

Project Number: Design Qualification Test Report	Tracking Code: 246205_Report_Rev_1	
Requested by: Leo Lee	Date: 4/16/2013	Product Rev:
Part #: BSH-060-01-L-D-RA-WT/ BTH-060-01-L-D	Lot #: N/A	Tech: Peter Chen Eng: Vico Zhao
Part description: BSH/BTH		Qty to test: 24
Test Start: 3/5/2013	Test Completed: 3/25/2013	

Design Qualification Test Report

BSH/BTH

BSH-060-01-L-D-RA-WT/ BTH-060-01-L-D

REVISION HISTORY

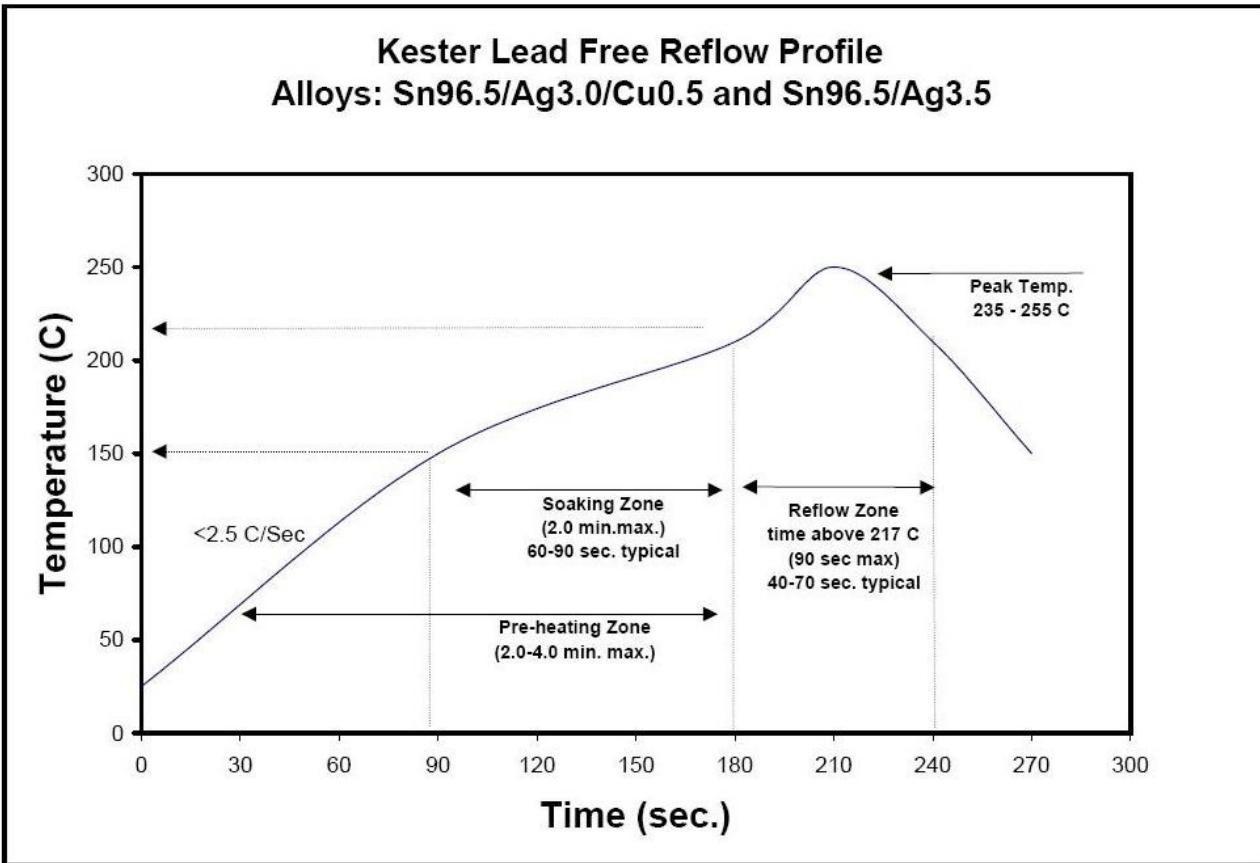
DATA	REV.NUM.	DESCRIPTION	ENG
4/16/2013	1	Initial Issue	PC

CERTIFICATION

All instruments and measuring equipment were calibrated to National Institute for Standards and Technology (NIST) traceable standards according to ISO 10012-1 and ANSI/NCSL 2540-1, as applicable.

All contents contained herein are the property of Samtec. No portion of this report, in part or in full shall be reproduced without prior written approval of Samtec.

SCOPE


To perform the following tests: Design Qualification Test, Please see test plan.

APPLICABLE DOCUMENTS

Standards: EIA Publication 364

TEST SAMPLES AND PREPARATION

- 1) All materials were manufactured in accordance with the applicable product specification.
- 2) All test samples were identified and encoded to maintain traceability throughout the test sequences.
- 3) After soldering, the parts to be used for LLCR and DWV/IR testing were cleaned according to TLWI-0001.
- 4) Either an automated cleaning procedure or an ultrasonic cleaning procedure may be used.
- 5) The automated procedure is used with aqueous compatible soldering materials.
- 6) Parts not intended for testing LLCR and DWV/IR are visually inspected and cleaned if necessary.
- 7) Any additional preparation will be noted in the individual test sequences.
- 8) Solder Information: Lead free
- 9) Re-Flow Time/Temp: See accompanying profile.
- 10) Samtec Test PCBs used: PCB-103512-TST

TYPICAL OVEN PROFILE (Soldering Parts to Test Boards)

FLOWCHARTS**Gas Tight**

TEST	GROUP A1 Signals - Top & Btm Row
STEP	192 Points
01	LLCR-1
02	Gas Tight
03	LLCR-2

Gas Tight = EIA-364-36A

LLCR = EIA-364-23, LLCR

20 mV Max, 100 mA Max

Use Keithley 580 or 3706 in 4 wire dry circuit mode

Thermal Aging

TEST	GROUP A1 8 Boards
STEP	Thermal Aging (Mated)
01	Contact Gaps
02	Forces - Mating / Unmating
03	LLCR-1
04	Thermal Aging (Mated and Undisturbed)
05	LLCR-2
06	Forces - Mating / Unmating
07	Contact Gaps

Thermal Aging = EIA-364-17, Test Condition 4 (105°C)

Time Condition 'B' (250 Hours)

Mating / Unmating Forces = EIA-364-13

Contact Gaps / Height - No standard method. Usually measured optically.

Gaps to be taken on a minimum of 20% of each part tested

LLCR = EIA-364-23, LLCR

20 mV Max, 100 mA Max

Use Keithley 580 or 3706 in 4 wire dry circuit mode

FLOWCHARTS Continued**Mechanical Shock / Vibration / LLCR**

TEST	GROUP A1 Signals - Top & Btm Row 192 Points
STEP	
01	LLCR-1
02	Shock
03	Vibration
04	LLCR-2

Mechanical Shock = EIA 364-27 Half Sine,

100 g's, 6 milliSeconds (Condition "C") each axis

Vibration = EIA 364-28, Random Vibration

7.56 g RMS, Condition VB -- 2 hours/axis

LLCR = EIA-364-23, LLCR

20 mV Max, 100 mA Max

Use Keithley 580 or 3706 in 4 wire dry circuit mode

Shock / Vibration / nanoSecond Event Detection

TEST	GROUP A1 Signals - Top & Btm Row 60 Points
STEP	
01	Event Detection, Shock
02	Event Detection, Vibration

Mechanical Shock = EIA 364-27 Half Sine,

100 g's, 6 milliSeconds (Condition "C") each axis

Vibration = EIA 364-28, Random Vibration

7.56 g RMS, Condition VB -- 2 hours/axis

Event detection requirement during Shock / Vibration is 50 nanoseconds minimum

ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

THERMAL:

- 1) EIA-364-17, *Temperature Life with or without Electrical Load Test Procedure for Electrical Connectors*.
- 2) Test Condition 4 at 105° C.
- 3) Test Time Condition B for 250 hours.
- 4) All test samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

MECHANICAL SHOCK (Specified Pulse):

- 1) Reference document: EIA-364-27, *Mechanical Shock Test Procedure for Electrical Connectors*
- 2) Test Condition C
- 3) Peak Value: 100 G
- 4) Duration: 6 Milliseconds
- 5) Wave Form: Half Sine
- 6) Velocity: 12.3 ft/s
- 7) Number of Shocks: 3 Shocks / Direction, 3 Axis (18 Total)

VIBRATION:

- 1) Reference document: EIA-364-28, *Vibration Test Procedure for Electrical Connectors*
- 2) Test Condition V, Letter B
- 3) Power Spectral Density: 0.04 G² / Hz
- 4) G 'RMS': 7.56
- 5) Frequency: 50 to 2000 Hz
- 6) Duration: 2.0 Hours per axis (3 axis total)

NANOSECOND-EVENT DETECTION:

- 1) Reference document: EIA-364-87, *Nanosecond-Event Detection for Electrical Connectors*
- 2) Prior to test, the samples were characterized to assure the low nanosecond event being monitored will trigger the detector.
- 3) After characterization it was determined the test samples could be monitored for 50 nanosecond events

MATING/UNMATING:

- 1) Reference document: EIA-364-13, *Mating and Unmating Forces Test Procedure for Electrical Connectors*.
- 2) The full insertion position was to within 0.003" to 0.004" of the plug bottoming out in the receptacle to prevent damage to the system under test.
- 3) One of the mating parts is secured to a floating X-Y table to prevent damage during cycling.

ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

LLCR:

- 1) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
 - a. $\leq +5.0$ mOhms:----- Stable
 - b. $+5.1$ to $+10.0$ mOhms:----- Minor
 - c. $+10.1$ to $+15.0$ mOhms:----- Acceptable
 - d. $+15.1$ to $+50.0$ mOhms:----- Marginal
 - e. $+50.1$ to $+2000$ mOhms:----- Unstable
 - f. $>+2000$ mOhms:----- Open Failure

GAS TIGHT:

To provide method for evaluating the ability of the contacting surfaces in preventing penetration of harsh vapors which might lead to oxide formation that may degrade the electrical performance of the contact system.

- 1) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
 - a. $\leq +5.0$ mOhms:----- Stable
 - b. $+5.1$ to $+10.0$ mOhms:----- Minor
 - c. $+10.1$ to $+15.0$ mOhms:----- Acceptable
 - d. $+15.1$ to $+50.0$ mOhms:----- Marginal
 - e. $+50.1$ to $+2000$ mOhms:----- Unstable
 - f. $>+2000$ mOhms:----- Open Failure
- 4) Procedure:
 - a. Reference document: EIA-364-36, *Test Procedure for Determination of Gas-Tight Characteristics for Electrical Connectors, Sockets and/or Contact Systems*.
 - b. Test Conditions:
 - i. Class II--- Mated pairs of contacts assembled to their plastic housings.
 - ii. Reagent grade Nitric Acid shall be used of sufficient volume to saturate the test chamber
 - iii. The ratio of the volume of the test chamber to the surface area of the acid shall be 10:1.
 - iv. The chamber shall be saturated with the vapor for at least 15 minutes before samples are added.
 - v. Exposure time, 55 to 65 minutes.
 - vi. The samples shall be no closer to the chamber walls than 1 inches and no closer to the surface of the acid than 3 inches.
 - vii. The samples shall be dried after exposure for a minimum of 1 hour.
 - viii. Drying temperature 50°C
 - ix. The final LLCR shall be conducted within 1 hour after drying.

RESULTS

Mating /unmating force

- Initial
 - Mating
 - Min ----- 10.48 Lbs
 - Max ----- 16.39 Lbs
 - Unmating
 - Min ----- 4.38 Lbs
 - Max ----- 6.85 Lbs
- After thermal aging
 - Mating
 - Min ----- 4.52 Lbs
 - Max ----- 6.84 Lbs
 - Unmating
 - Min ----- 1.82 Lbs
 - Max ----- 3.36 Lbs

LLCR Thermal aging (192 signal pin LLCR test points)

Row 1

- Initial ----- 32.55 mOhms Max
- Gas-Tight
 - <= +5.0 mOhms ----- 70 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 18 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

Row 2

- Initial ----- 34.75 mOhms Max
- Gas-Tight
 - <= +5.0 mOhms ----- 98 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 6 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

LLCR Gas Tight (192 signal pin LLCR test points)

Row 1

- Initial ----- 33.86 mOhms Max
- Gas-Tight
 - <= +5.0 mOhms ----- 88 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

Row 2

- Initial ----- 36.47 mOhms Max
- Gas-Tight
 - <= +5.0 mOhms ----- 104 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

RESULTS Continued

LLCR Mechanical Shock & Vibration (192 signal pin LLCR test points)

Row 1

- Initial ----- 34.81 mOhms Max
- Shock&Vibration
 - <= +5.0 mOhms ----- 88 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

Row 2

- Initial ----- 34.25 mOhms Max
- Shock&Vibration
 - <= +5.0 mOhms ----- 104 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

Mechanical Shock & Random Vibration:

- Shock
 - No Damage----- ----- Passed
 - 50 Nanoseconds----- ----- Passed
- Vibration
 - No Damage----- ----- Passed
 - 50 Nanoseconds----- ----- Passed

DATA SUMMARIES Continued**MATING/UNMATING FORCE:****Thermal aging:**

	Initial				After Thermals			
	Mating		Unmating		Mating		Unmating	
	Newton	Force (Lbs)	Newton	Force (Lbs)	Newton	Force (Lbs)	Newton	Force (Lbs)
Minimum	46.62	10.48	19.48	4.38	20.10	4.52	8.10	1.82
Maximum	72.90	16.39	30.47	6.85	30.42	6.84	14.95	3.36
Average	57.67	12.97	25.51	5.74	24.83	5.58	11.33	2.55
St Dev	8.76	1.97	3.76	0.85	3.29	0.74	2.08	0.47
Count	8	8	8	8	8	8	8	8

DATA SUMMARIES Continued

LLCR thermal aging

- 1) A total of 192 points were measured
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. $\leq +5.0$ mOhms:----- Stable
 - b. $+5.1$ to $+10.0$ mOhms:----- Minor
 - c. $+10.1$ to $+15.0$ mOhms:----- Acceptable
 - d. $+15.1$ to $+50.0$ mOhms:----- Marginal
 - e. $+50.1$ to $+2000$ mOhms ----- Unstable
 - f. $>+2000$ mOhms:----- Open Failure

LLCR Measurement Summaries by Pin Type						
mOhm values	Date	3/8/2013	3/18/2013			
	Room Temp (Deg C)	23	23			
	Rel Humidity (%)	54	54			
	Technician	Peter Chen	Peter Chen			
	Actual	Delta	Delta	Delta		
	Initial	Thermal				
	Pin Type 1: Row 1					
	Average	29.81	3.21			
	St. Dev.	0.78	2.08			
Summary	Min	28.06	0.14			
	Max	32.55	9.89			
	Count	88	88			
	Total Count	88	88			
	Pin Type 2: Row 2					
Summary	Average	32.03	2.70			
	St. Dev.	0.78	1.39			
	Min	30.52	0.01			
	Max	34.75	7.31			
	Count	104	104			
	Total Count	104	104			

LLCR Delta Count by Category						
mOhms	Stable	Minor	Acceptable	Marginal	Unstable	Open
	≤ 5	$>5 \text{ & } \leq 10$	$>10 \text{ & } \leq 15$	$>15 \text{ & } \leq 50$	$>50 \text{ & } \leq 1000$	>1000
Thermal	168	24	0	0	0	0

DATA SUMMARIES Continued

LLCR GAS TIGHT:

- 1) A total of 192 points were measured
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. $\leq +5.0$ mOhms:----- Stable
 - b. $+5.1$ to $+10.0$ mOhms:----- Minor
 - c. $+10.1$ to $+15.0$ mOhms:----- Acceptable
 - d. $+15.1$ to $+50.0$ mOhms:----- Marginal
 - e. $+50.1$ to $+2000$ mOhms:----- Unstable
 - f. $>+2000$ mOhms:----- Open Failure

LLCR Measurement Summaries by Pin Type						
mOhm values	Date	3/6/2013	3/7/2013			
	Room Temp (Deg C)	23	23			
	Rel Humidity (%)	47	54			
	Technician	Peter Chen	Peter Chen			
	Actual	Delta		Delta	Delta	
	Initial	Acid Vapor				
	Pin Type 1: Row 1					
	Average	30.21	0.96			
	St. Dev.	0.98	0.87			
Summary	Min	28.75	0.01			
	Max	33.86	4.25			
	Count	88	80			
	Total Count	88	80			
	Pin Type 2: Row 2					
Summary	Average	32.37	0.71			
	St. Dev.	0.85	0.72			
	Min	30.82	0.00			
	Max	36.47	4.60			
	Count	104	112			
	Total Count	104	112			

LLCR Delta Count by Category						
mOhms	Stable	Minor	Acceptable	Marginal	Unstable	Open
	≤ 5	$>5 \text{ & } \leq 10$	$>10 \text{ & } \leq 15$	$>15 \text{ & } \leq 50$	$>50 \text{ & } \leq 1000$	>1000
Acid Vapor	192	0	0	0	0	0

DATA SUMMARIES Continued

LLCR Mechanical Shock & Vibration:

- 1) A total of 192 points were measured
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. $\leq +5.0$ mOhms:----- Stable
 - b. $+5.1$ to $+10.0$ mOhms:----- Minor
 - c. $+10.1$ to $+15.0$ mOhms:----- Acceptable
 - d. $+15.1$ to $+50.0$ mOhms:----- Marginal
 - e. $+50.1$ to $+2000$ mOhms:----- Unstable
 - f. $>+2000$ mOhms:----- Open Failure

LLCR Measurement Summaries by Pin Type					
mOhm values	Date	4/4/2013	4/8/2013		
	Room Temp (Deg C)	23	23		
	Rel Humidity (%)	33	37		
	Technician	Craig Ryan	Craig Ryan		
	Actual	Delta	Delta	Delta	
	Initial	Shock-Vib			
	Pin Type 1: Row 1				
	Average	30.45	0.21		
	St. Dev.	1.10	0.19		
	Min	28.59	0.01		
	Max	34.81	0.87		
	Summary Count	88	88		
	Total Count	88	88		
Pin Type 2: Row 2					
Average	32.21	0.34			
St. Dev.	0.71	0.27			
Min	30.55	0.00			
Max	34.25	1.06			
Summary Count	104	104			
Total Count	104	104			

LLCR Delta Count by Category						
mOhms	Stable	Minor	Acceptable	Marginal	Unstable	Open
	≤ 5	$>5 \text{ & } \leq 10$	$>10 \text{ & } \leq 15$	$>15 \text{ & } \leq 50$	$>50 \text{ & } \leq 1000$	>1000
Shock-Vib	192	0	0	0	0	0

Shock Vibration Event Detection

Shock and Vibration Event Detection Summary	
Contacts tested	60
Test Condition	C, 100g's, 6ms, Half-Sine
Shock Events	0
Test Condition	V-B, 7.56 rms g
Vibration Events	0
Total Events	0

EQUIPMENT AND CALIBRATION SCHEDULES

Equipment #: HZ-MO-05

Description: Digital Multimeter

Manufacturer: Keithley

Model: 3706

Serial #: 1285188

Accuracy: Last Cal: 2012-8-18, Next Cal: 2013-8-18

Equipment #: HZ-TCT-01

Description: Normal force analyzer

Manufacturer: Mecmesin Multitester

Model: Mecmesin Multitester 2.5-i

Serial #: 08-1049-04

Accuracy: Last Cal: 2012-4-28, Next Cal: 2013-4-27

Equipment #: HZ-OV-01

Description: Oven

Manufacturer: Huida

Model: CS101-1E

Serial #: CS101-1E-B

Accuracy: Last Cal: 2012-12-14, Next Cal: 2013-12-13

Equipment #: HZ-MO-01

Description: Micro-ohmmeter

Manufacturer: Keithley

Model: 2700

Serial #: 1199807

Accuracy: Last Cal: 2012-4-28, Next Cal: 2013-4-27

Equipment #: HZ-PS-01

Description: Power Supply

Manufacturer: Agilent

Model: 6031A

Serial #: MY41000982

Accuracy: Last Cal: 2012-4-28, Next Cal: 2013-4-27

Equipment #: SVC-01

Description: Shock & Vibration Table

Manufacturer: Data Physics

Model: LE-DSA-10-20K

Serial #: 10037

Accuracy: See Manual

... Last Cal: 2012-11-31, Next Cal: 2013-11-31

EQUIPMENT AND CALIBRATION SCHEDULES Continued

Equipment #: ACLM-01

Description: Accelerometer

Manufacturer: PCB Piezotronics

Model: 352C03

Serial #: 115819

Accuracy: See Manual

... Last Cal: 2012-7-9, Next Cal: 2013-7-9

Equipment #: ED-03

Description: Event Detector

Manufacturer: Analysis Tech

Model: 32EHD

Serial #: 1100604

Accuracy: See Manual

... Last Cal: 2012-6-4, Next Cal: 2013-6-4