

Project Number: Design Qualification Test Report	Tracking Code: 2451235_Report_Rev_1
Requested by: Ross Pritchett	Date: 5/19/2021
Part #: GPPB-PF-1-02-EG-ST-EM-2N/RF047A-M0SJ-505050-0305	
Part description: GPPB/RF047A	Tech: Tony Wagoner
Test Start: 8/20/2020	Test Completed: 11/6/2020

DESIGN QUALIFICATION TEST REPORT

GPPB/RF047A
GPPB-PF-1-02-EG-ST-EM-2N/RF047A-M0SJ-505050-0305

REVISION HISTORY

DATA	REV.NUM.	DESCRIPTION	ENG
5/19/2021	1	Initial Issue	KH

CERTIFICATION

All instruments and measuring equipment were calibrated to National Institute for Standards and Technology (NIST) traceable standards according to ISO 10012-1 and ANSI/NCSL 2540-1, as applicable.

All contents contained herein are the property of Samtec. No portion of this report, in part or in full shall be reproduced without prior written approval of Samtec.

SCOPE

To perform the following tests: Design Qualification test. Please see test plan.

APPLICABLE DOCUMENTS

Standards: EIA Publication 364

TEST SAMPLES AND PREPARATION

- 1) All materials were manufactured in accordance with the applicable product specification.
- 2) All test samples were identified and encoded to maintain traceability throughout the test sequences.
- 3) After soldering, the parts to be used for LLCR and DWV/IR testing were cleaned according to CO-SC-WI-3029.
- 4) Either an automated cleaning procedure or an ultrasonic cleaning procedure may be used.
- 5) The automated procedure is used with aqueous compatible soldering materials.
- 6) Parts not intended for testing LLCR and DWV/IR are visually inspected and cleaned if necessary.
- 7) Any additional preparation will be noted in the individual test sequences.
- 8) Solder Information: Lead Free
- 9) Samtec Test PCBs used: PCB-1110836-TST/PCB-110837-TST

FLOWCHARTS

IR/DWV

Pin-to-Ground

Group 1

GPPB-PF-1-02-EG-ST-EM-2N
RF047A-M0SJ-505050-0305
5 Assemblies

Note: Use 2 parts for initial breakdown and remaining 3 parts for IR/DWV.

Note: CONNECTORS TESTED AFTER SOLDERED TO BOARD

Step Description

1. DWV Breakdown ⁽²⁾ - Non Standard
2. DWV at Test Voltage ⁽¹⁾ - Non Standard
Test Voltage = 325 V
3. IR ⁽³⁾ - Non Standard

Group 2

GPPB-PF-1-02-EG-ST-EM-2N
RF047A-M0SJ-505050-0305
6 Assemblies

Note: CONNECTORS TESTED AFTER SOLDERED TO BOARD

Step Description

1. LLCR ⁽⁴⁾ - Non Standard
2. Cycles
Quantity = 100 Cycles
Note: PER DSCC 10019
3. LLCR ⁽⁴⁾ - Non Standard
MAX DELTA = 15 mOhm
4. Connector Pull
Note: Record failure force (data only). 3 Samples.
5. Connector Shear
Note: Record failure force (data only). 3 Samples.

Group 3

GPPB-PF-1-02-EG-ST-EM-2N
RF047A-M0SJ-505050-0305
5 Assemblies

Note: CONNECTORS TESTED WITHOUT BOARD

Step Description

1. INTERFACE GAGING
Note: Prior to Center Contact Retention take a baseline interface reading, record the measurement.
2. CENTER CONTACT RETENTION
RETENTION FORCE = 1.5 lbs
Note: 1.5 pounds (24 oz.) (.002 max. contact movement). Contact movement change can be measured from any body reference surface (delta = before - after).
3. INTERFACE GAGING
Note: After Center Contact Retention remeasure interface, record measurement.

(1) DWV at Test Voltage = Other

325 Vrms min. at sea level per DSCC 10019.

DWV test voltage is equal to 75% of the lowest breakdown voltage

Test voltage applied for 60 seconds. PER DSCC-10019 AND MIL-PRF-39012 (PARA 4.6.14)

(2) DWV Breakdown = Other

Record breakdown voltage. (Data only)
MIL-PRF-39012, Para 4.6.14

(3) IR = Other

5000 megohms min per DSCC 10019 and MIL-STD-202-302.

MIL-PRF-39012, Para 4.6.8

(4) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max
Test Current = 100 mA Max

FLOWCHARTS Continued**Mechanical Shock/Random Vibration/Event Detection****Group 1**

GPPB-PF-1-02-EG-ST-EM-2N

RF047A-M0SJ-505050-0305

5 Assemblies

*Note: CONNECTORS TESTED AFTER
SOLDERED TO BOARD*

Step Description

1. LLCR ⁽¹⁾
2. Mechanical Shock
*Note: MIL-STD-202, Method 213,
Test Condition H. EXCEPTION - 50
ns max. electrical interruption.*
3. Nanosecond Event Detection
(Mechanical Shock) ⁽²⁾ - Non Standard
4. High Frequency Vibration
*Note: MIL-STD-202-204, Test
Condition D per DSCC 10019.
EXCEPTION - 50 ns max. electrical
interruption.*
5. Nanosecond Event Detection
(Random Vibration) ⁽³⁾ - Non Standard
6. LLCR ⁽¹⁾
MAX DELTA = 15 mOhm

(1) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max

Test Current = 100 mA Max

(2) Nanosecond Event Detection (Mechanical Shock) = Other

Test condition H per DSCC 10019 (75 g). EXCEPTION: 50 ns max. electrical interruption.

MIL-STD-202-213

(3) Nanosecond Event Detection (Random Vibration) = Other

MIL-STD-202-204

Test condition D per DSCC 10019 (15 minutes min.). EXCEPTION - 50 ns max. electrical interruption.

FLOWCHARTS Continued**THERMAL SHOCK/CONTACT RESISTANCE****Group 1**

GPPB-PF-1-02-EG-ST-EM-2N

RF047A-M0SJ-505050-0305

5 Assemblies

*Note: CONNECTORS TESTED AFTER
SOLDERED TO BOARD*

Step Description

1. LLCR ⁽¹⁾ - Non Standard
2. Thermal Shock ⁽²⁾ - Non Standard
3. LLCR ⁽¹⁾ - Non Standard
MAX DELTA = 15 mOhm

(1) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max
Test Current = 100 mA Max

(2) Thermal Shock = Other

MIL-STD-202-107

Test condition B per DSCC 10019. Exception - high temperature to be +165°C. Visual inspection for damage.

ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

THERMAL SHOCK:

- 1) MIL-STD-202-107, *Thermal Shock (Temperature Cycling) Test Procedure for Electrical Connectors*.
- 2) Test Condition B per DSCL 10019. Exception – high temperature to be +165° C. Visual inspection for damage.
- 3) All test samples are pre-conditioned at ambient.
- 4) All test samples are exposed to environmental stressing in the mated condition.

MECHANICAL SHOCK (Specified Pulse):

- 1) Reference document: MIL-STD-202, *Mechanical Shock Test Procedure for Electrical Connectors*
- 2) Test Condition: MIL-STD-202, Method 213 Cond. I.

VIBRATION:

- 1) Reference document: MIL-STD-202, *Vibration Test Procedure for Electrical Connectors*
- 2) Test Condition: MIL-STD-202-204, Condition D per DSCL 10019.

NANOSECOND-EVENT DETECTION (Mechanical Shock):

- 1) Reference document: MIL-STD-202-213, *Nanosecond-Event Detection for Electrical Connectors*
- 2) Test condition H per DSCL 10019(75g).
- 3) Prior to test, the samples were characterized to assure the low nanosecond event being monitored will trigger the detector.
- 4) After characterization it was determined the test samples could be monitored for 50 nanosecond events

NANOSECOND-EVENT DETECTION (Random Vibration):

- 1) Reference document: MIL-STD-202-204, *Nanosecond-Event Detection for Electrical Connectors*
- 2) Test condition D per DSCL 10019(15 minutes min).
- 3) Prior to test, the samples were characterized to assure the low nanosecond event being monitored will trigger the detector.
- 4) After characterization it was determined the test samples could be monitored for 50 nanosecond events

LLCR:

- 1) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
 - a. $\leq +5.0$ mOhms: -----Stable
 - b. $+5.1$ to $+10.0$ mOhms: -----Minor
 - c. $+10.1$ to $+15.0$ mOhms: -----Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: -----Marginal
 - e. $+50.1$ to $+1000$ mOhms: -----Unstable
 - f. $>+1000$ mOhms: -----Open Failure

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes

INSULATION RESISTANCE (IR):

To determine the resistance of insulation materials to leakage of current through or on the surface of these materials when a DC potential is applied.

5000 megohms min per DSCC 10019 and MIL-STD-202-302. MIL-PRF-39012, Para 4.6.8.

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

To determine if the sockets can operate at its rated voltage and withstand momentary over potentials due to switching, surges, and other similar phenomenon. Separate samples are used to evaluate the effect of environmental stresses so not to influence the readings from arcing that occurs during the measurement process.

1) Breakdown:

Record breakdown voltage. (Data only). MIL-PRF-39012, para 4.6.14

2) Test Voltage

- a. 325 Vrms min. at sea level per DSCC 10019.
- b. DWV test voltage is equal to 75% of the lowest breakdown voltage.
- c. Test voltage applied for 60 seconds. Per DSCC-10019 and MIL-PRF-39012, PARA 4.6.14.

RESULTS

Push & Shear Force:

IR/DWV Group 2

Push force

- Min ----- 8.14 lbs
- Max ----- 8.24 lbs

Shear force

- Min ----- 47.49 lbs
- Max ----- 52.67 lbs

Interface Gaging & Mass

IR/DWV Group 3

Mass

- Min ----- 0.74139 g
- Max ----- 0.74497 g

Interface Gaging

Initial

- Min ----- 0.05619 inch
- Max ----- 0.05740 inch

After retention (1.5 lbs)

- Min ----- 0.05570 inch
- Max ----- 0.05711 inch

Insulation Resistance minimums, IR

IR/DWV Group 1

Pin to Ground

- Initial

- Mated ----- 9200 Meg Ω ----- Passed
- Unmated ----- 45000 Meg Ω ----- Passed

Dielectric Withstanding Voltage minimums, DWV

IR/DWV Group 1

Pin to Ground

- Breakdown Voltage ----- 689 VAC
- Test Voltage ----- 517 VAC
- Working Voltage ----- 172 VAC

- Test Voltage ----- 325 VAC

IR/DWV Group 1

Pin to Ground

- Initial DWV ----- Passed

RESULTS Continued

LLCR IR/DWV Group (12 signal and 6 ground LLCR test points)

Signal

- Initial ----- 7.87 mOhms Max
- After 100 cycles
 - <= +5.0 mOhms ----- 12 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +1000 mOhms ----- 0 Points ----- Unstable
 - >+1000 mOhms ----- 0 Points ----- Open Failure

Ground

- Initial ----- 0.55 mOhms Max
- After 100 cycles
 - <= +5.0 mOhms ----- 6 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +1000 mOhms ----- 0 Points ----- Unstable
 - >+1000 mOhms ----- 0 Points ----- Open Failure

LLCR Thermal Shock (10 signal and 5 ground LLCR test points)

Signal

- Initial ----- 7.44 mOhms Max
- After Thermal Shock
 - <= +5.0 mOhms ----- 10 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +1000 mOhms ----- 0 Points ----- Unstable
 - >+1000 mOhms ----- 0 Points ----- Open Failure

Ground

- Initial ----- 0.44 mOhms Max
- After Thermal Shock
 - <= +5.0 mOhms ----- 5 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +1000 mOhms ----- 0 Points ----- Unstable
 - >+1000 mOhms ----- 0 Points ----- Open Failure

RESULTS Continued

LLCR Shock & Vibration Group (10 signal and 5 ground LLCR test points)

Signal Pin

- Initial ----- 88.13 mOhms Max
- Shock &Vibration
 - <= +5.0 mOhms----- 10 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +1000 mOhms----- 0 Points ----- Unstable
 - >+1000 mOhms ----- 0 Points ----- Open Failure

Ground Pin

- Initial ----- 0.47 mOhms Max
- Shock &Vibration
 - <= +5.0 mOhms----- 5 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +1000 mOhms----- 0 Points ----- Unstable
 - >+1000 mOhms ----- 0 Points ----- Open Failure

Mechanical Shock & Random Vibration:

- Shock
 - No Damage----- Pass
 - 50 Nanoseconds ----- Pass
- Vibration
 - No Damage----- Pass
 - 50 Nanoseconds ----- Pass

DATA SUMMARIES

Push & Shear Force: IR/DWV Group 2

Push force

	Force (lbs)
Minimum	8.14
Maximum	8.24
Average	8.18

Shear force

	Force (lbs)
Minimum	47.49
Maximum	52.67
Average	49.90

DATA SUMMARIES Continued**Interface Gaging & Mass
IR/DWV Group 3**

Mass	
Sample	Mass (g)
1	0.7424
2	0.74497
3	0.74338
4	0.7431
5	0.74139
Min	0.74139
Max	0.74497
Avg	0.74305
St. Dev.	0.00132
Count	5

Interface Gaging

Interface Gaging (0.072 inch)			
	Initial	1.5 Push Force	Delta
Sample 1	0.05659	0.05570	0.00089
	0.05619	0.05608	0.00011
Sample 2	0.05717	0.05711	0.00006
	0.05651	0.05621	0.00030
Sample 3	0.05740	0.05679	0.00061
	0.05624	0.05614	0.00010
Sample 4	0.05624	0.05592	0.00032
	0.05714	0.05707	0.00007
Sample 5	0.05629	0.05618	0.00011
	0.05629	0.05624	0.00005
Min	0.05619	0.05570	0.00005
Max	0.05740	0.05711	0.00089
Avg	0.05661	0.05634	0.00026

DATA SUMMARIES Continued**INSULATION RESISTANCE (IR):**

IR/DWV Group 1

Pin to Ground	
<i>Mated</i>	
GPPB / RF047A	
IR	
Minimum	9200
Maximum	45000
Average	31240

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

IR/DWV Group 1

Breakdown	
Voltage Rating Summary	
Minimum	GPPB/RF047A
Break Down Voltage	689
Test Voltage	517
Working Voltage	172

DWV

Pin to Ground	
<i>Mated</i>	
GPPB / RF047A	
DWV	
Minimum	325
Maximum	325
Average	325

DATA SUMMARIES Continued

LLCR IR/DWV:

- 1) A total of 12 signal and 6 ground points were measured.
- 2) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 3) A computer program, LLCR 221.exe, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. $\leq +5.0$ mOhms: -----Stable
 - b. $+5.1$ to $+10.0$ mOhms: -----Minor
 - c. $+10.1$ to $+15.0$ mOhms: -----Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: -----Marginal
 - e. $+50.1$ to $+1000$ mOhms: -----Unstable
 - f. $>+1000$ mOhms: -----Open Failure

		LLCR Measurement Summaries by Pin Type	
		2020/9/21	2020/9/30
Room Temp (Deg C)		22	23
Rel Humidity (%)		40	41
Technician		Tony Wagoner	Tony Wagoner
mOhm values	Actual	After	
	Initial	100 Cycles	
Pin Type: Signal 1			
Average	7.13	0.22	
St. Dev.	0.47	0.13	
Min	6.28	0	
Max	7.87	0.43	
Summary Count	12	12	
Total Count	12	12	
Pin Type: GND 1			
Average	0.47	0.03	
St. Dev.	0.06	0.02	
Min	0.4	0	
Max	0.55	0.05	
Summary Count	6	6	
Total Count	6	6	

LLCR Delta Count by Category						
	Stable	Minor	Acceptable	Marginal	Unstable	Open
mOhms	≤ 5	$>5 \text{ & } \leq 10$	$>10 \text{ & } \leq 15$	$>15 \text{ & } \leq 50$	$>50 \text{ & } \leq 1000$	>1000
100 Cycles	18	0	0	0	0	0

DATA SUMMARIES Continued

LLCR Thermal Shock/Contact Resistance:

- 1) A total of 10 signal and 5 ground points were measured.
- 2) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 3) A computer program, LLCR 221.exe, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. $\leq +5.0$ mOhms: Stable
 - b. $+5.1$ to $+10.0$ mOhms: Minor
 - c. $+10.1$ to $+15.0$ mOhms: Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: Marginal
 - e. $+50.1$ to $+1000$ mOhms: Unstable
 - f. $>+1000$ mOhms: Open Failure

LLCR Measurement Summaries by Pin Type	
Date	2020/9/21
Room Temp (Deg C)	22
Rel Humidity (%)	40
Technician	Tony Wagoner
mOhm values	Actual
	Delta
Initial	Thermal Shock
Pin Type: Signal 1	
Average	6.84
St. Dev.	0.43
Min	6.27
Max	7.44
Summary Count	10
Total Count	10
Pin Type: GND 1	
Average	0.39
St. Dev.	0.04
Min	0.34
Max	0.44
Summary Count	5
Total Count	5

LLCR Delta Count by Category						
	Stable	Minor	Acceptable	Marginal	Unstable	Open
mOhms	≤ 5	$>5 \text{ & } \leq 10$	$>10 \text{ & } \leq 15$	$>15 \text{ & } \leq 50$	$>50 \text{ & } \leq 1000$	>1000
Thermal Shock	15	0	0	0	0	0

DATA SUMMARIES Continued

LLCR Shock & Vibration Group:

- 1) A total of 10 signal and 5 ground points were measured.
- 2) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 3) A computer program, LLCR 221.exe, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. $\leq +5.0$ mOhms: -----Stable
 - b. $+5.1$ to $+10.0$ mOhms: -----Minor
 - c. $+10.1$ to $+15.0$ mOhms: -----Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: -----Marginal
 - e. $+50.1$ to $+1000$ mOhms: -----Unstable
 - f. $>+1000$ mOhms: -----Open Failure

LLCR Measurement Summaries by Pin Type	
Date	9/22/2020
Room Temp (Deg C)	22
Rel Humidity (%)	44
Technician	Tony Wagoner
mOhm values	Actual
	Initial
Pin Type: Signal 1	
Average	86.49
St. Dev.	0.87
Min	85.23
Max	88.13
Summary Count	10
Total Count	10
Pin Type: GND 2	
Average	0.43
St. Dev.	0.04
Min	0.39
Max	0.47
Summary Count	5
Total Count	5

LLCR Delta Count by Category						
	Stable	Minor	Acceptable	Marginal	Unstable	Open
mOhms	≤ 5	$>5 \text{ & } \leq 10$	$>10 \text{ & } \leq 15$	$>15 \text{ & } \leq 50$	$>50 \text{ & } \leq 1000$	>1000
Shock-Vib	15	0	0	0	0	0

DATA SUMMARIES Continued**Nanosecond Event Detection:**

Shock and Vibration Event Detection Summary	
Contacts tested	10
Test Condition	MIL-STD-202, Method 213 Cond. I
Shock Events	0
Test Condition	MIL-STD-202-204, Condition D
Vibration Events	0
Total Events	0

EQUIPMENT AND CALIBRATION SCHEDULES

Equipment #: TCT-04**Description:** Dillon Quantrol TC21 25-1000 mm/min series test stand**Manufacturer:** Dillon Quantrol**Model:** TC2 I series test stand**Serial #:** 04-1041-04**Accuracy:** Speed Accuracy: +/- 5% of indicated speed; Speed Accuracy: +/- 5% of indicated speed;
... Last Cal: 05/29/2020, Next Cal: 05/29/2021**Equipment #:** MO-11**Description:** Switch/Multimeter**Manufacturer:** Keithley**Model:** 3706**Serial #:** 120169**Accuracy:** See Manual

... Last Cal: 09/11/2020, Next Cal: 09/11/2021

Equipment #: TSC-01**Description:** Vertical Thermal Shock Chamber**Manufacturer:** Cincinnati Sub Zero**Model:** VTS-3-6-6-SC/AC**Serial #:** 10-VT14993**Accuracy:** See Manual

... Last Cal: 06/30/2020, Next Cal: 06/30/2021

Equipment #: HPT-01**Description:** Hipot Safety Tester**Manufacturer:** Vitrek**Model:** V73**Serial #:** 019808**Accuracy:**

... Last Cal: 05/15/2020, Next Cal: 05/15/2021

Equipment #: MO-04**Description:** Multimeter /Data Acquisition System**Manufacturer:** Keithley**Model:** 2700**Serial #:** 0798688**Accuracy:** See Manual

... Last Cal: 09/11/2020, Next Cal: 09/11/2021

Equipment #: PS-02**Description:** Power Supply**Manufacturer:** Hewlett-Packer**Model:** 6033A**Serial #:** N/A**Accuracy:** See Manual

... Last Cal: NOT CALIBRATED

EQUIPMENT AND CALIBRATION SCHEDULES

Equipment #: SVC-01

Description: Shock & Vibration Table

Manufacturer: Data Physics

Model: LE-DSA-10-20K

Serial #: 10037

Accuracy: See Manual

... Last Cal: 04/22/2020, Next Cal: 04/22/2021

Equipment #: ACLM-01

Description: Accelerometer

Manufacturer: PCB Piezotronics

Model: 352C03

Serial #: 115819

Accuracy: See Manual

... Last Cal: 07/18/2020, Next Cal: 07/18/2021

Equipment #: ED-03

Description: Event Detector

Manufacturer: Analysis Tech

Model: 32EHD

Serial #: 1100604

Accuracy: See Manual

... Last Cal: 10/31/2020, Next Cal: 10/31/2021