

IR = EIA-364-21

DWV = EIA-364-20, Test Condition 1

FLOWCHARTS Continued

Current Carrying Capacity - Double Row

TEST STEP	GROUP B1 3 Mated Assemblies 2 Contacts Powered	GROUP B2 3 Mated Assemblies 4 Contacts Powered	GROUP B3 3 Mated Assemblies 6 Contacts Powered	GROUP B4 3 Mated Assemblies 8 Contacts Powered	GROUP B5 3 Mated Assemblies All Contacts Powered
01	CCC	CCC	CCC	CCC	CCC

(TIN PLATING) - Tabulate calculated current at RT, 65 °C, 75 °C and 95 °C after derating 20% and based on 105 °C (2010 DI ATNO). Tabulate calculated around at DT 05 °C

(GOLD PLATING) - Tabulate calculated current at RT, 85 °C, 95 °C and 115 °C

after derating 20% and based on 125°C

CCC, Temp rise = EIA-364-70

Mechanical Shock / Vibration / LLCR

TEST	GROUP A1					
STEP	TEP 8 Assemblies					
01	LLCR-1					
02 Shock						
03	Vibration					
04 LLCR-2						

Mechanical Shock = EIA 364-27 Half Sine,

100 g's, 6 milliSeconds (Condition "C") each axis

Vibration = EIA 364-28, Random Vibration

7.56 g RMS, Condition VB --- 2 hours/axis

LLCR = EIA-364-23, LLCR

20 mV Max, 100 mA Max

Use Keithley 580 or 3706 in 4 wire dry circuit mode

Shock / Vibration / nanoSecond Event Detection

TEST	GROUP A1		
STEP	60 Points		
01	Event Detection, Shock		
02	Event Detection, Vibration		

Mechanical Shock = EIA 364-27 Half Sine,

100 g's, 6 milliSeconds (Condition "C") each axis

Vibration = EIA 364-28, Random Vibration

7.56 g RMS, Condition VB --- 2 hours/axis

Event detection requirement during Shock / Vibration is 50 nanoseconds minimum

ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

THERMAL SHOCK:

- 1) EIA-364-32, Thermal Shock (Temperature Cycling) Test Procedure for Electrical Connectors.
- 2) Test Condition 1: -55° C to $+85^{\circ}$ C
- 3) Test Time: $\frac{1}{2}$ hour dwell at each temperature extreme
- 4) Number of Cycles: 100
- 5) All test samples are pre-conditioned at ambient.
- 6) All test samples are exposed to environmental stressing in the mated condition.

THERMAL:

- 1) EIA-364-17, Temperature Life with or without Electrical Load Test Procedure for Electrical Connectors.
- 2) Test Condition 4 at 105° C
- 3) Test Time Condition B for 250 hours.
- 4) All test samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

HUMIDITY:

- 1) Reference document: EIA-364-31, Humidity Test Procedure for Electrical Connectors.
- 2) Test Condition B, 240 Hours.
- 3) Method III, $+25^{\circ}$ C to $+65^{\circ}$ C, 90% to 98% Relative Humidity excluding sub-cycles 7a and 7b.
- 4) All samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

MECHANICAL SHOCK (Specified Pulse):

- 1) Reference document: EIA-364-27, Mechanical Shock Test Procedure for Electrical Connectors
- 2) Test Condition C
- 3) Peak Value: 100 G
- 4) Duration: 6 Milliseconds
- 5) Wave Form: Half Sine
- 6) Velocity: 12.3 ft/s
- 7) Number of Shocks: 3 Shocks / Direction, 3 Axis (18 Total)

VIBRATION:

- 1) Reference document: EIA-364-28, Vibration Test Procedure for Electrical Connectors
- 2) Test Condition V, Letter B
- 3) Power Spectral Density: 0.04 G² / Hz
- 4) G 'RMS': 7.56
- 5) Frequency: 50 to 2000 Hz
- 6) Duration: 2.0 Hours per axis (3 axis total)

NANOSECOND-EVENT DETECTION:

- 1) Reference document: EIA-364-87, Nanosecond-Event Detection for Electrical Connectors
- 2) Prior to test, the samples were characterized to assure the low nanosecond event being monitored will trigger the detector.
- 3) After characterization it was determined the test samples could be monitored for 50 nanosecond events

Tracking Code: 239773_Report_Rev_1	Part #: HLE-125-02-L-DV-A/HTSW-125-06-L-D
Part descripti	on HLE/HTSW

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

TEMPERATURE RISE (Current Carrying Capacity, CCC):

- 1) EIA-364-70, Temperature Rise versus Current Test Procedure for Electrical Connectors and Sockets.
- 2) When current passes through a contact, the temperature of the contact increases as a result of I^2R (resistive) heating.
- 3) The number of contacts being investigated plays a significant part in power dissipation and therefore temperature rise.
- 4) The size of the temperature probe can affect the measured temperature.
- 5) Copper traces on PC boards will contribute to temperature rise:
 - a. Self heating (resistive)
 - b. Reduction in heat sink capacity affecting the heated contacts
- 6) A de-rating curve, usually 20%, is calculated.
- 7) Calculated de-rated currents at three temperature points are reported:
 - a. Ambient
 - b. 80[°] C
 - c. 95° C
 - d. 115° C
- 8) Typically, neighboring contacts (in close proximity to maximize heat build up) are energized.
- 9) The thermocouple (or temperature measuring probe) will be positioned at a location to sense the maximum temperature in the vicinity of the heat generation area.
- 10) A computer program, TR 803.exe, ensures accurate stability for data acquisition.
- 11) Hook-up wire cross section is larger than the cross section of any connector leads/PC board traces, jumpers, etc.
- 12) Hook-up wire length is longer than the minimum specified in the referencing standard.

LLCR:

- 1) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
 - a. <= +5.0 mOhms:----- Stable
 - b. +5.1 to +10.0 mOhms:----- Minor
 - c. +10.1 to +15.0 mOhms: ----- Acceptable
 - d. +15.1 to +50.0 mOhms: ----- Marginal
 - e. +50.1 to +2000 mOhms: ----- Unstable
 - f. >+2000 mOhms:----- Open Failure

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

GAS TIGHT:

To provide method for evaluating the ability of the contacting surfaces in preventing penetration of harsh vapors which might lead to oxide formation that may degrade the electrical performance of the contact system.

- 1) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
 - a. <= +5.0 mOhms:----- Stable
 - b. +5.1 to +10.0 mOhms:----- Minor
 - c. +10.1 to +15.0 mOhms: ----- Acceptable
 - d. +15.1 to +50.0 mOhms: ----- Marginal
 - e. +50.1 to +2000 mOhms: ----- Unstable
 - f. >+2000 mOhms:----- Open Failure
- 4) Procedure:
 - a. Reference document: EIA-364-36, *Test Procedure for Determination of Gas-Tight Characteristics for Electrical Connectors, Sockets and/or Contact Systems.*
 - b. Test Conditions:
 - i. Class II--- Mated pairs of contacts assembled to their plastic housings.
 - ii. Reagent grade Nitric Acid shall be used of sufficient volume to saturate the test chamber
 - iii. The ratio of the volume of the test chamber to the surface area of the acid shall be 10:1.
 - iv. The chamber shall be saturated with the vapor for at least 15 minutes before samples are added.
 - v. Exposure time, 55 to 65 minutes.
 - vi. The samples shall be no closer to the chamber walls than 1 inches and no closer to the surface of the acid than 3 inches.
 - vii. The samples shall be dried after exposure for a minimum of 1 hour.
 - viii. Drying temperature 50° C
 - ix. The final LLCR shall be conducted within 1 hour after drying.

Tracking Code: 239773_Report_Rev_1	Part #: HLE-125-02-L-DV-A/HTSW-125-06-L-D
Part descripti	on: HLE/HTSW

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes

NORMAL FORCE (FOR CONTACTS TESTED IN THE HOUSING):

- 1) Reference document: EIA-364-04, Normal Force Test Procedure for Electrical Connectors.
- 2) The contacts shall be tested in the connector housing.
- 3) If necessary, a "window" shall be made in the connector body to allow a probe to engage and deflect the contact at the same attitude and distance (plus 0.05 mm [0.002"]) as would occur in actual use.
- 4) The connector housing shall be placed in a holding fixture that does not interfere with or otherwise influence the contact force or deflection.
- 5) Said holding fixture shall be mounted on a floating, adjustable, X-Y table on the base of the Dillon TC^2 , computer controlled test stand with a deflection measurement system accuracy of 5.0 μ m (0.0002").
- 6) The nominal deflection rate shall be 5 mm $(0.2^{"})/minute$.
- 7) Unless otherwise noted a minimum of five contacts shall be tested.
- 8) The force/deflection characteristic to load and unload each contact shall be repeated five times.
- 9) The system shall utilize the TC^2 software in order to acquire and record the test data.
- 10) The permanent set of each contact shall be measured within the TC^2 software.
- 11) The acquired data shall be graphed with the deflection data on the X-axis and the force data on the Y-axis and a print out will be stored with the Tracking Code paperwork.

INSULATION RESISTANCE (IR):

To determine the resistance of insulation materials to leakage of current through or on the surface of these materials when a DC potential is applied.

- 1) PROCEDURE:
 - a. Reference document: EIA-364-21, Insulation Resistance Test Procedure for Electrical Connectors.
 - b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Electrification Time 2.0 minutes
 - iii. Test Voltage (500 VDC) corresponds to calibration settings for measuring resistances.
- 2) MEASUREMENTS:
- 3) When the specified test voltage is applied (VDC), the insulation resistance shall not be less than 1000 megohms.

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

To determine if the sockets can operate at its rated voltage and withstand momentary over potentials due to switching, surges, and other similar phenomenon. Separate samples are used to evaluate the effect of environmental stresses so not to influence the readings from arcing that occurs during the measurement process.

- 1) PROCEDURE:
 - a. Reference document: EIA-364-20, Withstanding Voltage Test Procedure for Electrical Connectors.
 - b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Barometric Test Condition 1
 - iii. Rate of Application 500 V/Sec
 - iv. Test Voltage (VAC) until breakdown occurs

2) MEASUREMENTS/CALCULATIONS

- a. The breakdown voltage shall be measured and recorded.
- b. The dielectric withstanding voltage shall be recorded as 75% of the minimum breakdown voltage.
- c. The working voltage shall be recorded as one-third (1/3) of the dielectric withstanding voltage (one-fourth of the breakdown voltage).

RESULTS

Temperature Rise, CCC at a 20% de-rating

- CCC for a 30°C Temperature Rise-----4.6A per contact with 2 adjacent contacts powered
- CCC for a 30°C Temperature Rise------3.4A per contact with 4 adjacent contacts powered
- CCC for a 30°C Temperature Rise------3.1A per contact with 6 adjacent contacts powered
- CCC for a 30°C Temperature Rise-----2.6A per contact with 8 adjacent contacts powered
- CCC for a 30°C Temperature Rise-----1.5A per contact with all adjacent contacts powered

Mating – Unmating Forces

- **Thermal Aging Group**
- Initial
 - Mating
 - Min ------ 5.58 Lbs
 Max------ 6.69 Lbs
 Unmating
 - Min ----- 2.56 Lbs
 - Max------ 3.33 Lbs
- After Thermal

0

- Mating
 - Min ----- 3.97 Lbs
 - Max------ 4.58 Lbs
 - Unmating
 - Min ----- 1.88 Lbs
 - Max-----2.13 Lbs

	RESULTS Continued
Mating – Unmating Forces	
Mating-Unmating Durability Gaps (From
Initial	Stoup
• Mating	
	5.29 Lbs
	6.06 Lbs
• Unmating	
•	2.20 Lbs
• Max	3.06 Lbs
After 25 Cycles	
• Mating	
• Min	5.39 Lbs
■ Max	6.52 Lbs
• Unmating	
	2.80 Lbs
• Max	3.81 Lbs
After 50 Cycles	
o Mating	
	5.37 Lbs
• Max	6.46 Lbs
 Unmating 	
	2.96 Lbs
	3.90 Lbs
After 75 Cycles	
\circ Mating	
	5.38 Lbs
	6.40 Lbs
• Unmating	2 0 2 7 1
	3.03 Lbs
	3.89 Lbs
After 100 Cycles	
• Mating	5 44 T L
	5.44 Lbs 6.46 Lbs
	0.40 LDS
• Unmating	3.06 Lbs
	3.00 Lbs
	3.88 LUS
 Humidity Mating 	
	3.95 Lbs
	4.84 Lbs
• Unmating	
	2.20 Lbs
	2.20 Lbs
1 110 3	- 2.07 1205

Mating – Unma Mating-Unma		es e (HLE-150-02-L-DV-A/HTSW-150-06-L-D)
• Initial	8	``````````````````````````````````````
0	Mating	
	0	in14.79 Lbs
	• M	ax16.27 Lbs
0	Unmating	
		in 6.36 Lbs
	• M	ax8.55 Lbs
• After 25	Cycles	
	Mating	
		in14.76 Lbs
	• M	ax16.19 Lbs
0	Unmating	
		in 7.17 Lbs
	• M	ax9.62 Lbs
• After 50	Cycles	
0	Mating	
		in14.70 Lbs
	• M	ax16.33 Lbs
0	Unmating	
		in 7.39 Lbs
		ax 9.87 Lbs
• After 75	•	
0	Mating	
		in14.81 Lbs
-		ax16.54 Lbs
0	Unmating	
		in7.37 Lbs
		ax 9.95 Lbs
• After 10		
0	Mating	
		in14.79 Lbs
		ax16.78 Lbs
0	Unmating	
		in7.35 Lbs
	• M	ax 9.93 Lbs

•	Initial		
	0	Mating	
		 Min 1.36 Ll 	
		• Max 1.61 L	bs
	0	Unmating	
		• Min 0.59 L	
		• Max0.69 L	bs
٠	After 2	25 Cycles	
	0	Mating	
		 Min 1.38 Ll 	
		• Max1.61 L	bs
	0	Unmating	
		• Min 0.71 L	
		• Max 0.89 L	bs
•	After 5	50 Cycles	
	0	Mating	
		• Min 1.35 L	
		• Max1.62 L	bs
	0	Unmating	
		• Min 0.75 L	
		• Max0.96 L	bs
•	After 7	75 Cycles	
	0	Mating	
		• Min 1.36 L	
		• Max 1.62 L	bs
	0	Unmating	-
		• Min 0.75 L	
		• Max 0.93 L	bs
٠	After 1	00 Cycles	
	0	Mating	
		• Min 1.37 L	
		• Max 1.63 L	bs
	0	Unmating	-
		• Min 0.77 Li	
		• Max 0.94 L	bs

Min 108.20 gf	Set 0.0000 in
Max 124.80 gf	Set 0.0003 in
al	
Min 107.60 gf	Set 0.0001 in
Max 128.70 gf	Set 0.0007 in
	al Min 107.60 gf

RESULTS Continued

	n to Pin			
•	Initial			
	0	Mated		
	0	Unmated	10000Meg Ω	Passe
•	Therm	al Shock		_
	0	Mated		
	0	Unmated	10000Meg Ω	Passe
•	Humid			
	0	Mated		
	0	Unmated	10000Meg Ω	Passe
Re	ow to Roy	v		
•	Initial			
	0	Mated	10000Meg Ω	Passe
	0 0	Unmated		
•	-	al Shock	100001105 ==	1 4550
-	0	Mated	10000Meg Ω	Passe
	0	Unmated		
•	Humid			1 4550
	0	Mated	10000Meg Ω	Passe
	0 0	Unmated		
ielec •	o	Breakdown Voltage Test Voltage	1625 VAC 1219 VAC	
	0	Working Voltage	406 VAC	
Pi	n to Pin			
•	Initial 1	DWV	Passed	
•	Therm	al DWV	Passed	
-		ity DWV		
•		•		
•	www.to.Vov			
• Ro	ow to Row		Desced	
•	Initial 1	DWV		
• Ro	Initial Therm	DWV al DWV ity DWV	Passed	

RESULTS Continued LLCR Thermal Aging Group (192 LLCR test points) Initial -----7.71mOhms Max Thermal <= +5.0 mOhms ------ 192 Points ------ Stable 0 +5.1 to +10.0 mOhms ------ Minor 0 +10.1 to +15.0 mOhms ------ 0 Points ------ Acceptable 0 +15.1 to +50.0 mOhms ------ Marginal \cap 0 >+2000 mOhms ------ Open Failure 0 LLCR Mating/Unmating Durability Group (192 LLCR test points) Initial -----7.79mOhms Max • **Durability, 30 Cycles** <= +5.0 mOhms ------ 192 Points ------ Stable 0 +5.1 to +10.0 mOhms ------ Minor 0 +10.1 to +15.0 mOhms ------ 0 Points ------ Acceptable 0 +15.1 to +50.0 mOhms ------ 0 Points ------ Marginal 0 0 >+2000 mOhms ------ Open Failure 0 **Thermal Shock** <= +5.0 mOhms ------ 192 Points ------ Stable 0 +5.1 to +10.0 mOhms ------ Minor 0 +10.1 to +15.0 mOhms ------ 0 Points ------ Acceptable 0 +15.1 to +50.0 mOhms ------ 0 Points ------ Marginal 0 +50.1 to +2000 mOhms------- Unstable 0 >+2000 mOhms ------ Open Failure 0 Humidity <= +5.0 mOhms ------ 192 Points ------ Stable 0 +5.1 to +10.0 mOhms ------ Minor 0 +10.1 to +15.0 mOhms ------ 0 Points ------ Acceptable 0 +15.1 to +50.0 mOhms ------ 0 Points ------ Marginal 0 0 >+2000 mOhms ------ Open Failure 0 LLCR Gas Tight Group (192 LLCR test points) Initial -----7.31mOhms Max **Gas-Tight** <= +5.0 mOhms ------ 192 Points ------ Stable 0 +5.1 to +10.0 mOhms ------ Minor 0 +10.1 to +15.0 mOhms ------ 0 Points ------ Acceptable 0 +15.1 to +50.0 mOhms ------ 0 Points ------ Marginal 0 +50.1 to +2000 mOhms------ Unstable 0 >+2000 mOhms ------ Open Failure 0

RESULTS Continued LLCR Shock & Vibration Group (192 LLCR test points) Initial -----8.14mOhms Max Shock & Vibration <= +5.0 mOhms ------ 192 Points ------ Stable 0 +5.1 to +10.0 mOhms ------ Minor 0 +10.1 to +15.0 mOhms ------ 0 Points ------ Acceptable 0 +15.1 to +50.0 mOhms ------ Marginal 0 +50.1 to +2000 mOhms------ Unstable 0 >+2000 mOhms------Open Failure 0 **Mechanical Shock & Random Vibration:** Shock 0 No Damage----- Pass . 50 Nanoseconds------ Pass Vibration 0 No Damage----- Pass .

50 Nanoseconds------ Pass

DATA SUMMARIES

TEMPERATURE RISE (Current Carrying Capacity, CCC):

- 1) High quality thermocouples whose temperature slopes track one another were used for temperature monitoring.
- 2) The thermocouples were placed at a location to sense the maximum temperature generated during testing.
- 3) Temperature readings recorded are those for which three successive readings, 15 minutes apart, differ less than 1° C (computer controlled data acquisition).
- 4) Adjacent contacts were powered:
 - a. Linear configuration with 2 adjacent conductors/contacts powered

◆ Actual ■ 20% Derated

b. Linear configuration with 4 adjacent conductors/contacts powered

c. Linear configuration with 6 adjacent conductors/contacts powered

239773 6(2X3) Contacts in Linear series Part Numbers: HLE-150-02-L-DV-A/HTSW-150-06-L-D

d. Linear configuration with 8 adjacent conductors/contacts powered

239773 8(2X4) Contacts in Linear series Part Numbers:HLE-150-02-L-DV-A/HTSW-150-06-L-D

DATA SUMMARIES Continued e. Linear configuration with all adjacent conductors/contacts powered 239773 100(All) Contacts in Linear series Part Numbers:HLE-150-02-L-DV-A/HTSW-150-06-L-D Current Rating per Contact (30 Deg. Rise, 20% Derated) = 1.5Amps 5.0 Room Temp= 20.9 °C 4.5 4.0 Maximum Current, Amps per Contact 3.5 3.0 125℃ Limit 2.5 2.2 .9 2.0 1.5 1.5 1.0 1.0 0.8 0.5 0.0 40 80 100 120 20 60 140 Ambient Temperature (°C) Base Curve Derated 20 % Measured Current RT Peak Amp RT Derated Amp 85℃ Peak Amp ٠ + • ÷ 85°C Derated Amp ٠ 95℃ Peak Amp 95°C Derated Amp 115℃ Peak Amp 115°C Derated Amp Limit . 239773 100(All) Contacts in Linear series Part Numbers:HLE-150-02-L-DV-A/HTSW-150-06-L-D 50 45 40 Temperature Rise (°C above ambient) 35 30 25 20 15 10 5 -----0

1.5

Current (Amps)

Actual
20% Derated

2

2.5

3

0

0.5

1

DATA SUMMARIES Continued

MATING-UNMATING FORCE: Thermal Aging Group

	Initial				After Thermals			
	Mating		Unmating		Mating		Unmating	
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)
Minimum	24.82	5.58	11.39	2.56	17.66	3.97	8.36	1.88
Maximum	29.76	6.69	14.81	3.33	20.37	4.58	9.47	2.13
Average	27.33	6.15	12.76	2.87	18.73	4.21	8.83	1.99
St Dev	2.20	0.50	1.08	0.24	0.97	0.22	0.35	0.08
Count	8	8	8	8	8	8	8	8

Mating-Unmating Durability Gaps Group

	Initial					After 25 Cycles			
	Mat	ting	Unm	ating	Mat	ing	Unm	ating	
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	
Minimum	23.53	5.29	9.79	2.20	23.97	5.39	12.45	2.80	
Maximum	26.95	6.06	13.61	3.06	29.00	6.52	16.95	3.81	
Average	25.30	5.69	11.75	2.64	26.81	6.03	15.01	3.37	
St Dev	1.27	0.29	1.20	0.27	1.74	0.39	1.46	0.33	
Count	8	8	8	8	8	8	8	8	
		After 50) Cycles			After 75	5 Cycles		
	Mat	ting	Unm	nating Mat		ing	Unmating		
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	
Minimum	23.89	5.37	13.17	2.96	23.93	5.38	13.48	3.03	
Maximum	28.73	6.46	17.35	3.90	28.47	6.40	17.30	3.89	
Average	26.63	5.99	15.46	3.48	26.40	5.94	15.65	3.52	
St Dev	1.70	0.38	1.36	0.31	1.60	0.36	1.25	0.28	
Count	8	8	8	8	8	8	8	8	
		After 10	0 Cycles		After Humidity				
	Mat	ting	Unm	ating	Mating		Unmating		
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	
Minimum	24.20	5.44	13.61	3.06	17.57	3.95	9.79	2.20	
Maximum	28.73	6.46	17.26	3.88	21.53	4.84	11.97	2.69	
Average	26.61	5.98	15.66	3.52	19.74	4.44	11.14	2.50	
St Dev	1.61	0.36	1.19	0.27	1.22	0.27	0.71	0.16	
Count	8	8	8	8	8	8	8	8	

Mating-Unmating Basic (HLE-150-02-L-DV-A/HTSW-150-06-L-D)

8

Count

8

8

		Ini	tial		After 25 Cycles				
	Ma	ting	Unmating		Mating		Unmating		
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	
Minimum	65.79	14.79	28.29	6.36	65.65	14.76	31.89	7.17	
Maximum	72.37	16.27	38.03	8.55	72.01	16.19	42.79	9.62	
Average	69.31	15.58	31.71	7.13	69.45	15.61	35.88	8.07	
St Dev	2.07	0.46	3.14	0.71	2.28	0.51	3.86	0.87	
Count	8	8	8	8	8	8	8	8	
		After 50) Cycles			After 75	o Cycles		
	Ma	ting	Unmating		Mating		Unm	nating	
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	
Minimum	65.39	14.70	32.87	7.39	65.87	14.81	32.78	7.37	
Maximum	72.64	16.33	43.90	9.87	73.57	16.54	44.26	9.95	
Average	69.48	15.62	36.75	8.26	70.49	15.85	37.15	8.35	
St Dev	2.73	0.61	3.82	0.86	2.68	0.60	4.02	0.90	
Count	8	8	8	8	8	8	8	8	
		After 10	0 Cycles						
	Ma	ting	Unm	ating					
	Newtons	Force (Lbs)	Newtons	Force (Lbs)					
Minimum	65.79	14.79	32.69	7.35					
Maximum	74.64	16.78	44.17	9.93					
Average	70.62	15.88	37.25	8.37					
St Dev	3.52	0.79	3.91	0.88					
		1							

8

Mating-Unmating Basic (HLE-105-02-L-DV-A/HTSW-105-06-L-D)

8

Count

8

8

		Ini	tial			After 25 Cycles			
	Ма	ting	Unmating		Mating		Unmating		
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	
Minimum	6.05	1.36	2.62	0.59	6.14	1.38	3.16	0.71	
Maximum	7.16	1.61	3.07	0.69	7.16	1.61	3.96	0.89	
Average	6.65	1.50	2.83	0.64	6.65	1.50	3.56	0.80	
St Dev	0.39	0.09	0.19	0.04	0.38	0.09	0.26	0.06	
Count	8	8	8	8	8	8	8	8	
		After 50) Cycles			After 75	5 Cycles		
	Ма	ting	Unm	ating	Mat	ting	Unm	nating	
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	
Minimum	6.00	1.35	3.34	0.75	6.05	1.36	3.34	0.75	
Maximum	7.21	1.62	4.27	0.96	7.21	1.62	4.14	0.93	
Average	6.54	1.47	3.76	0.85	6.57	1.48	3.75	0.84	
St Dev	0.42	0.10	0.32	0.07	0.44	0.10	0.24	0.05	
Count	8	8	8	8	8	8	8	8	
		After 10	0 Cycles						
	Ма	ting	Unm	ating					
	Newtons	Force (Lbs)	Newtons	Force (Lbs)					
Minimum	6.09	1.37	3.42	0.77					
Maximum	7.25	1.63	4.18	0.94					
Average	6.60	1.48	3.78	0.85					
St Dev	0.43	0.10	0.22	0.05					

8

Tracking Code: 239773_Report_Rev_1	Part #: HLE-125-02-L-DV-A/HTSW-125-06-L-D
Part description	on: HLE/HTSW

Mating\Unmating Force Comparison

Number of Terminals per Row

DATA SUMMARIES Continued

NORMAL FORCE (FOR CONTACTS TESTED IN THE HOUSING):

- 1) Calibrated force gauges are used along with computer controlled positioning equipment.
- 2) For Normal force 8-10 measurements are taken and the averages reported.

		Deflections in inches Forces in Grams									
Initial	<u>0.0006</u>	0.0011	0.0017	0.0022	0.0028	0.0034	0.0039	<u>0.0045</u>	0.0050	<u>0.0056</u>	SET
Averages	10.38	22.40	33.08	46.08	58.37	68.41	80.91	91.31	103.22	115.51	0.0001
Min	8.10	18.30	28.50	39.30	51.30	60.30	73.80	84.10	96.10	108.20	0.0000
Max	14.10	27.70	39.10	53.50	67.10	76.40	90.90	100.70	113.60	124.80	0.0003
St. Dev	2.193	3.209	3.992	4.374	4.986	5.262	5.537	5.362	5.859	5.519	0.0001
Count	12	12	12	12	12	12	12	12	12	12	12

After				Def	lections in	inches Fo	rces in Gra	ams			
Thermals	0.0006	0.0011	<u>0.0017</u>	0.0022	0.0028	0.0034	0.0039	<u>0.0045</u>	0.0050	<u>0.0056</u>	SET
Averages	8.33	23.32	34.14	47.84	60.35	70.09	83.08	93.23	106.03	117.98	0.0003
Min	0.10	14.60	27.10	40.60	53.00	65.00	74.10	85.60	97.40	107.60	0.0001
Max	15.50	30.40	41.20	54.50	68.50	77.20	91.80	102.20	115.80	128.70	0.0007
St. Dev	6.016	6.100	5.330	5.050	5.742	4.322	6.312	6.140	6.504	6.707	0.0002
Count	12	12	12	12	12	12	12	12	12	12	12

INSULATION RESISTANCE (IR):

		Pin to Pin					
	Mated	Unmated	Unmated				
Minimum	HLE/HTSW	HLE	HTSW				
Initial	10000	10000	10000				
Thermal	10000	10000	10000				
Humidity	10000	10000	10000				

		Row to Row						
	Mated Unmated Unmat							
Minimum	HLE/HTSW	HLE	HTSW					
Initial	10000	10000	10000					
Thermal	10000	10000	10000					
Humidity	10000	10000	10000					

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

Voltage Rating Su	mmary
Minimum	HLE/HTSW
Break Down Voltage	1625
Test Voltage	1219
Working Voltage	406

Pin to Pin					
Initial Test Voltage	Passed				
After Thermal Test Voltage	Passed				
After Humidity Test Voltage	Passed				

Row to Row						
Initial Test Voltage	Passed					
After Thermal Test Voltage	Passed					
After Humidity Test Voltage	Passed					

DATA SUMMARIES Continued

LLCR Thermal Aging Group

- 1) A total of 192 points were measured.
- 2) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. <= +5.0 mOhms:----- Stable
 - b. +5.1 to +10.0 mOhms: ----- Minor
 - c. +10.1 to +15.0 mOhms: ----- Acceptable
 - d. +15.1 to +50.0 mOhms: ----- Marginal
 - e. +50.1 to +2000 mOhms ------ Unstable
 - f. >+2000 mOhms:-----Open Failure

	LLCR Measurement Summaries by Pin Type						
Date	2013-3-19	2013-4-2					
Room Temp (Deg C)	22	22					
Rel Humidity (%)	60	60					
Technician	Kason He	Kason He					
mOhm values	Actual	Delta	Delta	Delta			
	Initial	Thermal					
		Pin Type 1: Sig	nal				
Average	5.74	0.42					
St. Dev.	0.54	0.33					
Min	4.69	0.00					
Max	7.71	1.43					
Summary Count	192	192					
Total Count	192	192					

	LLCR Delta Count by Category						
	Stable	Minor	Acceptable	Marginal	Unstable	Open	
mOhms	<=5	>5 & <=10	>10 & <=15	>15 & <=50	>50 & <=1000	>1000	
Thermal	192	0	0	0	0	0	

DATA SUMMARIES Continued

LLCR Mating/Unmating Durability Group

- 1). A total of 192 points were measured.
- 2). EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 3). A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4). The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. <= +5.0 mOhms: ----- Stable
 - b. +5.1 to +10.0 mOhms: ----- Minor
 - c. +10.1 to +15.0 mOhms: ----- Acceptable
 - d. +15.1 to +50.0 mOhms: ----- Marginal
 - e. +50.1 to +2000 mOhms ------ Unstable f. > +2000 mOhms:----- Open Failure

	LLCR Measurement Summaries by Pin Type				
Date	2013-3-19	2013-3-21	2013-3-27	2013-4-24	
Room Temp (Deg C)	22	21	22	22	
Rel Humidity (%)	60	60	60	57	
Technician	Kason He	Kason He	e Kason He	Kason He	
mOhm values	Actual	Delta	Delta	Delta	
	Initial 100 Cycles		Therm s Shck	Humidity	
	ř		e 1: Signal	Trainiaity	
Average	5.93	0.56	0.60	0.51	
St. Dev.	0.55	0.39	0.40	0.43	
Min	4.60	0.00	0.01	0.00	
Max	7.79	2.05	1.72	1.86	
Summary Count	192	192	192	192	
Total Count	192	192	192	192	

LLCR Delta Count by Category						
	Stable Minor		Acceptable	Marginal	Unstable	Open
mOhms	<=5	>5 & <=10	>10 & <=15	>15 & <=50	>50 & <=1000	>1000
100 Cycles	192	0	0	0	0	0
Therm Shck	192	0	0	0	0	0
Humidity	192	0	0	0	0	0

DATA SUMMARIES Continued

LLCR Gas Tight Group

- 1) A total of 192 points were measured.
- 2) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. <= +5.0 mOhms: ----- Stable
 - b. +5.1 to +10.0 mOhms:----- Minor
 - c. +10.1 to +15.0 mOhms: ----- Acceptable
 - d. +15.1 to +50.0 mOhms: ----- Marginal
 - e. +50.1 to +2000 mOhms: ----- Unstable
 - f. >+2000 mOhms:-----Open Failure

	LLCR Mea	asurement Summarie	s by Pin 1	Гуре
Date	2013-3-19	2013-3-21		
Room Temp (Deg C)	22	24		
Rel Humidity (%)	60	60		
Technician	Kason He	Kason He		
mOhm values	Actual	Delta	Delta	Delta
	Initial	Acid Vapor		
		Pin Type 1: Sign	al	
Average	5.88	0.49		
St. Dev.	0.48	0.37		
Min	4.50	0.00		
Max	7.31	1.87		
Summary Count	192	192		
Total Count	192	192		

LLCR Delta Count by Category						
	Stable	Minor	Acceptable	Marginal	Unstable	Open
mOhms	<=5	>5 & <=10	>10 & <=15	>15 & <=50	>50 & <=1000	>1000
Acid Vapor	192	0	0	0	0	0

DATA SUMMARIES Continued

LLCR Shock & Vibration Group

- 1) A total of 192 points were measured.
- 2) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. <= +5.0 mOhms: ----- Stable
 - b. +5.1 to +10.0 mOhms:-----Minor
 - c. +10.1 to +15.0 mOhms: ----- Acceptable
 - d. +15.1 to +50.0 mOhms: ----- Marginal
 - e. +50.1 to +2000 mOhms ------ Unstable
 - f. >+2000 mOhms: ----- Open Failure

	LLCR Measurement Summaries b			Туре
Date	2013-6-7	2013-6-10		
Room Temp (Deg C)	21	21		
Rel Humidity (%)	51	52		
Technician	Troy Cook	Troy Cook		
mOhm values	Actual	Delta	Delta	Delta
	Initial	Shock-Vib		
		Pin Type 1: Sigr	nal	
Average	5.46	0.23		
St. Dev.	0.51	0.25		
Min	4.57	0.00		
Max	8.14	1.74		
Summary Count	192	192		
Total Count	192	192		

	LLCR Delta Count by Category					
	Stable	Minor	Acceptable	Marginal	Unstable	Open
mOhms	<=5	>5 & <=10	>10 & <=15	>15 & <=50	>50 & <=1000	>1000
Shock-Vib	192	0	0	0	0	0

Nanosecond Event Detection:

Shock and Vibration Event Detection Summary				
Contacts tested	60			
Test Condition	C, 100g's, 6ms, Half-Sine			
Shock Events	0			
Test Condition	V-B, 7.56 rms g			
Vibration Events	0			
Total Events	0			

EQUIPMENT AND CALIBRATION SCHEDULES

Equipment #: HZ-TCT-01 Description: Normal force analyzer Manufacturer: Mecmesin Multitester Model: Mecmesin Multitester 2.5-i Serial #: 08-1049-04 Accuracy: Last Cal: 4/26/2013, Next Cal: 4/25/2014

Equipment #: HZ-OV-01 Description: Oven Manufacturer: Huida Model: CS101-1E Serial #: CS101-1E-B Accuracy: Last Cal: 12/13/2012, Next Cal: 12/12/2013

Equipment #: HZ-THC-01 Description: Humidity transmitter Manufacturer: Thermtron Model: SM-8-8200 Serial #: 38846 Accuracy: Last Cal: 2/28/2013, Next Cal: 2/27/2014

Equipment #: HZ-HPM-01 Description: NA9636H Manufacturer: Ainuo Model: 6031A Serial #: 089601091 Accuracy: Last Cal: 3/7/2013, Next Cal: 3/6/2014

Equipment #: HZ-MO-05 Description: Micro-ohmmeter Manufacturer: Keithley Model: 3706 Serial #: 1285188 Accuracy: Last Cal: 11/15/2012, Next Cal: 11/14/2013

Equipment #: HZ-TSC-01 Description: Vertical Thermal Shock Chamber Manufacturer: Cincinnatti Sub Zero Model: VTS-3-6-6-SC/AC Serial #: 10-VT14994 Accuracy: See Manual ... Last Cal: 06/28/2012, Next Cal: 06/27/2013

EQUIPMENT AND CALIBRATION SCHEDULES Continued

Equipment #: MO-04 Description: Multimeter /Data Acquisition System Manufacturer: Keithley Model: 2700 Serial #: 0798688 Accuracy: See Manual ... Last Cal: 04/30/2012, Next Cal: 04/30/2013

Equipment #: SVC-01 Description: Shock & Vibration Table Manufacturer: Data Physics Model: LE-DSA-10-20K Serial #: 10037 Accuracy: See Manual ... Last Cal: 11/31/2012, Next Cal: 11/31/2013

Equipment #: ACLM-01 Description: Accelerometer Manufacturer: PCB Piezotronics Model: 352C03 Serial #: 115819 Accuracy: See Manual ... Last Cal: 07/09/2012, Next Cal: 07/09/2013

Equipment #: ED-03 Description: Event Detector Manufacturer: Analysis Tech Model: 32EHD Serial #: 1100604 Accuracy: See Manual ... Last Cal: 06/04/2013, Next Cal: 06/04/2014