

Project Number: Design Qualification Test Report	Tracking Code: 289490_Report_Rev_2
Requested by: Tori Meek	Date: 05/4/2014
Part #: CJT-T-P-HH-ST-TH1/C28S-12.00-SPS8-303030	
Part description: CJT/C28S	Tech: Tony Wagoner
Test Start: 12/27/2013	Test Completed: 01/24/2014

DESIGN QUALIFICATION TEST REPORT

CJT/C28S
CJT-T-P-HH-ST-TH1/C28S-12.00-SPS8-303030

REVISION HISTORY

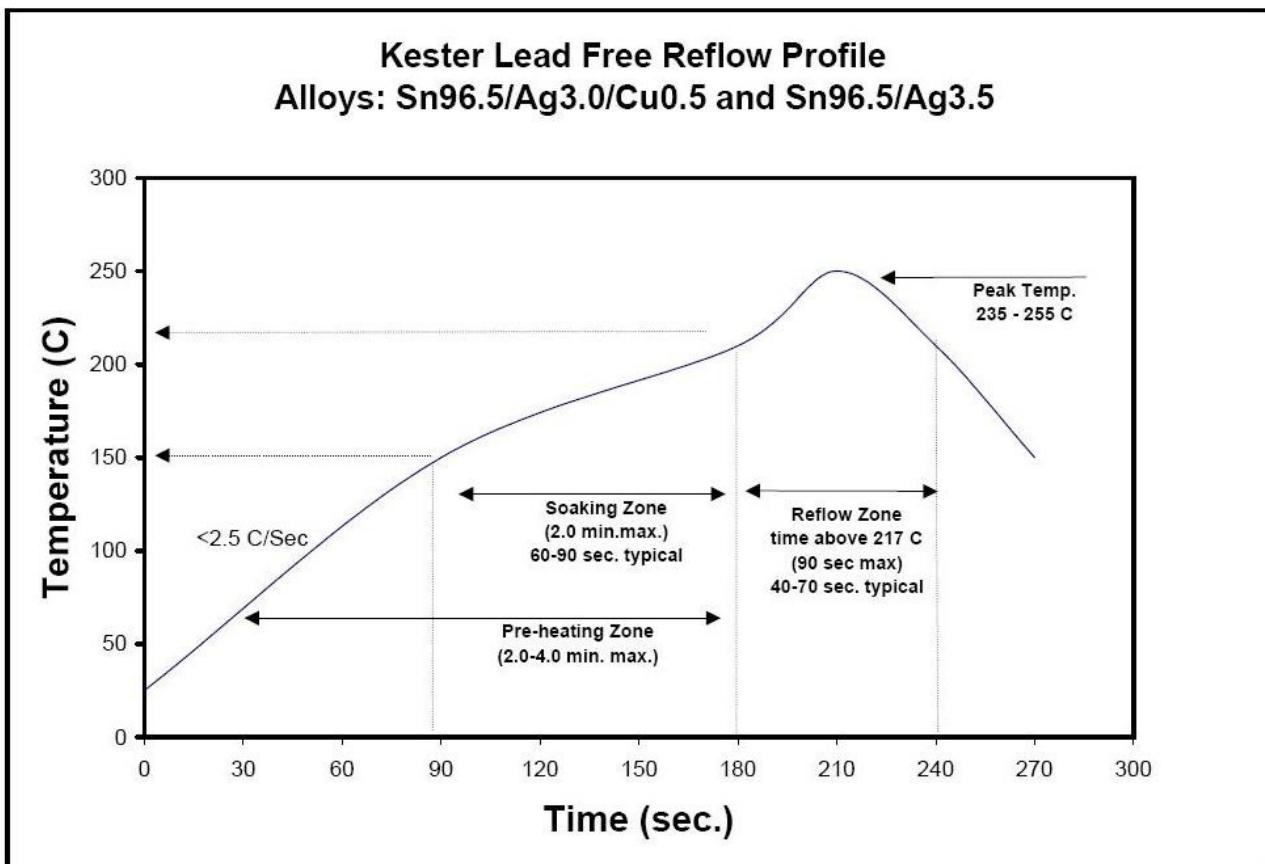
DATA	REV.NUM.	DESCRIPTION	ENG
03/10/2014	1	Initial Issue	KH
3/13/2014	2	Update the data	KH

CERTIFICATION

All instruments and measuring equipment were calibrated to National Institute for Standards and Technology (NIST) traceable standards according to ISO 10012-1 and ANSI/NCSL 2540-1, as applicable.

All contents contained herein are the property of Samtec. No portion of this report, in part or in full shall be reproduced without prior written approval of Samtec.

SCOPE


To perform the following tests: Design Qualification test. Please see test plan.

APPLICABLE DOCUMENTS

Standards: EIA Publication 364

TEST SAMPLES AND PREPARATION

- 1) All materials were manufactured in accordance with the applicable product specification.
- 2) All test samples were identified and encoded to maintain traceability throughout the test sequences.
- 3) After soldering, the parts to be used for LLCR testing were cleaned according to TLWI-0001.
- 4) Either an automated cleaning procedure or an ultrasonic cleaning procedure may be used.
- 5) The automated procedure is used with aqueous compatible soldering materials.
- 6) Parts not intended for testing LLCR are visually inspected and cleaned if necessary.
- 7) Any additional preparation will be noted in the individual test sequences.
- 8) Solder Information: Lead Free
- 9) Re-Flow Time/Temp: See accompanying profile.
- 10) Samtec Test PCBs used: PCB-105900-TST/PCB-103910-TST/PCB-103104-TST

TYPICAL OVEN PROFILE (Soldering Parts to Test Boards)

FLOWCHARTS

Gas Tight

Group 1
CJT-T-P-HH-ST-TH1
C28S-12.00-SPS8-303030
8 Assemblies

Step Description

1. LLCR (2)
Max Delta = 15 mOhm
2. Gas Tight (1)
3. LLCR (2)
Max Delta = 15 mOhm

(1) Gas Tight = EIA-364-36

(2) LLCR = EIA-364-23
Open Circuit Voltage = 20 mV Max
Test Current = 100 mA Max

Thermal Aging

Group 1
CJT-T-P-HH-ST-TH1
C28S-12.00-SPS8-303030
8 Assemblies

Step Description

1. Contact Gaps
2. LLCR (1)
Max Delta = 15 mOhm
3. Thermal Age (2)
4. LLCR (1)
Max Delta = 15 mOhm
5. Contact Gaps

(1) LLCR = EIA-364-23
Open Circuit Voltage = 20 mV Max
Test Current = 100 mA Max

(2) Thermal Age = EIA-364-17
Test Condition = 4 (105°C)
Time Condition = 8 (250 Hours)

FLOWCHARTS Continued

Mating/Unmating/Durability

Group 1

CJT-T-P-HH-ST-TH1
C28S-12.00-SPS8-303030
8 Assemblies

Group 2

CJT-T-P-HH-ST-TH1
C28S-12.00-SPS8-303030
8 Assemblies

Step	Description
1.	Contact Gaps
2.	LLCR (2) Max Delta = 15 mOhm
3.	Cycles <i>Quantity = 100 Cycles</i>
4.	Contact Gaps
5.	LLCR (2) Max Delta = 15 mOhm
6.	Thermal Shock (3) - <i>Non Standard</i>
7.	LLCR (2) Max Delta = 15 mOhm
8.	Humidity (1)
9.	LLCR (2) Max Delta = 15 mOhm

Step	Description
1.	Contact Gaps
2.	LLCR (2) Max Delta = 15 mOhm
3.	Cycles <i>Quantity = 25 Cycles</i>
4.	Contact Gaps
5.	LLCR (2) Max Delta = 15 mOhm
6.	Thermal Shock (3) - <i>Non Standard</i>
7.	LLCR (2) Max Delta = 15 mOhm
8.	Humidity (1)
9.	LLCR (2) Max Delta = 15 mOhm

(1) Humidity = EIA-364-31

Test Condition = B (240 Hours)

Test Method = III (+25°C to +65°C @ 90% RH to 98% RH)

Test Exceptions: ambient pre-condition and delete steps 7a and 7b

(2) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max

Test Current = 100 mA Max

(3) Thermal Shock = Other

Exposure Time at Temperature Extremes = 1/2 Hour

Method A, Test Condition = I (-20°C to +85°C)

Test Duration = A-3 (100 Cycles)

EIA-364-32 with modified lower temperature

FLOWCHARTS Continued

IR/DWV**Pin-to-Pin**Group 1

CJT-T-P-HH-ST-TH1

C28S-12.00-SPS8-303030

2 Assemblies

Pin-to-GroundGroup 2

CJT-T-P-HH-ST-TH1

C28S-12.00-SPS8-303030

2 Assemblies

Step	Description
1.	IR (3)
2.	DWV at Test Voltage (1) Test Voltage = 615 V
3.	Thermal Shock (4) - Non Standard
4.	IR (3)
5.	DWV at Test Voltage (1) Test Voltage = 615 V
6.	Humidity (2)
7.	IR (3)
8.	DWV at Test Voltage (1) Test Voltage = 615 V

Step	Description
1.	IR (3)
2.	DWV at Test Voltage (1) Test Voltage = 615 V
3.	Thermal Shock (4) - Non Standard
4.	IR (3)
5.	DWV at Test Voltage (1) Test Voltage = 615 V
6.	Humidity (2)
7.	IR (3)
8.	DWV at Test Voltage (1) Test Voltage = 615 V

(1) DWV at Test Voltage = EIA-364-20
Test Condition = 1 (Sea Level)
DWV test voltage is equal to 75% of the lowest breakdown voltage
Test voltage applied for 60 seconds

(2) Humidity = EIA-364-31
Test Condition = B (240 Hours)
Test Method = III (+25°C to +65°C @ 90% RH to 98% RH)
Test Exceptions: ambient pre-condition and delete steps 7a and 7b

(3) IR = EIA-364-21
Test Condition = 500 Vdc, 2 Minutes Max

(4) Thermal Shock = Other
Exposure Time at Temperature Extremes = 1/2 Hour
Method A, Test Condition = I (-20°C to +85°C)
Test Duration = A-3 (100 Cycles)
EIA-364-32 with modified lower temperature

FLOWCHARTS Continued

Mechanical Shock/Random Vibration/LLCR

Group 1

CJT-T-P-HH-ST-TH1

C28S-12.00-SPS8-303030

8 Assemblies

Step Description

1. LLCR ⁽¹⁾
Max Delta = 15 mOhm
2. Mechanical Shock ⁽²⁾
3. Random Vibration ⁽³⁾
4. LLCR ⁽¹⁾
Max Delta = 15 mOhm

(1) LLCR = EIA-364-23
Open Circuit Voltage = 20 mV Max
Test Current = 100 mA Max

(2) Mechanical Shock = EIA-364-27
Test Condition = C (100 G Peak, 6 milliseconds, Half Sine)
Number of Shocks = 3 Per Direction, Per Axis, 18 Total

(3) Random Vibration = EIA-364-28
Condition = VB (7.56 gRMS Average, 2 Hours/Axis)

Mechanical Shock/Random Vibration/Event Detection

Group 1

CJT-T-P-HH-ST-TH1

C28S-12.00-SPS8-303030

20 Points

Step Description

1. Nanosecond Event Detection
(Mechanical Shock) ⁽¹⁾
2. Nanosecond Event Detection
(Random Vibration) ⁽²⁾

(1) Nanosecond Event Detection (Mechanical Shock)
Use EIA-364-87 for Nanosecond Event Detection:
Test Condition = F (50 nanoseconds at 10 ohms)
Use EIA-364-27 for Mechanical Shock:
Test Condition = C (100 G Peak, 6 milliseconds, Half Sine)
Number of Shocks = 3 Per Direction, Per Axis, 18 Total

(2) Nanosecond Event Detection (Random Vibration)
Use EIA-364-87 for Nanosecond Event Detection:
Test Condition = F (50 nanoseconds at 10 ohms)
Use EIA-364-28 for Random Vibration:
Condition = VB (7.56 gRMS Average, 2 Hours/Axis)

FLOWCHARTS Continued

Cable Pull

Note: SEE ATTACHED PICTURE THAT DEPICTS HOW TO PERFORM THE CABLE PULL STEP.

Group 1
CJT-T-P-HH-ST-TH1
C28S-12.00-SPS8-SING
5 Assemblies
0 Degrees

Group 2
CJT-T-P-HH-ST-TH1
C28S-12.00-SPS8-SING
5 Assemblies
90 Degrees

Step **Description**
1. Cable Pull⁽¹⁾

Step **Description**
1. Cable Pull⁽¹⁾

(1) Cable Pull = EIA-364-38

Measure and Record Force Required to Failure
Failure = Discontinuity >1 microsecond at 10 ohms

FLOWCHARTS Continued

Cable Flex

Group 1

CJT-T-P-HH-ST-TH1

C28S-18.00-SPS8-SING

8 Assemblies

Circular Cable

Step Description

1. IR (3)
2. DWV at Test Voltage (2)
Test Voltage = 615 V
3. Cable Flex (1)
4. Visual Inspection
5. IR (3)
6. DWV at Test Voltage (2)
Test Voltage = 615 V
7. Rotate Cable 90°
8. Cable Flex (1)
9. Visual Inspection
10. IR (3)
11. DWV at Test Voltage (2)
Test Voltage = 615 V

(1) Cable Flex = EIA-364-41

 Circular Jacket Cable - to be tested 90° each direction (180° total)

 Flat Cable - to be tested 70° each direction (140° total)

 Monitor continuity during flex testing

 Failure = Discontinuity >1 microsecond at 10 ohms

(2) DWV at Test Voltage = EIA-364-20

 Test Condition = 1 (Sea Level)

 DWV test voltage is equal to 75% of the lowest breakdown voltage

 Test voltage applied for 60 seconds

(3) IR = EIA-364-21

 Test Condition = 500 Vdc, 2 Minutes Max

ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

THERMAL SHOCK:

- 1) EIA-364-32, *Thermal Shock (Temperature Cycling) Test Procedure for Electrical Connectors*.
- 2) Test Condition : -20°C to +85°C
- 3) Test Time: ½ hour dwell at each temperature extreme
- 4) Number of Cycles: 100
- 5) All test samples are pre-conditioned at ambient.
- 6) All test samples are exposed to environmental stressing in the mated condition.

THERMAL:

- 1) EIA-364-17, *Temperature Life with or without Electrical Load Test Procedure for Electrical Connectors*.
- 2) Test Condition 4 at 105° C
- 3) Test Time Condition B for 250 hours.
- 4) All test samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

HUMIDITY:

- 1) Reference document: EIA-364-31, *Humidity Test Procedure for Electrical Connectors*.
- 2) Test Condition B, 240 Hours.
- 3) Method III, +25° C to +65° C, 90% to 98% Relative Humidity.
- 4) All samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

MECHANICAL SHOCK (Specified Pulse):

- 1) Reference document: EIA-364-27, *Mechanical Shock Test Procedure for Electrical Connectors*
- 2) Test Condition C
- 3) Peak Value: 100 G
- 4) Duration: 6 Milliseconds
- 5) Wave Form: Half Sine
- 6) Velocity: 12.3 ft/s
- 7) Number of Shocks: 3 Shocks / Direction, 3 Axis (18 Total)

VIBRATION:

- 1) Reference document: EIA-364-28, *Vibration Test Procedure for Electrical Connectors*
- 2) Test Condition V, Letter B
- 3) Power Spectral Density: 0.04 G² / Hz
- 4) G 'RMS': 7.56
- 5) Frequency: 50 to 2000 Hz
- 6) Duration: 2.0 Hours per axis (3 axis total)

NANOSECOND-EVENT DETECTION:

- 1) Reference document: EIA-364-87, *Nanosecond-Event Detection for Electrical Connectors*
- 2) Prior to test, the samples were characterized to assure the low nanosecond event being monitored will trigger the detector.
- 3) After characterization it was determined the test samples could be monitored for 50 nanosecond events

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

LLCR:

- 1) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
 - a. $\leq +5.0$ mOhms: Stable
 - b. $+5.1$ to $+10.0$ mOhms: Minor
 - c. $+10.1$ to $+15.0$ mOhms: Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: Marginal
 - e. $+50.1$ to $+2000$ mOhms: Unstable
 - f. $>+2000$ mOhms: Open Failure

INSULATION RESISTANCE (IR):

To determine the resistance of insulation materials to leakage of current through or on the surface of these materials when a DC potential is applied.

- 1) PROCEDURE:
 - a. Reference document: EIA-364-21, *Insulation Resistance Test Procedure for Electrical Connectors*.
 - b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Electrification Time 2.0 minutes
 - iii. Test Voltage (500 VDC) corresponds to calibration settings for measuring resistances.
- 2) MEASUREMENTS:
- 3) When the specified test voltage is applied (VDC), the insulation resistance shall not be less than 1000 megohms.

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

To determine if the sockets can operate at its rated voltage and withstand momentary over potentials due to switching, surges, and other similar phenomenon. Separate samples are used to evaluate the effect of environmental stresses so not to influence the readings from arcing that occurs during the measurement process.

- 1) PROCEDURE:
 - a. Reference document: EIA-364-20, *Withstanding Voltage Test Procedure for Electrical Connectors*.
 - b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Barometric Test Condition 1
 - iii. Rate of Application 500 V/Sec
 - iv. Test Voltage (VAC) until breakdown occurs
- 2) MEASUREMENTS/CALCULATIONS
 - a. The breakdown voltage shall be measured and recorded.
 - b. The dielectric withstand voltage shall be recorded as 75% of the minimum breakdown voltage.
 - c. The working voltage shall be recorded as one-third (1/3) of the dielectric withstand voltage (one-fourth of the breakdown voltage).

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

CONNECTOR PULL:

- 1) Secure cable near center and pull on connector
 - a. At 90°, right angle to cable
 - b. At 0°, in-line with cable

Fig. 1

0° Connector pull, notice the electrical continuity hook-up wires.

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

CABLE DURABILITY:

- 1) Oscillate and monitor electrical continuity for open circuit indication.
 - a. $\pm 90^\circ$ Flex Mode, bend up to 200 cycles with 32 oz. load on cable end.

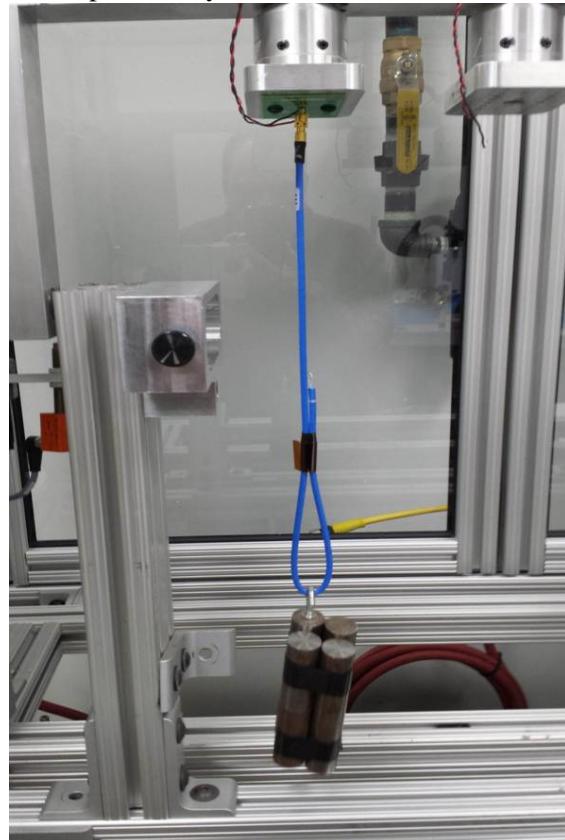


Fig. 1
(Setup picture)

RESULTS

Insulation Resistance minimums, IR

Pin to Pin

- Initial
 - Mated ----- 45000Meg Ω ----- Passed
 - Unmated ----- 45000Meg Ω ----- Passed
- Thermal Shock
 - Mated ----- 45000Meg Ω ----- Passed
 - Unmated ----- 45000Meg Ω ----- Passed
- Humidity
 - Mated ----- 45000Meg Ω ----- Passed
 - Unmated ----- 45000Meg Ω ----- Passed

Pin to Ground

- Initial
 - Mated ----- 45000Meg Ω ----- Passed
 - Unmated ----- 45000Meg Ω ----- Passed
- Thermal Shock
 - Mated ----- 45000Meg Ω ----- Passed
 - Unmated ----- 45000Meg Ω ----- Passed
- Humidity
 - Mated ----- 6300Meg Ω ----- Passed
 - Unmated ----- 12000Meg Ω ----- Passed

Dielectric Withstanding Voltage minimums, DWV

- Minimums
 - Breakdown Voltage ----- 820 VAC
 - Test Voltage ----- 615 VAC
 - Working Voltage ----- 205 VAC

Pin to Pin

- Initial DWV ----- Passed
- Thermal DWV ----- Passed
- Humidity DWV ----- Passed

Pin to Ground

- Initial DWV ----- Passed
- Thermal DWV ----- Passed
- Humidity DWV ----- Passed

RESULTS Continued

LLCR Thermal Aging Group (16 signal and 8 ground LLCR test points)

Signal pin

- Initial ----- **67.70 mOhms Max**
- Thermal
 - <= +5.0 mOhms ----- 13 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 3 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

Ground pin

- Initial ----- **8.76 mOhms Max**
- Thermal
 - <= +5.0 mOhms ----- 8 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

LLCR Gas Tight Group (16 signal and 8 ground LLCR test points)

Signal pin

- Initial ----- **69.81 mOhms Max**
- Gas-Tight
 - <= +5.0 mOhms ----- 16 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

Ground pin

- Initial ----- **8.99 mOhms Max**
- Gas-Tight
 - <= +5.0 mOhms ----- 8 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

RESULTS Continued

LLCR Mating/Unmating Durability 100 cycles Group (16 signal and 8 ground LLCR test points)

Signal pin

- Initial ----- 69.62 mOhms Max
- Durability, 100 Cycles
 - <= +5.0 mOhms ----- 16 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure
- Thermal Shock
 - <= +5.0 mOhms ----- 15 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 1 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure
- Humidity
 - <= +5.0 mOhms ----- 15 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 1 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

Ground pin

- Initial ----- 8.96 mOhms Max
- Durability, 100 Cycles
 - <= +5.0 mOhms ----- 8 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure
- Thermal Shock
 - <= +5.0 mOhms ----- 8 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure
- Humidity
 - <= +5.0 mOhms ----- 8 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

RESULTS Continued

LLCR Mating/Unmating Durability 25 cycles Group (16 signal and 8 ground LLCR test points)

Signal pin

- Initial ----- 69.25 mOhms Max
- Durability, 25 Cycles
 - <= +5.0 mOhms ----- 16 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure
- Thermal Shock
 - <= +5.0 mOhms ----- 15 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 1 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure
- Humidity
 - <= +5.0 mOhms ----- 14 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 1 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 1 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

Ground pin

- Initial ----- 8.70 mOhms Max
- Durability, 25 Cycles
 - <= +5.0 mOhms ----- 8 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure
- Thermal Shock
 - <= +5.0 mOhms ----- 8 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure
- Humidity
 - <= +5.0 mOhms ----- 8 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

RESULTS Continued

LLCR Shock & Vibration Group (16 signal and 8 ground LLCR test points)

Signal Pin

- Initial ----- 70.99 mOhms Max
- Shock & Vibration
 - <= +5.0 mOhms ----- 16 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

Ground Pin

- Initial ----- 8.99 mOhms Max
- Shock & Vibration
 - <= +5.0 mOhms ----- 8 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

Mechanical Shock & Random Vibration:

- Shock
 - No Damage----- ----- Pass
 - 50 Nanoseconds----- ----- Pass
- Vibration
 - No Damage----- ----- Pass
 - 50 Nanoseconds----- ----- Pass

Cable Pull:

- 0° ----- 22.50 lbs min
- 90° ----- 9.50 lbs min

RESULTS Continued

Cable Flex:

Insulation Resistance minimums, IR

Pin to Pin

- Initial
 - Unmated ----- 45000 Meg Ω ----- Passed
- After 100 flex cycles
 - Unmated ----- 45000 Meg Ω ----- Passed
- Rotate cable 90° after 200 flex cycles
 - Unmated ----- 45000 Meg Ω ----- Passed

Pin to Ground

- Initial
 - Unmated ----- 45000 Meg Ω ----- Passed
- After 100 flex cycles
 - Unmated ----- 45000 Meg Ω ----- Passed
- Rotate cable 90° after 200 flex cycles
 - Unmated ----- 45000 Meg Ω ----- Passed

Dielectric Withstanding Voltage minimums, DWV

- Test Voltage ----- 615 VAC

Pin to Pin

- Initial DWV ----- Passed
- After 100 Flex cycles DWV ----- Passed
- Rotate cable 90° after 200 Flex cycles DWV ----- Passed

Pin to Ground

- Initial DWV ----- Passed
- After 100 Flex cycles DWV ----- Passed
- Rotate cable 90° after 200 Flex cycles DWV ----- Passed

DATA SUMMARIES

INSULATION RESISTANCE (IR):

	Pin to Pin		
	Mated	Unmated	Unmated
Minimum	CJT/C28S	CJT	C28S
Initial	45000	45000	45000
Thermal	45000	45000	45000
Humidity	45000	45000	45000

	Pin to Ground		
	Mated	Unmated	Unmated
Minimum	CJT/C28S	CJT	C28S
Initial	45000	45000	45000
Thermal	45000	45000	45000
Humidity	6300	12000	45000

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

Voltage Rating Summary	
Minimum	CJT/C28S
Break Down Voltage	820
Test Voltage	615
Working Voltage	205

Pin to Pin	
Initial Test Voltage	Passed
After Thermal Test Voltage	Passed
After Humidity Test Voltage	Passed

Pin to Ground	
Initial Test Voltage	Passed
After Thermal Test Voltage	Passed
After Humidity Test Voltage	Passed

DATA SUMMARIES Continued

LLCR Thermal Aging Group

- 1) A total of 24 points were measured.
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. $\leq +5.0$ mOhms: ----- Stable
 - b. $+5.1$ to $+10.0$ mOhms: ----- Minor
 - c. $+10.1$ to $+15.0$ mOhms: ----- Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: ----- Marginal
 - e. $+50.1$ to $+2000$ mOhms ----- Unstable
 - f. $>+2000$ mOhms: ----- Open Failure

LLCR Measurement Summaries by Pin Type						
Date	2013-12-19		2013-12-30		Delta	Delta
	Actual	Initial	Delta	Thermal		
Pin Type 1: Signal						
Average	67.11	2.55				
St. Dev.	0.36	2.38				
Min	66.50	0.38				
Max	67.70	7.43				
Summary Count	16	16				
Total Count	16	16				
Pin Type 2: Ground						
Average	8.64	0.08				
St. Dev.	0.06	0.05				
Min	8.54	0.03				
Max	8.76	0.19				
Summary Count	8	8				
Total Count	8	8				

LLCR Delta Count by Category						
mOhms	Stable	Minor	Acceptable	Marginal	Unstable	Open
	≤ 5	$>5 \text{ & } \leq 10$	$>10 \text{ & } \leq 15$	$>15 \text{ & } \leq 50$	$>50 \text{ & } \leq 1000$	>1000
Thermal	21	3	0	0	0	0

DATA SUMMARIES Continued

LLCR Mating/Unmating Durability 100 Cycles Group

- 1). A total of 24 points were measured.
- 2). EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3). A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4). The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. $\leq +5.0$ mOhms: ----- Stable
 - b. $+5.1$ to $+10.0$ mOhms: ----- Minor
 - c. $+10.1$ to $+15.0$ mOhms: ----- Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: ----- Marginal
 - e. $+50.1$ to $+2000$ mOhms: ----- Unstable
 - f. $> +2000$ mOhms: ----- Open Failure

LLCR Measurement Summaries by Pin Type				
Date	2013-12-27	2014-1-8	2014-1-13	2014-1-24
	Room Temp (Deg C)	23	23	22
Rel Humidity (%)	36	36	37	38
	Technician	Tony Wagoner	Tony Wagoner	Tony Wagoner
mOhm values	Actual Initial	Delta 100 Cycles	Delta Therm Shck	Delta Humidity
	Pin Type 1: Signal			
Average	67.27	0.61	2.06	0.96
St. Dev.	1.04	0.64	3.56	1.62
Min	66.36	0.04	0.09	0.09
Max	69.62	2.45	14.95	6.40
Summary Count	16	16	16	16
Total Count	16	16	16	16
Pin Type 2: Ground				
Average	8.64	0.08	0.31	0.29
St. Dev.	0.15	0.06	0.15	0.15
Min	8.41	0.00	0.19	0.06
Max	8.96	0.19	0.59	0.50
Summary Count	8	8	8	8
Total Count	8	8	8	8

LLCR Delta Count by Category						
mOhms	Stable	Minor	Acceptable	Marginal	Unstable	Open
	≤ 5	$>5 \text{ & } \leq 10$	$>10 \text{ & } \leq 15$	$>15 \text{ & } \leq 50$	$>50 \text{ & } \leq 1000$	>1000
100 Cycles	24	0	0	0	0	0
Therm Shck	23	0	1	0	0	0
Humidity	23	1	0	0	0	0

DATA SUMMARIES Continued

LLCR Mating/Unmating Durability 25 Cycles Group

- 1). A total of 24 points were measured.
- 2). EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3). A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4). The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. $\leq +5.0$ mOhms: ----- Stable
 - b. $+5.1$ to $+10.0$ mOhms: ----- Minor
 - c. $+10.1$ to $+15.0$ mOhms: ----- Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: ----- Marginal
 - e. $+50.1$ to $+2000$ mOhms: ----- Unstable
 - f. $> +2000$ mOhms: ----- Open Failure

LLCR Measurement Summaries by Pin Type				
mOhm values	Date	2013-12-27	2014-1-8	2014-1-13
	2014-1-24	23	23	23
Room Temp (Deg C)		36	36	37
Rel Humidity (%)				38
Technician	Tony Wagoner	Tony Wagoner	Tony Wagoner	Tony Wagoner
	Actual Initial	Delta 25 Cycles	Delta Therm Shck	Delta Humidity
Pin Type 1: Signal				
Average	67.53	0.62	1.43	1.99
St. Dev.	0.72	0.39	1.72	3.25
Min	66.49	0.11	0.01	0.02
Max	69.25	1.37	6.44	11.11
Summary Count	16	16	16	16
Total Count	16	16	16	16
Pin Type 2: Ground				
Average	8.59	0.11	0.19	0.14
St. Dev.	0.08	0.06	0.20	0.06
Min	8.40	0.04	0.02	0.05
Max	8.70	0.24	0.68	0.24
Summary Count	8	8	8	8
Total Count	8	8	8	8

LLCR Delta Count by Category						
mOhms	Stable	Minor	Acceptable	Marginal	Unstable	Open
	≤ 5	$>5 \text{ & } \leq 10$	$>10 \text{ & } \leq 15$	$>15 \text{ & } \leq 50$	$>50 \text{ & } \leq 1000$	>1000
25 Cycles	24	0	0	0	0	0
Therm Shck	23	1	0	0	0	0
Humidity	22	1	1	0	0	0

DATA SUMMARIES Continued

LLCR Gas Tight Group

- 1) A total of 24 points were measured.
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. $\leq +5.0$ mOhms: Stable
 - b. $+5.1$ to $+10.0$ mOhms: Minor
 - c. $+10.1$ to $+15.0$ mOhms: Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: Marginal
 - e. $+50.1$ to $+2000$ mOhms: Unstable
 - f. $>+2000$ mOhms: Open Failure

LLCR Measurement Summaries by Pin Type						
Date	2013-12-11		2013-12-11		Delta	Delta
	Actual	Initial	Delta	Acid Vapor		
Pin Type 1: Signal						
Average	66.88	0.97				
St. Dev.	0.86	0.99				
Min	66.07	0.02				
Max	69.81	3.13				
Summary Count	16	16				
Total Count	16	16				
Pin Type 2: Ground						
Average	8.67	0.10				
St. Dev.	0.19	0.04				
Min	8.37	0.03				
Max	8.99	0.17				
Summary Count	8	8				
Total Count	8	8				

LLCR Delta Count by Category						
mOhms	Stable	Minor	Acceptable	Marginal	Unstable	Open
	≤ 5	$>5 \text{ & } \leq 10$	$>10 \text{ & } \leq 15$	$>15 \text{ & } \leq 50$	$>50 \text{ & } \leq 1000$	>1000
Acid Vapor	24	0	0	0	0	0

DATA SUMMARIES Continued

LLCR Shock & Vibration Group

- 1) A total of 24 points were measured.
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. $\leq +5.0$ mOhms: ----- Stable
 - b. $+5.1$ to $+10.0$ mOhms: ----- Minor
 - c. $+10.1$ to $+15.0$ mOhms: ----- Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: ----- Marginal
 - e. $+50.1$ to $+2000$ mOhms: ----- Unstable
 - f. $>+2000$ mOhms: ----- Open Failure

LLCR Measurement Summaries by Pin Type						
Date	2014-1-17	2014-1-23				
	Room Temp (Deg C)	23	22			
Rel Humidity (%)	30	35				
	Tony Wagoner	Tony Wagoner				
mOhm values	Actual	Delta	Delta	Delta		
	Initial	Shock-Vib				
Pin Type 1: Signal						
Average	66.90	0.68				
St. Dev.	1.19	0.69				
Min	65.80	0.00				
Max	70.99	2.41				
Summary Count	16	16				
Total Count	16	16				
Pin Type 2: Ground						
Average	8.65	0.14				
St. Dev.	0.15	0.21				
Min	8.46	0.01				
Max	8.99	0.67				
Summary Count	8	8				
Total Count	8	8				

LLCR Delta Count by Category						
mOhms	Stable	Minor	Acceptable	Marginal	Unstable	Open
	≤ 5	$>5 \text{ & } \leq 10$	$>10 \text{ & } \leq 15$	$>15 \text{ & } \leq 50$	$>50 \text{ & } \leq 1000$	>1000
Shock-Vib	24	0	0	0	0	0

Nanosecond Event Detection:

Shock and Vibration Event Detection Summary	
Contacts tested	20
Test Condition	C, 100g's, 6ms, Half-Sine
Shock Events	0
Test Condition	V-B, 7.56 rms g
Vibration Events	0
Total Events	0

DATA SUMMARIES Continued**Cable Pull:****0° Pull Test**

Force (lbs)	
Minimum	22.50
Maximum	25.50
Average	23.88

90° Pull Test

Force (lbs)	
Minimum	9.50
Maximum	11.00
Average	10.17

Cable Flex:**Insulation Resistance minimums, IR**

Pin to Pin	
Un Mated	
Minimum	
Initial	45000
After 100 Flex Cycles	45000
After 200 Flex Cycles	45000

Pin to Ground	
Un Mated	
Minimum	
Initial	45000
After 100 Flex Cycles	45000
After 200 Flex Cycles	45000

Dielectric Withstanding Voltage minimums, DWV

Voltage Rating Summary	
Minimum	
Break Down Voltage	820
Test Voltage	615
Working Voltage	205

Pin to Pin	
Initial Test Voltage	Passed
After 100 Flex Cycles Test Voltage	Passed
After 200 Flex Cycles Test Voltage	Passed

Pin to Ground	
Initial Test Voltage	Passed
After 100 Flex Cycles Test Voltage	Passed
After 200 Flex Cycles Test Voltage	Passed

EQUIPMENT AND CALIBRATION SCHEDULES

Equipment #: MO-04

Description: Multimeter /Data Acquisition System

Manufacturer: Keithley

Model: 2700

Serial #: 0798688

Accuracy: See Manual

... Last Cal: 04/30/2013, Next Cal: 04/30/2014

Equipment #: TCT-04

Description: Dillon Quantrol TC2 Test Stand

Manufacturer: Dillon Quantrol

Model: TC2

Serial #: 04-1041-04

Accuracy: Speed Accuracy: +/- 5% of indicated speed; Displacement: +/- 5 micrometers.

... Last Cal: 05/21/2013, Next Cal: 05/21/2014

Equipment #: THC-02

Description: Temperature/Humidity Chamber

Manufacturer: Thermotron

Model: SE-1000-6-6

Serial #: 31808

Accuracy: See Manual

... Last Cal: 02/16/2013, Next Cal: 02/16/2014

Equipment #: TSC-01

Description: Vertical Thermal Shock Chamber

Manufacturer: Cincinnati Sub Zero

Model: VTS-3-6-6-SC/AC

Serial #: 10-VT14993

Accuracy: See Manual

... Last Cal: 05/18/2013, Next Cal: 05/18/2014

Equipment #: HPM-01

Description: Hipot Megommeter

Manufacturer: Hipotronics

Model: H306B-A

Serial #: M9905004

Accuracy: 2 % Full Scale Accuracy

... Last Cal: 11/30/2013, Next Cal: 11/30/2014

Equipment #: OV-5

Description: Forced Air Oven, 5 Cu. Ft., 120 V

Manufacturer: Sheldon Mfg.

Model: CE5F

Serial #: 02008008

Accuracy: +/- 5 deg. C

... Last Cal: 02/16/2013, Next Cal: 02/16/2014

EQUIPMENT AND CALIBRATION SCHEDULES Continued

Equipment #: MO-011

Description: Switch/ Multimeter

Manufacturer: Keithley

Model: 3706

Serial #: 120169

Accuracy: See Manual

... Last Cal: 08/21/2013, Next Cal: 08/21/2014

Equipment #: SVC-01

Description: Shock & Vibration Table

Manufacturer: Data Physics

Model: LE-DSA-10-20K

Serial #: 10037

Accuracy: See Manual

... Last Cal: 11/31/2013, Next Cal: 11/31/2014

Equipment #: ACLM-01

Description: Accelerometer

Manufacturer: PCB Piezotronics

Model: 352C03

Serial #: 115819

Accuracy: See Manual

... Last Cal: 07/09/2013, Next Cal: 07/09/2014

Equipment #: ED-03

Description: Event Detector

Manufacturer: Analysis Tech

Model: 32EHD

Serial #: 1100604

Accuracy: See Manual

... Last Cal: 06/04/2013, Next Cal: 06/04/2014