

Project Number: Design Qualification Test Report	Tracking Code: 270482_Report_Rev_1
Requested by: Catie Eichhorn	Date: 3/12/2014
Part #: FC1-15-01-T/FJ-15-D-06.00-4	Tech: Peter Chen
Part description: FC1/FJ	Qty to test: 75
Test Start: 10/29/2013	Test Completed: 11/29/2013

DESIGN QUALIFICATION TEST REPORT

FC1/FJ FC1-15-01-T/FJ-15-D-06.00-4

Tracking Code: 270482_Report_Rev_1	Part #: FC1-15-01-T/FJ-15-D-06.00-4				
Part description: FC1/FJ					

REVISION HISTORY

DATA	REV.NUM.	DESCRIPTION	ENG
02/27/2014	1	Initial Issue	PC

Tracking Code: 270482_Report_Rev_1	Part #: FC1-15-01-T/FJ-15-D-06.00-4				
Part description: FC1/FI					

CERTIFICATION

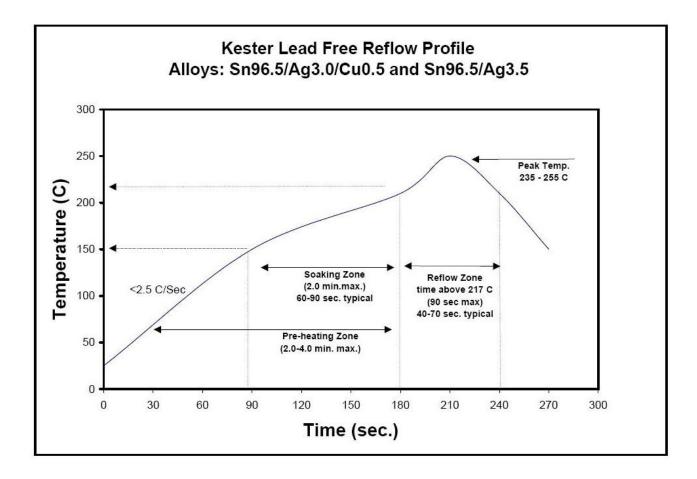
All instruments and measuring equipment were calibrated to National Institute for Standards and Technology (NIST) traceable standards according to ISO 10012-1 and ANSI/NCSL 2540-1, as applicable.

All contents contained herein are the property of Samtec. No portion of this report, in part or in full shall be reproduced without prior written approval of Samtec.

SCOPE

To perform the following tests: Design Qualification test. Please see test plan.

APPLICABLE DOCUMENTS


Standards: EIA Publication 364

TEST SAMPLES AND PREPARATION

- 1) All materials were manufactured in accordance with the applicable product specification.
- 2) All test samples were identified and encoded to maintain traceability throughout the test sequences.
- 3) After soldering, the parts to be used for LLCR and DWV/IR testing were cleaned according to TLWI-0001.
- 4) Either an automated cleaning procedure or an ultrasonic cleaning procedure may be used.
- 5) The automated procedure is used with aqueous compatible soldering materials.
- 6) Parts not intended for testing LLCR and DWV/IR are visually inspected and cleaned if necessary.
- 7) Any additional preparation will be noted in the individual test sequences.
- 8) Solder Information: Lead free
- 9) Re-Flow Time/Temp: See accompanying profile.
- 10) Samtec Test PCBs used: PCB-105848-TST, PCB-105849-TST, PCB-105850-TST.

Part description: FC1/FJ

TYPICAL OVEN PROFILE (Soldering Parts to Test Boards)

Part description: FC1/FJ

FLOWCHARTS

Gas Tight

Group 1 FC1-15-01-T FJ-15-D-06.00-4 8 Assemblies

Step Description

 LLCR (2) Max Delta = 15 mOhm

Gas Tight (1)

LLCR (2)

Max Delta = 15 mOhm

/4\ C-- Ti-ba | FIA 264 26

(1) Gas Tight = EIA-364-36

(2) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max Test Current = 100 mA Max

Normal Force

Group 1 FC1-15-01-T FJ-15-D-06.00-4 8 Contacts Minimum Signal Without Thermals

Step Description

- 1. Contact Gaps
- Normal Force (1)
 Deflection = 0.008 "
 Expected Force at Max Deflection = 270
 g

Group 2 FC1-15-01-T FJ-15-D-06.00-4 8 Contacts Minimum Signal With Thermals

Step Description

- 1. Contact Gaps
- 2. Thermal Age (2)
- 3. Contact Gaps
- Normal Force (1)
 Deflection = 0.008 "
 Expected Force at Max Deflection = 270 g
- (1) Normal Force = EIA-364-04
- (2) Thermal Age = EIA-364-17 Test Condition = 4 (105°C) Time Condition = B (250 Hours)

Part description: FC1/FJ

FLOWCHARTS Continued

Thermal Aging

Group 1 FC1-15-01-T FJ-15-D-06.00-4 8 Assemblies

Step Description

- 1. Contact Gaps
- 2. Mating/Unmating Force (2)
- 3. LLCR (1)

Max Delta = 15 mOhm

- 4. Thermal Age (3)
- 5. LLCR (1)

Max Delta = 15 mOhm

- 6. Mating/Unmating Force (2)
- 7. Contact Gaps

.....

(1) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max Test Current = 100 mA Max

- (2) Mating/Unmating Force = EIA-364-13
- (3) Thermal Age = EIA-364-17

Test Condition = 4 (105°C)

Time Condition = B (250 Hours)

Tracking Code: 270482_Report_Rev_1 | Part #: FC1-15-01-T/FJ-15-D-06.00-4

Part description: FC1/FJ

FLOWCHARTS Continued

Mating/Unmating/Durability

Group 1

FC1-15-01-T FJ-15-D-06.00-4 8 Assemblies

Step Description

- Contact Gaps
- LLCR (2) Max Delta = 15 mOhm
- 3. Mating/Unmating Force (3)
- Cycles
 Quantity = 25 Cycles
- 5. Mating/Unmating Force (3)
- 6. Contact Gaps
- LLCR (2)
 Max Delta = 15 mOhm
- 8. Thermal Shock (4)
- LLCR (2)
 Max Delta = 15 mOhm
- 10. Humidity (1)
- 11. LLCR (2)
 - Max Delta = 15 mOhm
- 12. Mating/Unmating Force (3)

Group 2

FC1-25-01-T FJ-25-D-06.00-4 8 Assemblies

Step Description

- 1. Contact Gaps
- 2. Mating/Unmating Force (3)
- Cycles
 Quantity = 25 Cycles
- Mating/Unmating Force (3)

Group 3

FC1-05-01-T FJ-05-D-06.00-4 8 Assemblies

Step Description

- Contact Gaps
- 2. Mating/Unmating Force (3)
- Cycles
 Quantity = 25 Cycles
- Mating/Unmating Force (3)

(1) Humidity = EIA-364-31

Test Condition = B (240 Hours)

Test Method = III (+25°C to +65°C @ 90% RH to 98% RH)

Test Exceptions: ambient pre-condition and delete steps 7a and 7b

(2) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max

Test Current = 100 mA Max

- (3) Mating/Unmating Force = EIA-364-13
- (4) Thermal Shock = EIA-364-32

Exposure Time at Temperature Extremes = 1/2 Hour

Method A, Test Condition = I (-55°C to +85°C)

Test Duration = A-3 (100 Cycles)

Step

1.

FLOWCHARTS Continued

IR/DWV

Step Description

Pin-to-Pin

Group 1 FC1-15-01-T FJ-15-D-06.00-4 2 Assemblies

Group 2 FC1-15-01-T

Description

DWV Breakdown (2)

2 Assemblies

Group 3

FJ-15-D-06.00-4 2 Assemblies

DWV Breakdown (2)

Description

Group 4 FC1-15-01-T FJ-15-D-06.00-4 2 Assemblies

Description Step

- 1. IR (4)
- 2. DWV at Test Voltage (1)
- 3. Thermal Shock (5)
- 4.
- 5. DWV at Test Voltage (1)
- 6. Humidity (3)
- 7.
- 8. DWV at Test Voltage (1)

(1) DWV at Test Voltage = EIA-364-20

DWV Breakdown (2)

Test Condition = 1 (Sea Level)

DWV test voltage is equal to 75% of the lowest breakdown voltage Test voltage applied for 60 seconds

Step

1.

(2) DWV Breakdown = EIA-364-20

Test Condition = 1 (Sea Level)

DWV test voltage is equal to 75% of the lowest breakdown voltage

Test voltage applied for 60 seconds

(3) Humidity = EIA-364-31

Test Condition = B (240 Hours)

Test Method = III (+25°C to +65°C @ 90% RH to 98% RH)

Test Exceptions: ambient pre-condition and delete steps 7a and 7b

Test Condition = 500 Vdc, 2 Minutes Max

(5) Thermal Shock = EIA-364-32

Exposure Time at Temperature Extremes = 1/2 Hour Method A, Test Condition = I (-55°C to +85°C)

Test Duration = A-3 (100 Cycles)

FLOWCHARTS Continued

Current Carrying Capacity

Group 1 FC1-25-01-T FJ-25-D-12.00-4 1 Pins Powered Signal

Step Description

1. CCC (1)

Rows = 1

Number of Positions = 1

Group 2 FC1-25-01-T FJ-25-D-12.00-4 2 Pins Powered Signal

Step Description

1. CCC (1)

Rows = 1

Number of Positions = 2

Group 3 FC1-25-01-T FJ-25-D-12.00-4 3 Pins Powered Signal

Step Description

1. CCC (1)

Rows = 1

Number of Positions = 3

Group 4 FC1-25-01-T FJ-25-D-12.00-4 4 Pins Powered Signal

Step Description

1. CCC (1)

Rows = 1

Number of Positions = 4

Group 5 FC1-25-01-T FJ-25-D-12.00-4 25 Pins Powered Signal

Step Description

1. CCC (1) Rows = 1 Number of Positions = 25

(1) CCC = EIA-364-70

Method 2, Temperature Rise Versus Current Curve (TIN PLATING) - Tabulate calculated current at RT, 65°C, 75°C and 95°C after derating 20% and based on 105°C (GOLD PLATING) - Tabulate calculated current at RT, 85°C, 95°C and 115°C after derating 20% and based on 125°C

FLOWCHARTS Continued

Mechanical Shock/Random Vibration/LLCR

Group 1 FC1-15-01-T FJ-15-D-12.00-4 8 Assemblies

Step Description

1. LLCR (1)

Max Delta = 15 mOhm

- 2. Mechanical Shock (2)
- 3. Random Vibration (3)
- 4. LLCR (1)

Max Delta = 15 mOhm

(1) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max Test Current = 100 mA Max

(2) Mechanical Shock = EIA-364-27

Test Condition = C (100 G Peak, 6 milliseconds, Half Sine) Number of Shocks = 3 Per Direction, Per Axis, 18 Total

(3) Random Vibration = EIA-364-28

Condition = VB (7.56 gRMS Average, 2 Hours/Axis)

Mechanical Shock/Random Vibration/Event Detection

Group 1 FC1-15-01-T FJ-15-D-12.00-4 60 Points

Step Description

- Nanosecond Event Detection (Mechanical Shock) (1)
- Nanosecond Event Detection (Random Vibration) (2)

(1) Nanosecond Event Detection (Mechanical Shock)

Use EIA-364-87 for Nanosecond Event Detection:

Test Condition = F (50 nanoseconds at 10 ohms)

Use EIA-364-27 for Mechanical Shock:

Test Condition = C (100 G Peak, 6 milliseconds, Half Sine) Number of Shocks = 3 Per Direction, Per Axis, 18 Total

(2) Nanosecond Event Detection (Random Vibration)

Use EIA-364-87 for Nanosecond Event Detection:

Test Condition = F (50 nanoseconds at 10 ohms)

Use EIA-364-28 for Random Vibration:

Condition = VB (7.56 gRMS Average, 2 Hours/Axis)

FLOWCHARTS Continued

Cable Pull

Group 1 FC1-15-01-T FJ-15-D-18.00-4 5 Assemblies 0 Degrees Group 2 FC1-15-01-T FJ-15-D-18.00-4 5 Assemblies 90 Degrees

Step Description

1. Cable Pull (1)

Step Description

1. Cable Pull (1)

(1) Cable Pull = EIA-364-38

Measure and Record Force Required to Failure Failure = Discontinuity >1 microsecond at 10 ohms

Cable Flex

Group 1 FC1-15-01-T FJ-15-D-18.00-4 8 Assemblies

Flat Cable Note: Use test voltage from IR/DWV

Group 1, 2 and 3.

Step Description

- 1. IR (3)
- 2. DWV at Test Voltage (2)
- Cable Flex (1)
- 4. Visual Inspection
- 5. IR (3)
- DWV at Test Voltage (2)

(1) Cable Flex = EIA-364-41

Circular Jacket Cable - to be tested 90° each direction (180° total)

Flat Cable - to be tested 70° each direction (140° total)

Monitor continuity during flex testing

Failure = Discontinuity >1 microsecond at 10 ohms

(2) DWV at Test Voltage = EIA-364-20

Test Condition = 1 (Sea Level)

DWV test voltage is equal to 75% of the lowest breakdown voltage

Test voltage applied for 60 seconds

(3) IR = EIA-364-21

Test Condition = 500 Vdc, 2 Minutes Max

Part description: FC1/FJ

ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

THERMAL SHOCK:

- 1) EIA-364-32, Thermal Shock (Temperature Cycling) Test Procedure for Electrical Connectors.
- 2) Test Condition 1: -55°C to +85°C
- 3) Test Time: ½ hour dwell at each temperature extreme
- 4) Number of Cycles: 100
- 5) All test samples are pre-conditioned at ambient.
- 6) All test samples are exposed to environmental stressing in the mated condition.

THERMAL:

- 1) EIA-364-17, Temperature Life with or without Electrical Load Test Procedure for Electrical Connectors.
- 2) Test Condition 4 at 105° C
- 3) Test Time Condition B for 250 hours.
- 4) All test samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

HUMIDITY:

- 1) Reference document: EIA-364-31, *Humidity Test Procedure for Electrical Connectors*.
- 2) Test Condition B, 240 Hours.
- 3) Method III, +25° C to + 65° C, 90% to 98% Relative Humidity excluding sub-cycles 7a and 7b.
- 4) All samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

MATING/UNMATING:

- 1) Reference document: EIA-364-13, Mating and Unmating Forces Test Procedure for Electrical Connectors.
- 2) The full insertion position was to within 0.003" to 0.004" of the plug bottoming out in the receptacle to prevent damage to the system under test.
- 3) One of the mating parts is secured to a floating X-Y table to prevent damage during cycling.

MECHANICAL SHOCK (Specified Pulse):

- 1) Reference document: EIA-364-27, Mechanical Shock Test Procedure for Electrical Connectors
- 2) Test Condition C
- 3) Peak Value: 100 G
- 4) Duration: 6 Milliseconds
- 5) Wave Form: Half Sine
- 6) Velocity: 12.3 ft/s
- 7) Number of Shocks: 3 Shocks / Direction, 3 Axis (18 Total)

VIBRATION:

- 1) Reference document: EIA-364-28, Vibration Test Procedure for Electrical Connectors
- 2) Test Condition V, Letter B
- 3) Power Spectral Density: 0.04 G² / Hz
- 4) G 'RMS': 7.56
- 5) Frequency: 50 to 2000 Hz
- 6) Duration: 2.0 Hours per axis (3 axis total)

NANOSECOND-EVENT DETECTION:

- 1) Reference document: EIA-364-87, Nanosecond-Event Detection for Electrical Connectors
- 2) Prior to test, the samples were characterized to assure the low nanosecond event being monitored will trigger the detector.
- 3) After characterization it was determined the test samples could be monitored for 50 nanosecond events

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

TEMPERATURE RISE (Current Carrying Capacity, CCC):

- 1) EIA-364-70, Temperature Rise versus Current Test Procedure for Electrical Connectors and Sockets.
- 2) When current passes through a contact, the temperature of the contact increases as a result of I^2R (resistive) heating.
- 3) The number of contacts being investigated plays a significant part in power dissipation and therefore temperature rise.
- 4) The size of the temperature probe can affect the measured temperature.
- 5) Copper traces on PC boards will contribute to temperature rise:
 - a. Self heating (resistive)
 - b. Reduction in heat sink capacity affecting the heated contacts
- 6) A de-rating curve, usually 20%, is calculated.
- 7) Calculated de-rated currents at three temperature points are reported:
 - a. Ambient
 - b. 40° C
 - c. 50° C
 - d. 70° C
- 8) Typically, neighboring contacts (in close proximity to maximize heat build up) are energized.
- 9) The thermocouple (or temperature measuring probe) will be positioned at a location to sense the maximum temperature in the vicinity of the heat generation area.
- 10) A computer program, TR 803.exe, ensures accurate stability for data acquisition.
- 11) Hook-up wire cross section is larger than the cross section of any connector leads/PC board traces, jumpers, etc.
- 12) Hook-up wire length is longer than the minimum specified in the referencing standard.

LLCR:

- 1) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
 - a. <= +5.0 mOhms:----- Stable
 - b. +5.1 to +10.0 mOhms:----- Minor
 - c. +10.1 to +15.0 mOhms: ----- Acceptable
 - d. +15.1 to +50.0 mOhms: ----- Marginal
 - e. +50.1 to +2000 mOhms: ----- Unstable
 - f. >+2000 mOhms:----- Open Failure

Tracking Code: 270482_Report_Rev_1	Part #: FC1-15-01-T/FJ-15-D-06.00-4				
Part description: FC1/FI					

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

GAS TIGHT:

To provide method for evaluating the ability of the contacting surfaces in preventing penetration of harsh vapors which might lead to oxide formation that may degrade the electrical performance of the contact system.

- 1) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
 - a. <= +5.0 mOhms:----- Stable
 - b. +5.1 to +10.0 mOhms:----- Minor
 - c. +10.1 to +15.0 mOhms: ----- Acceptable
 - d. +15.1 to +50.0 mOhms: ----- Marginal
 - e. +50.1 to +2000 mOhms: ----- Unstable
 - f. >+2000 mOhms:----- Open Failure
- 4) Procedure:
 - a. Reference document: EIA-364-36, *Test Procedure for Determination of Gas-Tight Characteristics for Electrical Connectors, Sockets and/or Contact Systems*.
 - b. Test Conditions:
 - i. Class II--- Mated pairs of contacts assembled to their plastic housings.
 - ii. Reagent grade Nitric Acid shall be used of sufficient volume to saturate the test chamber
 - iii. The ratio of the volume of the test chamber to the surface area of the acid shall be 10:1.
 - iv. The chamber shall be saturated with the vapor for at least 15 minutes before samples are added.
 - v. Exposure time, 55 to 65 minutes.
 - vi. The samples shall be no closer to the chamber walls than 1 inches and no closer to the surface of the acid than 3 inches.
 - vii. The samples shall be dried after exposure for a minimum of 1 hour.
 - viii. Drying temperature 50° C
 - ix. The final LLCR shall be conducted within 1 hour after drying.

NORMAL FORCE (FOR CONTACTS TESTED IN THE HOUSING):

- 1) Reference document: EIA-364-04, Normal Force Test Procedure for Electrical Connectors.
- 2) The contacts shall be tested in the connector housing.
- 3) If necessary, a "window" shall be made in the connector body to allow a probe to engage and deflect the contact at the same attitude and distance (plus 0.05 mm [0.002"]) as would occur in actual use.
- 4) The connector housing shall be placed in a holding fixture that does not interfere with or otherwise influence the contact force or deflection.
- 5) Said holding fixture shall be mounted on a floating, adjustable, X-Y table on the base of the Dillon TC^2 , computer controlled test stand with a deflection measurement system accuracy of 5.0 μ m (0.0002").
- 6) The nominal deflection rate shall be 5 mm (0.2")/minute.
- 7) Unless otherwise noted a minimum of five contacts shall be tested.
- 8) The force/deflection characteristic to load and unload each contact shall be repeated five times.
- 9) The system shall utilize the TC^2 software in order to acquire and record the test data.
- 10) The permanent set of each contact shall be measured within the TC² software.
- 11) The acquired data shall be graphed with the deflection data on the X-axis and the force data on the Y-axis and a print out will be stored with the Tracking Code paperwork.

.

Tracking Code: 270482_Report_Rev_1	Part #: FC1-15-01-T/FJ-15-D-06.00-4					
Part description: FC1/FJ						

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

INSULATION RESISTANCE (IR):

To determine the resistance of insulation materials to leakage of current through or on the surface of these materials when a DC potential is applied.

- 1) PROCEDURE:
 - a. Reference document: EIA-364-21, Insulation Resistance Test Procedure for Electrical Connectors.
 - b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Electrification Time 2.0 minutes
 - iii. Test Voltage (500 VDC) corresponds to calibration settings for measuring resistances.
- 2) MEASUREMENTS:
- 3) When the specified test voltage is applied (VDC), the insulation resistance shall not be less than 1000 megohms.

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

To determine if the sockets can operate at its rated voltage and withstand momentary over potentials due to switching, surges, and other similar phenomenon. Separate samples are used to evaluate the effect of environmental stresses so not to influence the readings from arcing that occurs during the measurement process.

- 1) PROCEDURE:
 - a. Reference document: EIA-364-20, Withstanding Voltage Test Procedure for Electrical Connectors.
 - b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Barometric Test Condition 1
 - iii. Rate of Application 500 V/Sec
 - iv. Test Voltage (VAC) until breakdown occurs
- 2) MEASUREMENTS/CALCULATIONS
 - a. The breakdown voltage shall be measured and recorded.
 - b. The dielectric withstanding voltage shall be recorded as 75% of the minimum breakdown voltage.
 - c. The working voltage shall be recorded as one-third (1/3) of the dielectric withstanding voltage (one-fourth of the breakdown voltage).

Part description: FC1/FJ

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

CONNECTOR PULL:

- 1) Secure cable near center and pull on connector
 - a. At 90°, right angle to cable
 - b. At 0°, in-line with cable

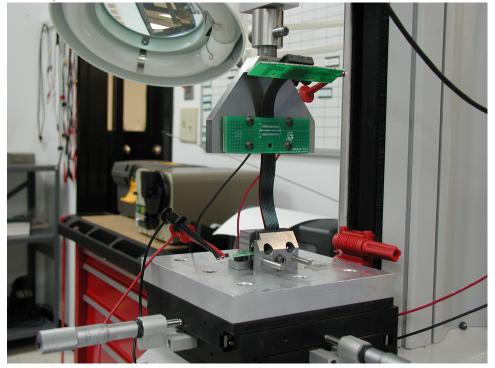


Fig. 1
(Typical set-up, actual part not depicted.)
0° Connector pull, notice the electrical continuity hook-up wires.

Part description: FC1/FJ

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

CABLE DURABILITY:

- 1) Oscillate and monitor electrical continuity for open circuit indication.
 - a. $\pm 70^{\circ}$ Pendulum Mode, bend up to 500 cycles with 4 oz. load on cable end.

Fig. 2

RESULTS Temperature Rise, CCC at a 20% de-rating CCC for a 30°C Temperature Rise------4.3A per contact with 1 adjacent contacts powered CCC for a 30°C Temperature Rise-----3.4A per contact with 2 adjacent contacts powered CCC for a 30°C Temperature Rise-----2.6A per contact with 3 adjacent contacts powered CCC for a 30°C Temperature Rise-----2.4A per contact with 4 adjacent contacts powered CCC for a 30°C Temperature Rise-----1.4A per contact with all adjacent contacts powered **Mating – Unmating Forces** Thermal Aging Group (FC1-15-01-T/FJ-15-D-06.00-4) Initial **Mating** Min ----- 5.53 Lbs Max----- 6.54 Lbs **Unmating** Min ------ 4.25 Lbs Max------4.81 Lbs After Thermal Mating Min ----- 4.29 Lbs Max----- 5.66 Lbs **Unmating** Min ----- 2.85 Lbs Max------ 4.55 Lbs Mating-Unmating Durability Group (FC1-15-01-T/FJ-15-D-06.00-4) Initial Mating Min ----- 5.25 Lbs Max----- 6.71 Lbs Unmating Min ----- 2.77 Lbs Max-----5.54 Lbs **After 25 Cycles Mating** Min ----- 4.31 Lbs Max----- 6.10 Lbs **Unmating** Min ----- 2.65 Lbs Max----- 3.71 Lbs Humidity **Mating** Min ----- 5.36 Lbs Max----- 6.70 Lbs **Unmating** Min ----- 3.16 Lbs Max------4.36 Lbs

Part #: FC1-15-01-T/FJ-15-D-06.00-4

Tracking Code: 270482_Report_Rev_1

Part description: FC1/FJ

RESULTS Continued

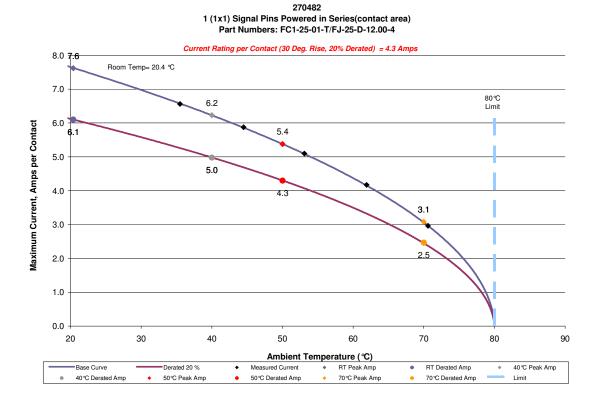
Mating – Unmating Forces Mating-Unmating Basic (FC1-25-01-T/FJ-25-D-06.00-4) Initial Mating Min ----- 8.14 Lbs Max-----11.49 Lbs Unmating Min ----- 6.64 Lbs Max-----9.20 Lbs **After 25 Cycles** Mating Min ----- 6.87 Lbs Max-----9.20 Lbs Unmating Min ----- 4.34 Lbs Max----- 5.87 Lbs Mating-Unmating Basic (FC1-05-01-T/FJ-05-D-06.00-4) Initial Mating Min ----- 1.66 Lbs Max-----2.11 Lbs Unmating Min ------ 1.37 Lbs Max------ 1.78 Lbs **After 25 Cycles** Mating Min ------ 1.32 Lbs Max-----1.76 Lbs Unmating Min ----- 1.11 Lbs Max------1.45 Lbs Normal Force at 0.0040 inch deflection Initial Min------299.80 gf Set ---- 0.0000 in Max ----- 353.40 gf 0 Set ---- 0.0001 in **Thermal** Min------278.70 gf Set ---- 0.0001 in Max ----- 316.60 gf Set ---- 0.0011 in Cable Pull force 0° Min ----- 5.65Lbs Max----- 6.87 Lbs 90° Min -----19.68 Lbs Max-----25.14 Lbs

RESULTS Continued Insulation Resistance minimums, IR Pin to Pin Initial Mated------ Passed Unmated ------ Passed 0 Thermal Shock Mated------Passed Unmated ------ Passed 0 Humidity Mated------ Passed Unmated ------ Passed Dielectric Withstanding Voltage minimums, DWV **Minimums** Breakdown Voltage-----875 VAC Test Voltage ------656 VAC Working Voltage ------215 VAC Pin to Pin Initial DWV ------Passed Thermal DWV------Passed Humidity DWV------Passed **CABLE FLEX Insulation Resistance minimums, IR** Pin to Pin Initial Mated------Passed After flex test Mated ----- $45000 \text{ Meg } \Omega$ ----- Passed Dielectric Withstanding Voltage minimums, DWV **Minimums** Breakdown Voltage -----875 VAC Test Voltage ------656 VAC Working Voltage ------215 VAC Pin to Pin Initial DWV ------Passed After Flex DWV------Passed

Tracking Code: 270482_Report_Rev_1 Part #: FC1-15-01-T/FJ-15-D-06.00-4

Part description: FC1/FJ

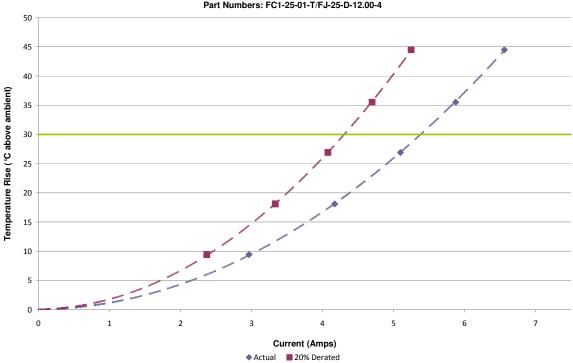
	RESULTS Continued							
LLCR The	rmal Aging Group (104 LLCR tes	st noints)						
		-						
• Therm		2 - 1 2 - 1 2 - 1 - 1 - 1						
0	<= +5.0 mOhms	101 Points	Stable					
0	+5.1 to +10.0 mOhms	3 Points	Minor					
0		0 Points						
0		0 Points						
0		0 Points						
0	>+2000 mOhms	0 Points	Open Failure					
I I CD Mot	ing/Unmating Durability Group (100 LLCD test points)						
		-						
	ility, 25 Cycles	40.36 monins wax						
Ouran		84 Points	Stable					
0		20 Points						
0		0 Points						
0		0 Points						
0		0 Points						
0		0 Points						
• Therm	nal Shock							
0		96 Points	Stable					
0		8 Points						
0	+10.1 to +15.0 mOhms	0 Points	Acceptable					
0	+15.1 to +50.0 mOhms	0 Points	Marginal					
0		0 Points						
0	>+2000 mOhms	0 Points	Open Failure					
• Humid	lity							
0		61 Points						
0		43 Points						
0		0 Points						
0		0 Points						
0		0 Points						
0	>+2000 mOhms	0 Points	Open Failure					
LLCR Gas	Tight Group (104 LLCR test poin	nts)						
 Initial 		46.62 mOhms Max						
• Gas-Ti	ight							
0	<= +5.0 mOhms	97 Points						
0		7 Points						
0		0 Points						
0		0 Points						
0		0 Points						
0	>+2000 mOhms	0 Points	Open Failure					


RESULTS Continued LLCR Shock & Vibration Group (104 LLCR test points) Initial ------ 86.77 mOhms Max **Shock & Vibration** <= +5.0 mOhms ------ Stable +5.1 to +10.0 mOhms ------ Minor +10.1 to +15.0 mOhms ------ Acceptable +15.1 to +50.0 mOhms ------ Points ----- Marginal +50.1 to +2000 mOhms------ Unstable >+2000 mOhms------ Open Failure **Mechanical Shock & Random Vibration:** Shock No Damage------Pass 50 Nanoseconds------ Pass Vibration No Damage------Pass 50 Nanoseconds------ Pass

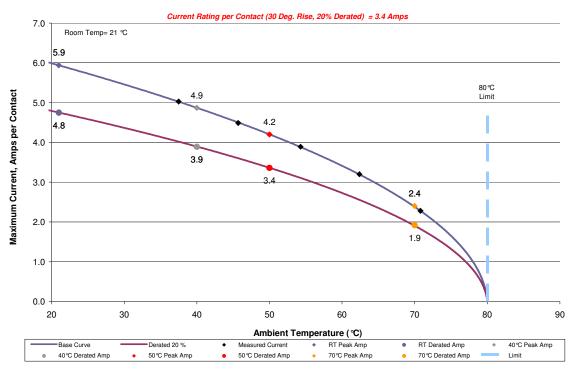
Tracking Code: 270482_Report_Rev_1	Part #: FC1-15-01-T/FJ-15-D-06.00-4				
Part description: FC1/FI					

DATA SUMMARIES

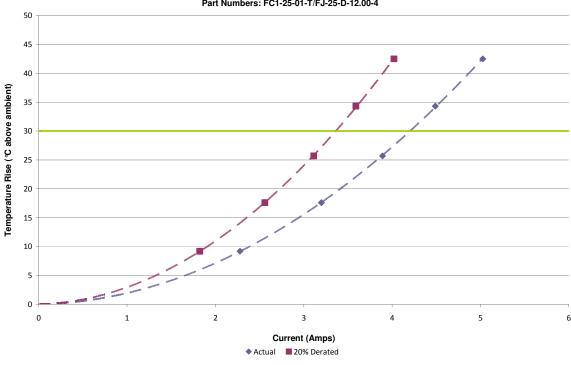
TEMPERATURE RISE (Current Carrying Capacity, CCC):


- 1) High quality thermocouples whose temperature slopes track one another were used for temperature monitoring.
- 2) The thermocouples were placed at a location to sense the maximum temperature generated during testing.
- 3) Temperature readings recorded are those for which three successive readings, 15 minutes apart, differ less than 1° C (computer controlled data acquisition).
- 4) Adjacent contacts were powered:
 - a. Linear configuration with 1 adjacent conductors/contacts powered

Part description: FC1/FJ



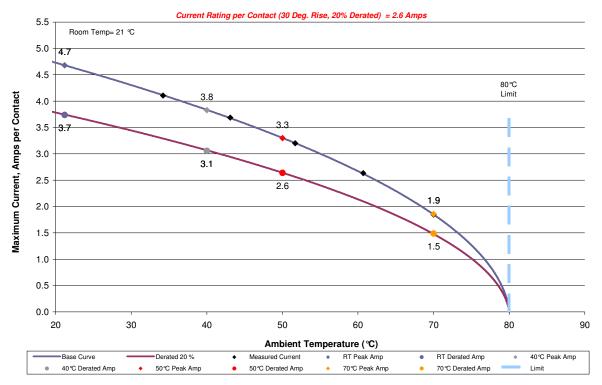
Part description: FC1/FJ


DATA SUMMARIES Continued

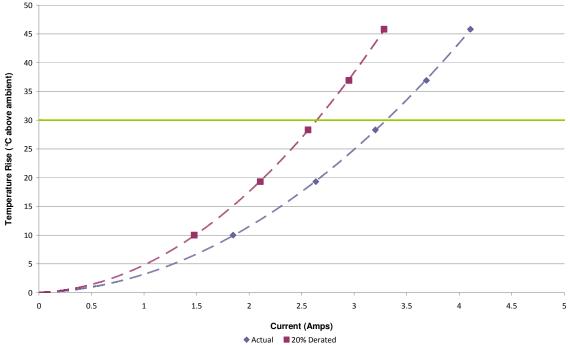
b. Linear configuration with 2 adjacent conductors/contacts powered

270482
2 (1x2) Signal Pins Powered in Series(contact area)
Part Numbers: FC1-25-01-T/FJ-25-D-12.00-4

270482 2 (1x2) Signal Pins Powered in Series(contact area) Part Numbers: FC1-25-01-T/FJ-25-D-12.00-4



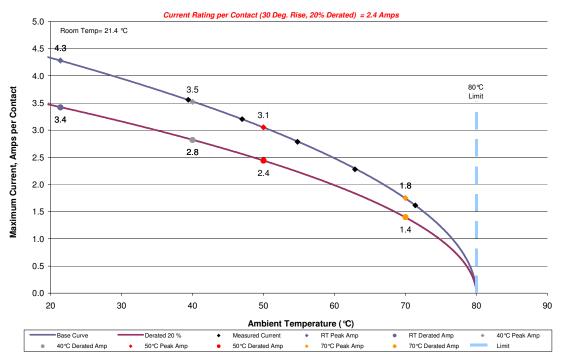
Part description: FC1/FJ



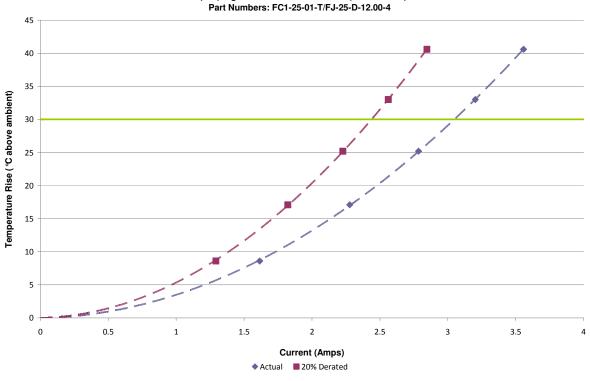
c. Linear configuration with 3 adjacent conductors/contacts powered

270482 3 (1x3) Signal Pins Powered in Series(contact area) Part Numbers: FC1-25-01-T/FJ-25-D-12.00-4

270482
3 (1x3) Signal Pins Powered in Series(contact area)
Part Numbers: FC1-25-01-T/FJ-25-D-12.00-4



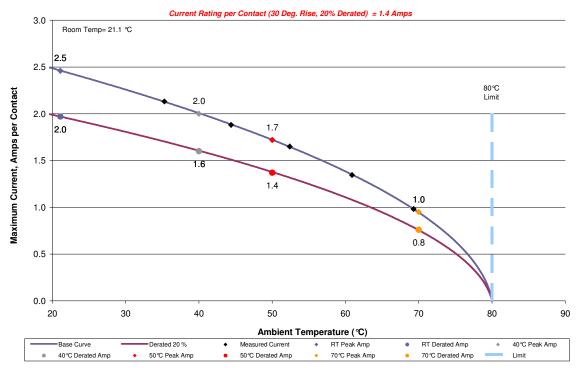
Part description: FC1/FJ


DATA SUMMARIES Continued

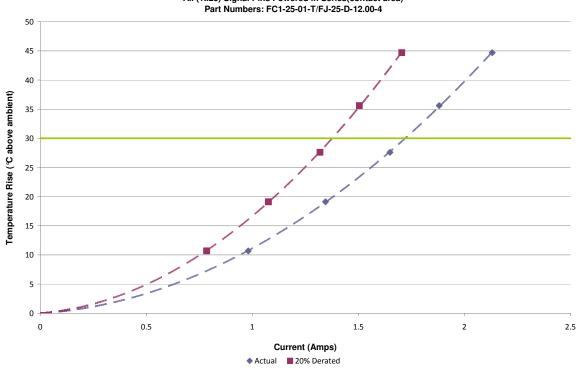
d. Linear configuration with 4 adjacent conductors/contacts powered

270482 4 (1x4) Signal Pins Powered in Series(contact area) Part Numbers: FC1-25-01-T/FJ-25-D-12.00-4

270482
4 (1x4) Signal Pins Powered in Series(contact area)
Part Numbers: EC1-25-01-T/F L-25-D-12-00-4



Part description: FC1/FJ



e. Linear configuration with all adjacent conductors/contacts powered

270482
All (1x25) Signal Pins Powered in Series(contact area)
Part Numbers: FC1-25-01-T/FJ-25-D-12.00-4

270482
All (1x25) Signal Pins Powered in Series(contact area)
Part Numbers: FC1-25-01-T/FJ-25-D-12.00-4

Part description: FC1/FJ

DATA SUMMARIES Continued

MATING-UNMATING FORCE:

Thermal Aging Group (FC1-15-01-T/FJ-15-D-06.00-4)

	Initial				After Thermals			
	Mating		Unmating		Mating		Unmating	
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)
Minimum	24.60	5.53	18.90	4.25	19.08	4.29	12.68	2.85
Maximum	29.09	6.54	21.39	4.81	25.18	5.66	20.24	4.55
Average	27.41	6.16	20.18	4.54	22.32	5.02	16.16	3.63
St Dev	1.50	0.34	0.96	0.22	1.97	0.44	2.58	0.58
Count	8	8	8	8	8	8	8	8

Mating-Unmating Durability Group (FC1-15-01-T/FJ-15-D-06.00-4)

	Initial				After 25 Cycles			
	Mating Unmating			Unmating Mating Ur			Uni	mating
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)
Minimum	23.35	5.25	12.32	2.77	19.17	4.31	11.79	2.65
Maximum	29.85	6.71	24.64	5.54	27.13	6.10	16.50	3.71
Average	26.88	6.04	18.58	4.18	23.89	5.37	13.57	3.05
St Dev	2.36	0.53	3.86	0.87	2.86	0.64	1.45	0.33
Count	8	8	8	8	8	8	8	8

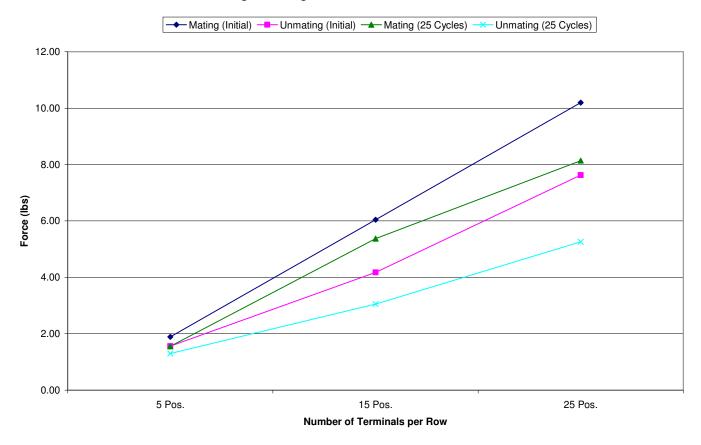
		After Humidity						
	М	ating	Uni	mating				
	Newtons	Force (Lbs)	Newtons	Force (Lbs)				
Minimum	23.84 5.36		14.06	3.16				
Maximum	29.80	29.80 6.70		4.36				
Average	26.22	26.22 5.89		3.69				
St Dev	2.45 0.55		1.78	0.40				
Count	8	8	8	8				

Part description: FC1/FJ

DATA SUMMARIES Continued

Mating-Unmating Basic (FC1-25-01-T/FJ-25-D-06.00-4)

	Initial				After 25 Cycles			
	Mating		Unmating		Mating		Unmating	
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)
Minimum	36.21	8.14	29.53	6.64	30.56	6.87	19.30	4.34
Maximum	51.11	11.49	40.92	9.20	40.92	9.20	26.11	5.87
Average	45.35	10.20	33.92	7.63	36.21	8.14	23.39	5.26
St Dev	5.64	1.27	4.00	0.90	4.13	0.93	2.54	0.57
Count	8	8	8	8	8	8	8	8


Mating-Unmating Basic (FC1-05-01-T/FJ-05-D-06.00-4)

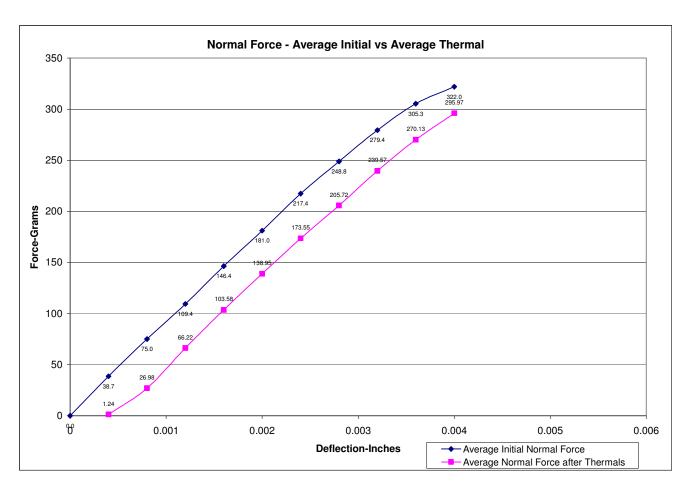
		Ini	tial		After 25 Cycles				
	Mating		Unmating		Mating		Uni	mating	
	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	Newtons	Force (Lbs)	
Minimum	7.38	1.66	6.09	1.37	5.87	1.32	4.94	1.11	
Maximum	9.39	2.11	7.92	1.78	7.83	1.76	6.45	1.45	
Average	8.40	1.89	6.92	1.56	6.91	1.55	5.77	1.30	
St Dev	0.67	0.15	0.67	0.15	0.66	0.15	0.62	0.14	
Count	8	8	8	8	8	8	8	8	

DATA SUMMARIES Continued

Mating\Unmating Force Comparison

Mating/Unmating Data for 5, 15 and 25 Position FC1/FJ

Tracking Code: 270482_Report_Rev_1	Part #: FC1-15-01-T/FJ-15-D-06.00-4				
Part description: FC1/FI					


DATA SUMMARIES Continued

NORMAL FORCE (FOR CONTACTS TESTED OUT THE HOUSING):

- 1) Calibrated force gauges are used along with computer controlled positioning equipment.
- 2) For Normal force 8-10 measurements are taken and the averages reported.

Initial	Deflections in inches Forces in Grams										
	0.0004	0.0008	0.0012	0.0016	0.0020	0.0024	0.0028	0.0032	0.0036	0.0040	SET
Averages	38.66	74.98	109.38	146.41	181.03	217.37	248.82	279.39	305.34	321.97	0.0004
Min	32.00	61.10	95.90	132.70	161.70	193.60	224.40	254.50	279.60	299.80	0.0000
Max	53.90	93.50	123.40	162.10	197.30	238.70	275.40	304.00	333.80	353.40	0.0007
St. Dev	5.652	9.000	9.561	9.879	12.369	16.778	16.840	18.974	18.397	15.817	0.0002
Count	12	12	12	12	12	12	12	12	12	12	12

After											
Thermals	Deflections in inches Forces in Grams										
	0.0004	0.0008	0.0012	0.0016	0.0020	0.0024	0.0028	0.0032	0.0036	<u>0.0040</u>	SET
Averages	1.24	26.98	66.22	103.58	138.95	173.55	205.72	239.57	270.13	295.97	0.0005
Min	-0.20	0.50	41.20	79.20	117.80	154.70	189.70	216.80	249.90	278.70	0.0001
Max	8.90	41.90	79.60	117.70	155.10	194.10	222.90	264.60	293.50	316.60	0.0011
St. Dev	2.815	11.501	12.282	11.996	13.298	12.936	11.566	15.814	14.761	12.948	0.0003
Count	12	12	12	12	12	12	12	12	12	12	12

Tracking Code: 270482_Report_Rev_1	Part #: FC1-15-01-T/FJ-15-D-06.00-4					
Part description: FC1/FI						

DATA SUMMARIES Continued

CABLE PULL FORCE 0° Pull

	Force (lbs)
Minimum	5.65
Maximum	6.87
Average	6.24

90° Pull

	Force (lbs)
Minimum	19.68
Maximum	25.14
Average	22.38

INSULATION RESISTANCE (IR):

		Pin to Pin					
	Mated Unmated Unmated						
Minimum	FC1/FJ	FC1	FJ				
Initial	10000	10000	10000				
Thermal	10000	10000	10000				
Humidity	10000	10000	10000				

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

Voltage Rating Summary					
Minimum	FC1/FJ				
Break Down Voltage	875				
Test Voltage	656				
Working Voltage	215				

Pin to Pin						
Initial Test Voltage	Pass					
After Thermal Test Voltage	Pass					
After Humidity Test Voltage	Pass					

Tracking Code: 270482_Report_Rev_1	Part #: FC1-15-01-T/FJ-15-D-06.00-4				
Part description: FC1/FJ					

DATA SUMMARIES Continued

CABLE FLEX INSULATION RESISTANCE (IR)

Pin to Pin	
Mated	
Minimum	
Initial	45000
After 500 Flex Cycles	45000

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

Voltage Rating Summary		
Minimum		
Break Down Voltage	875	
Test Voltage	656	
Working Voltage	215	

Pin to Pin		
Initial Test Voltage	Passed	
After 500 Flex Cycles Test Voltage	Passed	

DATA SUMMARIES Continued

LLCR Thermal Aging Group

- 1) A total of 104 points were measured.
- 2) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.

	LLCR Measur	ement Summaries	by Pin Ty	pe
Date	11/11/2013	11/25/2013		
Room Temp (Deg C)	24	21		
Rel Humidity (%)	53	48		
Technician	Peter Chen	Peter Chen		
mOhm values	Actual	Delta	Delta	Delta
	Initial	Thermal		
	Pi	in Type 1: Signal		
Average	P i 45.78	0.93		
Average St. Dev.		7.		
•	45.78	0.93		
St. Dev.	45.78 1.19	0.93 1.26		
St. Dev. Min	45.78 1.19 43.43	0.93 1.26 0.01		

LLCR Delta Count by Category						
	Stable	Minor	Acceptable	Marginal	Unstable	Open
mOhms	<=5	>5 & <=10	>10 & <=15	>15 & <=50	>50 & <=1000	>1000
Thermal	101	3	0	0	0	0

Part description: FC1/FJ

DATA SUMMARIES Continued

LLCR Mating/Unmating Durability Group

- 1). A total of 104 points were measured.
- 2). EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 3). A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4). The following guidelines are used to categorize the changes in LLCR as a result from stressing.

	LLCR Measurement Summaries by Pin Type				
Date	11/7/2013	11/13/2013	11/18/2013	11/29/2013	
Room Temp (Deg C)	24	22	22	22	
Rel Humidity (%)	52	54	54	43	
	Peter	Peter	Peter	Peter	
Technician	Chen	Chen	Chen	Chen	
mOhm values	Actual	Delta	Delta	Delta	
			Therm		
	Initial	25 Cycles	Shck	Humidity	
		Pin Type	1: Signal		
Average	45.71	Pin Type 2.84	1: Signal 2.35	4.32	
Average St. Dev.	45.71 0.74		_	4.32 2.64	
ŭ		2.84	2.35	_	
St. Dev.	0.74	2.84 2.14	2.35 1.77	2.64	
St. Dev. Min	0.74 43.43	2.84 2.14 0.04	2.35 1.77 0.06	2.64 0.01	

LLCR Delta Count by Category						
	Stable Minor Acceptable Marginal Unstable Ope					
mOhms	<=5	>5 & <=10	>10 & <=15	>15 & <=50	>50 & <=1000	>1000
25 Cycles	84	20	0	0	0	0
Therm Shck	96	8	0	0	0	0
Humidity	61	43	0	0	0	0

DATA SUMMARIES Continued

LLCR Gas Tight Group

- 1) A total of 104 points were measured.
- 2) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.

	LLCR Measu	y Pin Typ	oe e	
Date	11/7/2013	12/13/2013		
Room Temp (Deg C)	23	23		
Rel Humidity (%)	51	51		
Technician	Peter Chen	Peter Chen		
mOhm values	Actual	Delta	Delta	Delta
	Initial	Acid Vapor		
	F	Pin Type 1: Signal		
Average	45.36	1.28		
St. Dev.	0.60	1.87		
Min	42.79	0.02		
Max	46.62	9.95		
Summary Count	104	104		
Total Count	104	104		

LLCR Delta Count by Category						
	Stable	Minor	Acceptable	Marginal	Unstable	Open
mOhms	<=5	>5 & <=10	>10 & <=15	>15 & <=50	>50 & <=1000	>1000
Acid Vapor	97	7	0	0	0	0

DATA SUMMARIES Continued

LLCR Shock & Vibration Group

- 1) A total of 104 points were measured.
- 2) EIA-364-23, Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.

 - f. >+2000 mOhms: ----- Open Failure

	LLCR Measu	rement Summaries by	/ Pin Type	9
Date	12/13/2013	2/7/2014		
Room Temp (Deg C)	23	23		
Rel Humidity (%)	30	32		
Technician	Aaron McKim	Aaron McKim		
mOhm values	Actual	Delta	Delta	Delta
	Initial	Shock-Vib		
	F	Pin Type 1: Signal		
Average	85.10	1.50		
St. Dev.	0.80	1.08		
Min	82.02	0.06		
Max	86.77	5.40		
Summary Count	104	104		
Total Count	104	104		

LLCR Delta Count by Category						
	Stable	Minor	Acceptable	Marginal	Unstable	Open
mOhms	<=5	>5 & <=10	>10 & <=15	>15 & <=50	>50 & <=1000	>1000
Shock-Vib	102	2	0	0	0	0

Nanosecond Event Detection:

Shock and Vibration Event Detection Summary				
Contacts tested	60			
Test Condition	C, 100g's, 6ms, Half-Sine			
Shock Events	0			
Test Condition	V-B, 7.56 rms g			
Vibration Events	0			
Total Events	0			

Tracking Code: 270482_Report_Rev_1

Part description: FC1/FJ

EQUIPMENT AND CALIBRATION SCHEDULES

Equipment #: HZ-TCT-01

Description: Normal force analyzer **Manufacturer:** Mecmesin Multitester **Model:** Mecmesin Multitester 2.5-i

Serial #: 08-1049-04

Accuracy: Last Cal: 4/26/2013, Next Cal: 4/25/2014

Equipment #: HZ-OV-01 Description: Oven Manufacturer: Huida Model: CS101-1E Serial #: CS101-1E-B

Accuracy: Last Cal: 12/13/2013, Next Cal: 12/12/2014

Equipment #: HZ-THC-01

Description: Humidity transmitter

Manufacturer: Thermtron

Model: SM-8-8200 **Serial #:** 38846

Accuracy: Last Cal: 2/28/2014, Next Cal: 2/27/2015

Equipment #: HZ-HPM-01 Description: NA9636H Manufacturer: Ainuo

Model: 6031A **Serial #:** 089601091

Accuracy: Last Cal: 3/7/2013, Next Cal: 3/6/2014

Equipment #: HZ-MO-05 Description: Micro-ohmmeter Manufacturer: Keithley

Model: 3706 **Serial #:** 1285188

Accuracy: Last Cal: 11/15/2013, Next Cal: 11/14/2014

Equipment #: HZ-TSC-01

Description: Vertical Thermal Shock Chamber

Manufacturer: Cincinnatti Sub Zero

Model: VTS-3-6-6-SC/AC Serial #: 10-VT14994 Accuracy: See Manual

... Last Cal: 06/28/2013, Next Cal: 06/27/2014

Tracking Code: 270482_Report_Rev_1

Part description: FC1/FJ

EQUIPMENT AND CALIBRATION SCHEDULES Continued

Equipment #: MO-04

Description: Multimeter /Data Acquisition System

Manufacturer: Keithley

Model: 2700 Serial #: 0798688 Accuracy: See Manual

... Last Cal: 04/30/2013, Next Cal: 04/30/2014

Equipment #: HZ-MO-01 **Description:** Micro-ohmmeter **Manufacturer:** Keithley

Model: 2700 **Serial #:** 1199807

Accuracy: Last Cal: 04/28/2013, Next Cal: 04/28/2014

Equipment #: HZ-PS-01
Description: Power Supply
Manufacturer: Agilent

Model: 6031A

Serial #: MY41000982

Accuracy: Last Cal: 04/28/2013, Next Cal: 04/28/2014

Equipment #: SVC-01

Description: Shock & Vibration Table

Manufacturer: Data Physics **Model:** LE-DSA-10-20K

Serial #: 10037 Accuracy: See Manual

... Last Cal: 11/31/2013, Next Cal: 11/31/2014

Equipment #: ACLM-01
Description: Accelerometer
Manufacturer: PCB Piezotronics

Model: 352C03 Serial #: 115819 Accuracy: See Manual

... Last Cal: 07/09/2013, Next Cal: 07/09/2014

Equipment #: ED-03

Description: Event Detector **Manufacturer:** Analysis Tech

Model: 32EHD Serial #: 1100604 Accuracy: See Manual

... Last Cal: 06/04/2013, Next Cal: 06/04/2014