


|                                                              |                                    |
|--------------------------------------------------------------|------------------------------------|
| Project Number: Design Qualification Test Report             | Tracking Code: 299903_Report_Rev_1 |
| Requested by: Neal Patterson                                 | Date: 3/11/2014                    |
| Part #: QSH-060-01-L-D-RA-WT-GP-K/QTH-060-01-L-D-RA-WT-PGP-K | Tech: Troy Cook                    |
| Part description: QSH/QTH                                    | Qty to test: 75                    |
| Test Start: 01/20/2014                                       | Test Completed: 02/25/2014         |



## DESIGN QUALIFICATION TEST REPORT

**QSH/QTH**  
**QSH-060-01-L-D-RA-WT-GP-K/QTH-060-01-L-D-RA-WT-PGP-K**

**REVISION HISTORY**

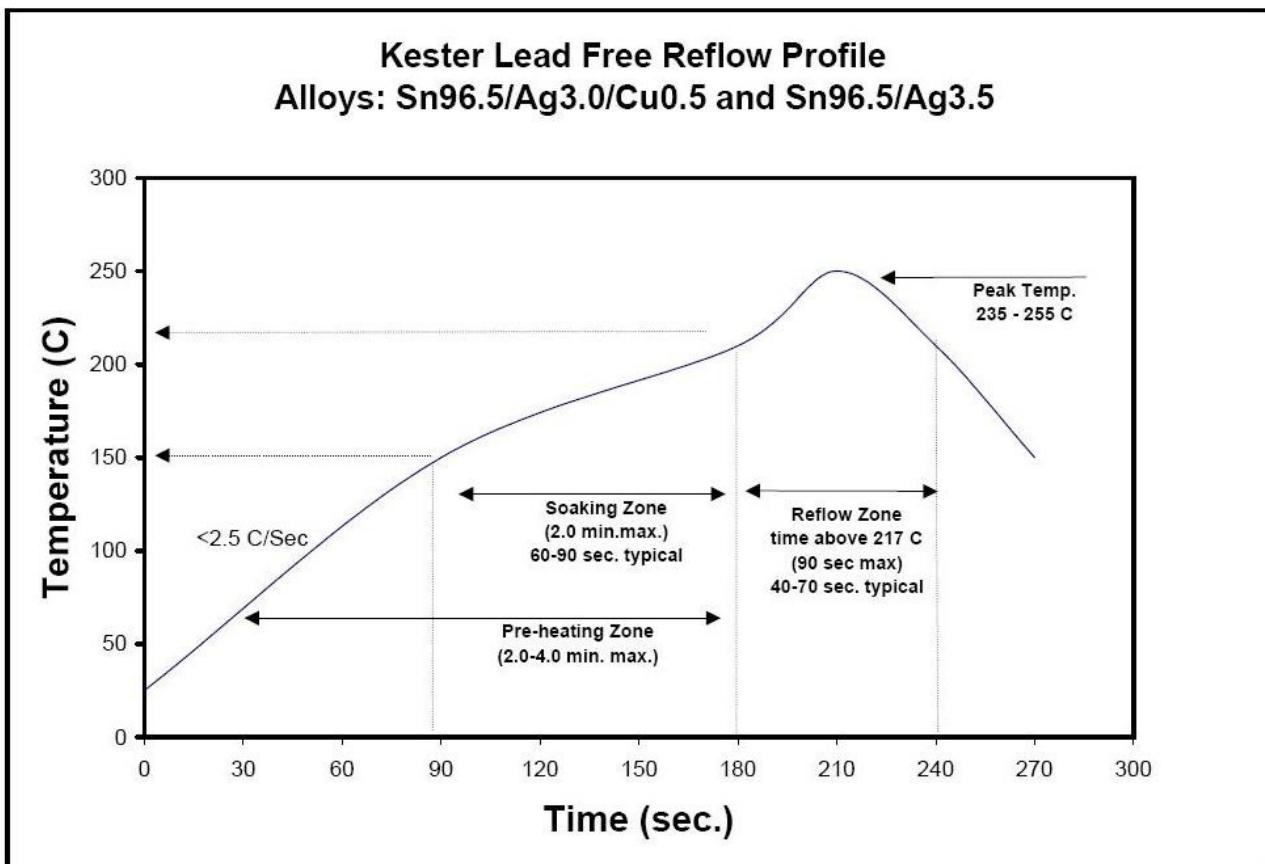
| DATA       | REV.NUM. | DESCRIPTION   | ENG |
|------------|----------|---------------|-----|
| 03/07/2014 | 1        | Initial Issue | PC  |

## CERTIFICATION

All instruments and measuring equipment were calibrated to National Institute for Standards and Technology (NIST) traceable standards according to ISO 10012-1 and ANSI/NCSL 2540-1, as applicable.

All contents contained herein are the property of Samtec. No portion of this report, in part or in full shall be reproduced without prior written approval of Samtec.

## SCOPE


To perform the following tests: Design Qualification test. Please see test plan.

## APPLICABLE DOCUMENTS

Standards: EIA Publication 364

## TEST SAMPLES AND PREPARATION

- 1) All materials were manufactured in accordance with the applicable product specification.
- 2) All test samples were identified and encoded to maintain traceability throughout the test sequences.
- 3) After soldering, the parts to be used for LLCR and DWV/IR testing were cleaned according to TLWI-0001.
- 4) Either an automated cleaning procedure or an ultrasonic cleaning procedure may be used.
- 5) The automated procedure is used with aqueous compatible soldering materials.
- 6) Parts not intended for testing LLCR and DWV/IR are visually inspected and cleaned if necessary.
- 7) Any additional preparation will be noted in the individual test sequences.
- 8) Solder Information: Lead free
- 9) Re-Flow Time/Temp: See accompanying profile.
- 10) Samtec Test PCBs used: PCB-106076-TST, PCB-106077-TST, PCB-106078-TST.

**TYPICAL OVEN PROFILE (Soldering Parts to Test Boards)**

## FLOWCHARTS

### Gas Tight

#### Group 1

QSH-060-01-L-D-RA-WT-GP-K

QTH-060-01-L-D-RA-WT-PGP-K

8 Assemblies

---

#### Step Description

1. LLCR <sup>(2)</sup>  
Max Delta = 15 mOhm
2. Gas Tight <sup>(1)</sup>
3. LLCR <sup>(2)</sup>  
Max Delta = 15 mOhm

---

(1) Gas Tight = EIA-364-36

(2) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max  
Test Current = 100 mA Max

### Thermal Aging

#### Group 1

QSH-060-01-L-D-RA-WT-GP-K

QTH-060-01-L-D-RA-WT-PGP-K

8 Assemblies

---

#### Step Description

1. Contact Gaps
2. Mating/Unmating Force <sup>(2)</sup>
3. LLCR <sup>(1)</sup>  
Max Delta = 15 mOhm
4. Thermal Age <sup>(3)</sup>
5. LLCR <sup>(1)</sup>  
Max Delta = 15 mOhm
6. Mating/Unmating Force <sup>(2)</sup>
7. Contact Gaps

---

(1) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max  
Test Current = 100 mA Max

(2) Mating/Unmating Force = EIA-364-13

(3) Thermal Age = EIA-364-17

Test Condition = 4 (105°C)  
Time Condition = B (250 Hours)

## FLOWCHARTS Continued

Mating/Unmating/Durability

Group 1  
 QSH-060-01-L-D-RA-WT-GP-K  
 QTH-060-01-L-D-RA-WT-PGP-K  
 8 Assemblies

| Step | Description                     |
|------|---------------------------------|
| 1.   | Contact Gaps                    |
| 2.   | LLCR (2)<br>Max Delta = 15 mOhm |
| 3.   | Mating/Unmating Force (3)       |
| 4.   | Cycles<br>Quantity = 25 Cycles  |
| 5.   | Mating/Unmating Force (3)       |
| 6.   | Contact Gaps                    |
| 7.   | LLCR (2)<br>Max Delta = 15 mOhm |
| 8.   | Thermal Shock (4)               |
| 9.   | LLCR (2)<br>Max Delta = 15 mOhm |
| 10.  | Humidity (1)                    |
| 11.  | LLCR (2)<br>Max Delta = 15 mOhm |
| 12.  | Mating/Unmating Force (3)       |

Group 2  
 QSH-090-01-L-D-RA-WT-GP-K  
 QTH-090-01-L-D-RA-WT-PGP-K  
 8 Assemblies

| Step | Description                    |
|------|--------------------------------|
| 1.   | Contact Gaps                   |
| 2.   | Mating/Unmating Force (3)      |
| 3.   | Cycles<br>Quantity = 25 Cycles |
| 4.   | Mating/Unmating Force (3)      |

Group 3  
 QSH-030-01-L-D-RA-WT-GP-K  
 QTH-030-01-L-D-RA-WT-PGP-K  
 8 Assemblies

| Step | Description                    |
|------|--------------------------------|
| 1.   | Contact Gaps                   |
| 2.   | Mating/Unmating Force (3)      |
| 3.   | Cycles<br>Quantity = 25 Cycles |
| 4.   | Mating/Unmating Force (3)      |

(1) Humidity = EIA-364-31

Test Condition = B (240 Hours)

Test Method = III (+25°C to +65°C @ 90% RH to 98% RH)

Test Exceptions: ambient pre-condition and delete steps 7a and 7b

(2) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max

Test Current = 100 mA Max

(3) Mating/Unmating Force = EIA-364-13

(4) Thermal Shock = EIA-364-32

Exposure Time at Temperature Extremes = 1/2 Hour

Method A, Test Condition = I (-55°C to +85°C)

Test Duration = A-3 (100 Cycles)

## FLOWCHARTS Continued

### IR/DWV

#### Pin-to-Pin

| <u>Group 1</u>                                                          |                              | <u>Group 2</u>                            |                              | <u>Group 3</u>                             |                              | <u>Group 4</u>                                                          |                                    |
|-------------------------------------------------------------------------|------------------------------|-------------------------------------------|------------------------------|--------------------------------------------|------------------------------|-------------------------------------------------------------------------|------------------------------------|
| QSH-060-01-L-D-RA-WT-GP-K<br>QTH-060-01-L-D-RA-WT-PGP-K<br>2 Assemblies |                              | QSH-060-01-L-D-RA-WT-GP-K<br>2 Assemblies |                              | QTH-060-01-L-D-RA-WT-PGP-K<br>2 Assemblies |                              | QSH-060-01-L-D-RA-WT-GP-K<br>QTH-060-01-L-D-RA-WT-PGP-K<br>2 Assemblies |                                    |
| <b>Step</b> <b>Description</b>                                          |                              | <b>Step</b> <b>Description</b>            |                              | <b>Step</b> <b>Description</b>             |                              | <b>Step</b> <b>Description</b>                                          |                                    |
| 1.                                                                      | DWV Breakdown <sup>(2)</sup> | 1.                                        | DWV Breakdown <sup>(2)</sup> | 1.                                         | DWV Breakdown <sup>(2)</sup> | 1.                                                                      | IR <sup>(4)</sup>                  |
|                                                                         |                              |                                           |                              |                                            |                              |                                                                         | DWV at Test Voltage <sup>(1)</sup> |
|                                                                         |                              |                                           |                              |                                            |                              |                                                                         | Thermal Shock <sup>(5)</sup>       |
|                                                                         |                              |                                           |                              |                                            |                              |                                                                         | IR <sup>(4)</sup>                  |
|                                                                         |                              |                                           |                              |                                            |                              |                                                                         | DWV at Test Voltage <sup>(1)</sup> |
|                                                                         |                              |                                           |                              |                                            |                              |                                                                         | Humidity <sup>(3)</sup>            |
|                                                                         |                              |                                           |                              |                                            |                              |                                                                         | IR <sup>(4)</sup>                  |
|                                                                         |                              |                                           |                              |                                            |                              |                                                                         | DWV at Test Voltage <sup>(1)</sup> |

#### Row-to-Row

| <u>Group 5</u>                                                          |                              | <u>Group 6</u>                            |                              | <u>Group 7</u>                             |                              | <u>Group 8</u>                                                          |                                    |
|-------------------------------------------------------------------------|------------------------------|-------------------------------------------|------------------------------|--------------------------------------------|------------------------------|-------------------------------------------------------------------------|------------------------------------|
| QSH-060-01-L-D-RA-WT-GP-K<br>QTH-060-01-L-D-RA-WT-PGP-K<br>2 Assemblies |                              | QSH-060-01-L-D-RA-WT-GP-K<br>2 Assemblies |                              | QTH-060-01-L-D-RA-WT-PGP-K<br>2 Assemblies |                              | QSH-060-01-L-D-RA-WT-GP-K<br>QTH-060-01-L-D-RA-WT-PGP-K<br>2 Assemblies |                                    |
| <b>Step</b> <b>Description</b>                                          |                              | <b>Step</b> <b>Description</b>            |                              | <b>Step</b> <b>Description</b>             |                              | <b>Step</b> <b>Description</b>                                          |                                    |
| 1.                                                                      | DWV Breakdown <sup>(2)</sup> | 1.                                        | DWV Breakdown <sup>(2)</sup> | 1.                                         | DWV Breakdown <sup>(2)</sup> | 1.                                                                      | IR <sup>(4)</sup>                  |
|                                                                         |                              |                                           |                              |                                            |                              |                                                                         | DWV at Test Voltage <sup>(1)</sup> |
|                                                                         |                              |                                           |                              |                                            |                              |                                                                         | Thermal Shock <sup>(5)</sup>       |
|                                                                         |                              |                                           |                              |                                            |                              |                                                                         | IR <sup>(4)</sup>                  |
|                                                                         |                              |                                           |                              |                                            |                              |                                                                         | DWV at Test Voltage <sup>(1)</sup> |
|                                                                         |                              |                                           |                              |                                            |                              |                                                                         | Humidity <sup>(3)</sup>            |
|                                                                         |                              |                                           |                              |                                            |                              |                                                                         | IR <sup>(4)</sup>                  |
|                                                                         |                              |                                           |                              |                                            |                              |                                                                         | DWV at Test Voltage <sup>(1)</sup> |

## FLOWCHARTS Continued

### Pin-to-Ground

| Group 9                    |                              | Group 10                  |                              | Group 11                   |                              | Group 12                   |                                    |
|----------------------------|------------------------------|---------------------------|------------------------------|----------------------------|------------------------------|----------------------------|------------------------------------|
| QSH-060-01-L-D-RA-WT-GP-K  |                              | QSH-060-01-L-D-RA-WT-GP-K |                              | QTH-060-01-L-D-RA-WT-PGP-K |                              | QSH-060-01-L-D-RA-WT-GP-K  |                                    |
| QTH-060-01-L-D-RA-WT-PGP-K |                              | 2 Assemblies              |                              | 2 Assemblies               |                              | QTH-060-01-L-D-RA-WT-PGP-K |                                    |
| Step                       | Description                  | Step                      | Description                  | Step                       | Description                  | Step                       | Description                        |
| 1.                         | DWV Breakdown <sup>(2)</sup> | 1.                        | DWV Breakdown <sup>(2)</sup> | 1.                         | DWV Breakdown <sup>(2)</sup> | 1.                         | IR <sup>(4)</sup>                  |
|                            |                              |                           |                              |                            |                              |                            | DWV at Test Voltage <sup>(1)</sup> |
|                            |                              |                           |                              |                            |                              |                            | Thermal Shock <sup>(5)</sup>       |
|                            |                              |                           |                              |                            |                              |                            | IR <sup>(4)</sup>                  |
|                            |                              |                           |                              |                            |                              |                            | DWV at Test Voltage <sup>(1)</sup> |
|                            |                              |                           |                              |                            |                              |                            | Humidity <sup>(3)</sup>            |
|                            |                              |                           |                              |                            |                              |                            | IR <sup>(4)</sup>                  |
|                            |                              |                           |                              |                            |                              |                            | DWV at Test Voltage <sup>(1)</sup> |

### Pin-to-Weld Tab

| Group 13                   |                              | Group 14                  |                              | Group 15                   |                              | Group 16                   |                                    |
|----------------------------|------------------------------|---------------------------|------------------------------|----------------------------|------------------------------|----------------------------|------------------------------------|
| QSH-060-01-L-D-RA-WT-GP-K  |                              | QSH-060-01-L-D-RA-WT-GP-K |                              | QTH-060-01-L-D-RA-WT-PGP-K |                              | QSH-060-01-L-D-RA-WT-GP-K  |                                    |
| QTH-060-01-L-D-RA-WT-PGP-K |                              | 2 Assemblies              |                              | 2 Assemblies               |                              | QTH-060-01-L-D-RA-WT-PGP-K |                                    |
| Step                       | Description                  | Step                      | Description                  | Step                       | Description                  | Step                       | Description                        |
| 1.                         | DWV Breakdown <sup>(2)</sup> | 1.                        | DWV Breakdown <sup>(2)</sup> | 1.                         | DWV Breakdown <sup>(2)</sup> | 1.                         | IR <sup>(4)</sup>                  |
|                            |                              |                           |                              |                            |                              |                            | DWV at Test Voltage <sup>(1)</sup> |
|                            |                              |                           |                              |                            |                              |                            | Thermal Shock <sup>(5)</sup>       |
|                            |                              |                           |                              |                            |                              |                            | IR <sup>(4)</sup>                  |
|                            |                              |                           |                              |                            |                              |                            | DWV at Test Voltage <sup>(1)</sup> |
|                            |                              |                           |                              |                            |                              |                            | Humidity <sup>(3)</sup>            |
|                            |                              |                           |                              |                            |                              |                            | IR <sup>(4)</sup>                  |
|                            |                              |                           |                              |                            |                              |                            | DWV at Test Voltage <sup>(1)</sup> |

## FLOWCHARTS Continued

### Ground-to-Weld Tab

#### Group 17

QSH-060-01-L-D-RA-WT-GP-K  
QTH-060-01-L-D-RA-WT-PGP-K  
2 Assemblies

#### Group 18

QSH-060-01-L-D-RA-WT-GP-K  
2 Assemblies

#### Group 19

QTH-060-01-L-D-RA-WT-PGP-K  
2 Assemblies

#### Group 20

QSH-060-01-L-D-RA-WT-GP-K  
QTH-060-01-L-D-RA-WT-PGP-K  
2 Assemblies

**Step**   **Description**  
1.   DWV Breakdown <sup>(2)</sup>

**Step**   **Description**  
1.   DWV Breakdown <sup>(2)</sup>

**Step**   **Description**  
1.   DWV Breakdown <sup>(2)</sup>

**Step**   **Description**  
1.   IR <sup>(4)</sup>  
2.   DWV at Test Voltage <sup>(1)</sup>  
3.   Thermal Shock <sup>(5)</sup>  
4.   IR <sup>(4)</sup>  
5.   DWV at Test Voltage <sup>(1)</sup>  
6.   Humidity <sup>(3)</sup>  
7.   IR <sup>(4)</sup>  
8.   DWV at Test Voltage <sup>(1)</sup>

(1) DWV at Test Voltage = EIA-364-20

Test Condition = 1 (Sea Level)

DWV test voltage is equal to 75% of the lowest breakdown voltage

Test voltage applied for 60 seconds

(2) DWV Breakdown = EIA-364-20

Test Condition = 1 (Sea Level)

DWV test voltage is equal to 75% of the lowest breakdown voltage

Test voltage applied for 60 seconds

(3) Humidity = EIA-364-31

Test Condition = B (240 Hours)

Test Method = III (+25°C to +65°C @ 90% RH to 98% RH)

Test Exceptions: ambient pre-condition and delete steps 7a and 7b

(4) IR = EIA-364-21

Test Condition = 500 Vdc, 2 Minutes Max

(5) Thermal Shock = EIA-364-32

Exposure Time at Temperature Extremes = 1/2 Hour

Method A, Test Condition = I (-55°C to +85°C)

Test Duration = A-3 (100 Cycles)

## FLOWCHARTS Continued

### Current Carrying Capacity

#### Signal

**Group 1**  
 QSH-090-01-L-D-RA-WT-GP-K  
 QTH-090-01-L-D-RA-WT-PGP-K  
 2 Pins Powered  
 Signal

**Group 2**  
 QSH-090-01-L-D-RA-WT-GP-K  
 QTH-090-01-L-D-RA-WT-PGP-K  
 4 Pins Powered  
 Signal

**Group 3**  
 QSH-090-01-L-D-RA-WT-GP-K  
 QTH-090-01-L-D-RA-WT-PGP-K  
 6 Pins Powered  
 Signal

**Group 4**  
 QSH-090-01-L-D-RA-WT-GP-K  
 QTH-090-01-L-D-RA-WT-PGP-K  
 8 Pins Powered  
 Signal

**Step**   **Description**  
 1. CCC (2)  
 Rows = 2  
 Number of Positions = 1

**Step**   **Description**  
 1. CCC (2)  
 Rows = 2  
 Number of Positions = 2

**Step**   **Description**  
 1. CCC (2)  
 Rows = 2  
 Number of Positions = 3

**Step**   **Description**  
 1. CCC (2)  
 Rows = 2  
 Number of Positions = 4

**Group 5**  
 QSH-090-01-L-D-RA-WT-GP-K  
 QTH-090-01-L-D-RA-WT-PGP-K  
 180 Pins Powered  
 Signal

**Step**   **Description**  
 1. CCC (2)  
 Rows = 2  
 Number of Positions = 90

#### Ground

**Group 6**  
 QSH-090-01-L-D-RA-WT-GP-K  
 QTH-090-01-L-D-RA-WT-PGP-K  
 1 Pins Powered  
 Ground

**Group 7**  
 QSH-090-01-L-D-RA-WT-GP-K  
 QTH-090-01-L-D-RA-WT-PGP-K  
 2 Pins Powered  
 Ground

**Group 8**  
 QSH-090-01-L-D-RA-WT-GP-K  
 QTH-090-01-L-D-RA-WT-PGP-K  
 3 Pins Powered  
 Ground

**Step**   **Description**  
 1. CCC (2)  
 Rows = 1  
 Number of Positions = 1

**Step**   **Description**  
 1. CCC (2)  
 Rows = 1  
 Number of Positions = 2

**Step**   **Description**  
 1. CCC (2)  
 Rows = 1  
 Number of Positions = 3

#### All Power

**Group 9**  
 QSH-090-01-L-D-RA-WT-GP-K  
 QTH-090-01-L-D-RA-WT-PGP-K

All Power

**Step**   **Description**  
 1. CCC - All Power (1)

(1) CCC - All Power = EIA-364-70  
 Method 2, Temperature Rise Versus Current Curve  
 (TIN PLATING) - Tabulate calculated current at RT, 65°C, 75°C and 95°C after derating 20% and based on 105°C  
 (GOLD PLATING) - Tabulate calculated current at RT, 85°C, 95°C and 115°C after derating 20% and based on 125°C

(2) CCC = EIA-364-70  
 Method 2, Temperature Rise Versus Current Curve  
 (TIN PLATING) - Tabulate calculated current at RT, 65°C, 75°C and 95°C after derating 20% and based on 105°C  
 (GOLD PLATING) - Tabulate calculated current at RT, 85°C, 95°C and 115°C after derating 20% and based on 125°C

**FLOWCHARTS Continued****Mechanical Shock/Random Vibration/LLCR**Group 1

QSH-060-01-L-D-RA-WT-GP-K

QTH-060-01-L-D-RA-WT-PGP-K

8 Assemblies

**Step Description**

1. LLCR <sup>(1)</sup>  
Max Delta = 15 mOhm
2. Mechanical Shock <sup>(2)</sup>
3. Random Vibration <sup>(3)</sup>
4. LLCR <sup>(1)</sup>  
Max Delta = 15 mOhm

(1) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max

Test Current = 100 mA Max

(2) Mechanical Shock = EIA-364-27

Test Condition = C (100 G Peak, 6 milliseconds, Half Sine)

Number of Shocks = 3 Per Direction, Per Axis, 18 Total

(3) Random Vibration = EIA-364-28

Condition = VB (7.56 gRMS Average, 2 Hours/Axis)

**Mechanical Shock/Random Vibration/Event Detection**Group 1

QSH-060-01-L-D-RA-WT-GP-K

QTH-060-01-L-D-RA-WT-PGP-K

60 Points

**Step Description**

1. Nanosecond Event Detection  
(Mechanical Shock) <sup>(1)</sup>
2. Nanosecond Event Detection  
(Random Vibration) <sup>(2)</sup>

(1) Nanosecond Event Detection (Mechanical Shock)

Use EIA-364-87 for Nanosecond Event Detection:

Test Condition = F (50 nanoseconds at 10 ohms)

Use EIA-364-27 for Mechanical Shock:

Test Condition = C (100 G Peak, 6 milliseconds, Half Sine)

Number of Shocks = 3 Per Direction, Per Axis, 18 Total

(2) Nanosecond Event Detection (Random Vibration)

Use EIA-364-87 for Nanosecond Event Detection:

Test Condition = F (50 nanoseconds at 10 ohms)

Use EIA-364-28 for Random Vibration:

Condition = VB (7.56 gRMS Average, 2 Hours/Axis)

## ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

### **THERMAL SHOCK:**

- 1) EIA-364-32, *Thermal Shock (Temperature Cycling) Test Procedure for Electrical Connectors.*
- 2) Test Condition 1: -55°C to +85°C
- 3) Test Time: ½ hour dwell at each temperature extreme
- 4) Number of Cycles: 100
- 5) All test samples are pre-conditioned at ambient.
- 6) All test samples are exposed to environmental stressing in the mated condition.

### **THERMAL:**

- 1) EIA-364-17, *Temperature Life with or without Electrical Load Test Procedure for Electrical Connectors.*
- 2) Test Condition 4 at 105° C
- 3) Test Time Condition B for 250 hours.
- 4) All test samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

### **HUMIDITY:**

- 1) Reference document: EIA-364-31, *Humidity Test Procedure for Electrical Connectors.*
- 2) Test Condition B, 240 Hours.
- 3) Method III, +25° C to + 65° C, 90% to 98% Relative Humidity excluding sub-cycles 7a and 7b.
- 4) All samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

### **MATING/UNMATING:**

- 1) Reference document: EIA-364-13, *Mating and Unmating Forces Test Procedure for Electrical Connectors.*
- 2) The full insertion position was to within 0.003" to 0.004" of the plug bottoming out in the receptacle to prevent damage to the system under test.
- 3) One of the mating parts is secured to a floating X-Y table to prevent damage during cycling.

### **MECHANICAL SHOCK (Specified Pulse):**

- 1) Reference document: EIA-364-27, *Mechanical Shock Test Procedure for Electrical Connectors*
- 2) Test Condition C
- 3) Peak Value: 100 G
- 4) Duration: 6 Milliseconds
- 5) Wave Form: Half Sine
- 6) Velocity: 12.3 ft/s
- 7) Number of Shocks: 3 Shocks / Direction, 3 Axis (18 Total)

### **VIBRATION:**

- 1) Reference document: EIA-364-28, *Vibration Test Procedure for Electrical Connectors*
- 2) Test Condition V, Letter B
- 3) Power Spectral Density: 0.04 G<sup>2</sup> / Hz
- 4) G 'RMS': 7.56
- 5) Frequency: 50 to 2000 Hz
- 6) Duration: 2.0 Hours per axis (3 axis total)

### **NANOSECOND-EVENT DETECTION:**

- 1) Reference document: EIA-364-87, *Nanosecond-Event Detection for Electrical Connectors*
- 2) Prior to test, the samples were characterized to assure the low nanosecond event being monitored will trigger the detector.
- 3) After characterization it was determined the test samples could be monitored for 50 nanosecond events

**ATTRIBUTE DEFINITIONS Continued**

The following is a brief, simplified description of attributes.

**TEMPERATURE RISE (Current Carrying Capacity, CCC):**

- 1) EIA-364-70, *Temperature Rise versus Current Test Procedure for Electrical Connectors and Sockets*.
- 2) When current passes through a contact, the temperature of the contact increases as a result of  $I^2R$  (resistive) heating.
- 3) The number of contacts being investigated plays a significant part in power dissipation and therefore temperature rise.
- 4) The size of the temperature probe can affect the measured temperature.
- 5) Copper traces on PC boards will contribute to temperature rise:
  - a. Self heating (resistive)
  - b. Reduction in heat sink capacity affecting the heated contacts
- 6) A de-rating curve, usually 20%, is calculated.
- 7) Calculated de-rated currents at three temperature points are reported:
  - a. Ambient
  - b.  $85^{\circ}\text{C}$
  - c.  $95^{\circ}\text{C}$
  - d.  $115^{\circ}\text{C}$
- 8) Typically, neighboring contacts (in close proximity to maximize heat build up) are energized.
- 9) The thermocouple (or temperature measuring probe) will be positioned at a location to sense the maximum temperature in the vicinity of the heat generation area.
- 10) A computer program, *TR 803.exe*, ensures accurate stability for data acquisition.
- 11) Hook-up wire cross section is larger than the cross section of any connector leads/PC board traces, jumpers, etc.
- 12) Hook-up wire length is longer than the minimum specified in the referencing standard.

**LLCR:**

- 1) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
  - a.  $\leq +5.0 \text{ mOhms}$ : ----- Stable
  - b.  $+5.1 \text{ to } +10.0 \text{ mOhms}$ : ----- Minor
  - c.  $+10.1 \text{ to } +15.0 \text{ mOhms}$ : ----- Acceptable
  - d.  $+15.1 \text{ to } +50.0 \text{ mOhms}$ : ----- Marginal
  - e.  $+50.1 \text{ to } +2000 \text{ mOhms}$ : ----- Unstable
  - f.  $>+2000 \text{ mOhms}$ : ----- Open Failure

## ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

### GAS TIGHT:

To provide method for evaluating the ability of the contacting surfaces in preventing penetration of harsh vapors which might lead to oxide formation that may degrade the electrical performance of the contact system.

- 1) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
  - a.  $\leq +5.0$  mOhms:----- Stable
  - b.  $+5.1$  to  $+10.0$  mOhms:----- Minor
  - c.  $+10.1$  to  $+15.0$  mOhms:----- Acceptable
  - d.  $+15.1$  to  $+50.0$  mOhms:----- Marginal
  - e.  $+50.1$  to  $+2000$  mOhms:----- Unstable
  - f.  $>+2000$  mOhms:----- Open Failure
- 4) Procedure:
  - a. Reference document: EIA-364-36, *Test Procedure for Determination of Gas-Tight Characteristics for Electrical Connectors, Sockets and/or Contact Systems*.
  - b. Test Conditions:
    - i. Class II--- Mated pairs of contacts assembled to their plastic housings.
    - ii. Reagent grade Nitric Acid shall be used of sufficient volume to saturate the test chamber
    - iii. The ratio of the volume of the test chamber to the surface area of the acid shall be 10:1.
    - iv. The chamber shall be saturated with the vapor for at least 15 minutes before samples are added.
    - v. Exposure time, 55 to 65 minutes.
    - vi. The samples shall be no closer to the chamber walls than 1 inches and no closer to the surface of the acid than 3 inches.
    - vii. The samples shall be dried after exposure for a minimum of 1 hour.
    - viii. Drying temperature  $50^{\circ}\text{C}$
    - ix. The final LLCR shall be conducted within 1 hour after drying.

### INSULATION RESISTANCE (IR):

To determine the resistance of insulation materials to leakage of current through or on the surface of these materials when a DC potential is applied.

- 1) PROCEDURE:
  - a. Reference document: EIA-364-21, *Insulation Resistance Test Procedure for Electrical Connectors*.
  - b. Test Conditions:
    - i. Between Adjacent Contacts or Signal-to-Ground
    - ii. Electrification Time 2.0 minutes
    - iii. Test Voltage (500 VDC) corresponds to calibration settings for measuring resistances.
- 2) MEASUREMENTS:
- 3) When the specified test voltage is applied (VDC), the insulation resistance shall not be less than 5000 megohms.

**ATTRIBUTE DEFINITIONS Continued**

The following is a brief, simplified description of attributes.

**DIELECTRIC WITHSTANDING VOLTAGE (DWV):**

To determine if the sockets can operate at its rated voltage and withstand momentary over potentials due to switching, surges, and other similar phenomenon. Separate samples are used to evaluate the effect of environmental stresses so not to influence the readings from arcing that occurs during the measurement process.

**1) PROCEDURE:**

- a. Reference document: EIA-364-20, *Withstanding Voltage Test Procedure for Electrical Connectors*.
- b. Test Conditions:
  - i. Between Adjacent Contacts or Signal-to-Ground
  - ii. Barometric Test Condition 1
  - iii. Rate of Application 500 V/Sec
  - iv. Test Voltage (VAC) until breakdown occurs

**2) MEASUREMENTS/CALCULATIONS**

- a. The breakdown voltage shall be measured and recorded.
- b. The dielectric withstand voltage shall be recorded as 75% of the minimum breakdown voltage.
- c. The working voltage shall be recorded as one-third (1/3) of the dielectric withstand voltage (one-fourth of the breakdown voltage).

## RESULTS

### Temperature Rise, CCC at a 20% de-rating

- CCC for a 30°C Temperature Rise-----2.2A per contact with 2 adjacent signal contacts powered
- CCC for a 30°C Temperature Rise-----1.7A per contact with 4 adjacent signal contacts powered
- CCC for a 30°C Temperature Rise-----1.3A per contact with 6 adjacent signal contacts powered
- CCC for a 30°C Temperature Rise-----1.2A per contact with 8 adjacent signal contacts powered
- CCC for a 30°C Temperature Rise-----0.5A per contact with all adjacent signal contacts powered
- CCC for a 30°C Temperature Rise-----21.8 A per contact with 1 adjacent ground contacts powered
- CCC for a 30°C Temperature Rise-----19.8 A per contact with 2 adjacent ground contacts powered
- CCC for a 30°C Temperature Rise-----18.0 A per contact with all adjacent ground contacts powered
- CCC for a 30°C Temperature Rise-----15.8 A per contact with all adjacent ground contacts powered and Signal Pins powered at a continuous .3 amps

### Mating – Unmating Forces

#### Thermal Aging Group (QSH-060-01-L-D-RA-WT-GP-K/QTH-060-01-L-D-RA-WT-PGP-K)

- Initial
  - Mating
    - Min -----14.58 Lbs
    - Max-----17.55 Lbs
  - Unmating
    - Min -----7.01 Lbs
    - Max-----9.38 Lbs
- After Thermal
  - Mating
    - Min -----8.73 Lbs
    - Max-----10.06 Lbs
  - Unmating
    - Min -----4.75 Lbs
    - Max-----5.25 Lbs

#### Mating-Unmating Durability Group (QSH-060-01-L-D-RA-WT-GP-K/QTH-060-01-L-D-RA-WT-PGP-K)

- Initial
  - Mating
    - Min -----13.44 Lbs
    - Max-----14.95 Lbs
  - Unmating
    - Min -----4.49 Lbs
    - Max-----8.06 Lbs
- After 25 Cycles
  - Mating
    - Min -----14.37 Lbs
    - Max-----15.82 Lbs
  - Unmating
    - Min -----2.96 Lbs
    - Max-----7.96 Lbs
- Humidity
  - Mating
    - Min -----8.69 Lbs
    - Max-----9.58 Lbs
  - Unmating
    - Min -----4.08 Lbs
    - Max-----5.34 Lbs

## RESULTS Continued

### Mating – Unmating Forces

#### Mating-Unmating Basic (QSH-090-01-L-D-RA-WT-GP-K/QTH-090-01-L-D-RA-WT-PGP-K)

- Initial
  - Mating
    - Min ----- 21.87 Lbs
    - Max ----- 24.69 Lbs
  - Unmating
    - Min ----- 7.62 Lbs
    - Max ----- 12.93 Lbs
- After 25 Cycles
  - Mating
    - Min ----- 20.86 Lbs
    - Max ----- 24.09 Lbs
  - Unmating
    - Min ----- 8.44 Lbs
    - Max ----- 12.86 Lbs

#### Mating-Unmating Basic (QSH-030-01-L-D-RA-WT-GP-K/QTH-030-01-L-D-RA-WT-PGP-K)

- Initial
  - Mating
    - Min ----- 6.46 Lbs
    - Max ----- 7.52 Lbs
  - Unmating
    - Min ----- 3.18 Lbs
    - Max ----- 4.70 Lbs
- After 25 Cycles
  - Mating
    - Min ----- 6.82 Lbs
    - Max ----- 7.34 Lbs
  - Unmating
    - Min ----- 3.19 Lbs
    - Max ----- 4.31 Lbs

## RESULTS Continued

### Insulation Resistance minimums, IR

#### Pin to Pin

- **Initial**
  - Mated ----- 45000 Meg  $\Omega$  ----- Passed
  - Unmated ----- 45000 Meg  $\Omega$  ----- Passed
- **Thermal Shock**
  - Mated ----- 45000 Meg  $\Omega$  ----- Passed
  - Unmated ----- 45000 Meg  $\Omega$  ----- Passed
- **Humidity**
  - Mated ----- 20300 Meg  $\Omega$  ----- Passed
  - Unmated ----- 31000 Meg  $\Omega$  ----- Passed

#### Row to Row

- **Initial**
  - Mated ----- 45000 Meg  $\Omega$  ----- Passed
  - Unmated ----- 45000 Meg  $\Omega$  ----- Passed
- **Thermal Shock**
  - Mated ----- 45000 Meg  $\Omega$  ----- Passed
  - Unmated ----- 45000 Meg  $\Omega$  ----- Passed
- **Humidity**
  - Mated ----- 45000 Meg  $\Omega$  ----- Passed
  - Unmated ----- 45000 Meg  $\Omega$  ----- Passed

#### Pin to Ground

- **Initial**
  - Mated ----- 45000 Meg  $\Omega$  ----- Passed
  - Unmated ----- 45000 Meg  $\Omega$  ----- Passed
- **Thermal Shock**
  - Mated ----- 45000 Meg  $\Omega$  ----- Passed
  - Unmated ----- 45000 Meg  $\Omega$  ----- Passed
- **Humidity**
  - Mated ----- 45000 Meg  $\Omega$  ----- Passed
  - Unmated ----- 45000 Meg  $\Omega$  ----- Passed

#### Pin to Weld Tab

- **Initial**
  - Mated ----- 45000 Meg  $\Omega$  ----- Passed
  - Unmated ----- 45000 Meg  $\Omega$  ----- Passed
- **Thermal Shock**
  - Mated ----- 45000 Meg  $\Omega$  ----- Passed
  - Unmated ----- 45000 Meg  $\Omega$  ----- Passed
- **Humidity**
  - Mated ----- 45000 Meg  $\Omega$  ----- Passed
  - Unmated ----- 45000 Meg  $\Omega$  ----- Passed

#### Ground to Weld Tab

- **Initial**
  - Mated ----- 45000 Meg  $\Omega$  ----- Passed
  - Unmated ----- 45000 Meg  $\Omega$  ----- Passed
- **Thermal Shock**
  - Mated ----- 45000 Meg  $\Omega$  ----- Passed
  - Unmated ----- 45000 Meg  $\Omega$  ----- Passed
- **Humidity**
  - Mated ----- 45000 Meg  $\Omega$  ----- Passed
  - Unmated ----- 45000 Meg  $\Omega$  ----- Passed

## RESULTS Continued

### Dielectric Withstanding Voltage minimums, DWV

- Minimums

- Breakdown Voltage ----- 895 VAC
- Test Voltage ----- 671 VAC
- Working Voltage ----- 220 VAC

#### Pin to Pin

- Initial DWV ----- Passed
- Thermal DWV ----- Passed
- Humidity DWV ----- Passed

#### Row to Row

- Initial DWV ----- Passed
- Thermal DWV ----- Passed
- Humidity DWV ----- Passed

#### Pin to Ground

- Initial DWV ----- Passed
- Thermal DWV ----- Passed
- Humidity DWV ----- Passed

#### Pin to Weld Tab

- Initial DWV ----- Passed
- Thermal DWV ----- Passed
- Humidity DWV ----- Passed

#### Ground to Weld Tab

- Initial DWV ----- Passed
- Thermal DWV ----- Passed
- Humidity DWV ----- Passed

## RESULTS Continued

### LLCR Thermal Aging Group (Total 192 LLCR test points)

#### Row 1

- Initial ----- 30.03 mOhms Max
- Thermal
  - <= +5.0 mOhms ----- 72 Points ----- Stable
  - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
  - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
  - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
  - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
  - >+2000 mOhms ----- 0 Points ----- Open Failure

#### Row 2

- Initial ----- 36.84 mOhms Max
- Thermal
  - <= +5.0 mOhms ----- 104 Points ----- Stable
  - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
  - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
  - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
  - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
  - >+2000 mOhms ----- 0 Points ----- Open Failure

#### Ground

- Initial ----- 2.88 mOhms Max
- Thermal
  - <= +5.0 mOhms ----- 16 Points ----- Stable
  - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
  - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
  - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
  - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
  - >+2000 mOhms ----- 0 Points ----- Open Failure

### LLCR Mating/Unmating Durability Group (192 LLCR test points)

#### Row 1

- Initial ----- 30.76 mOhms Max
- Durability, 25 Cycles
  - <= +5.0 mOhms ----- 72 Points ----- Stable
  - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
  - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
  - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
  - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
  - >+2000 mOhms ----- 0 Points ----- Open Failure
- Thermal Shock
  - <= +5.0 mOhms ----- 72 Points ----- Stable
  - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
  - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
  - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
  - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
  - >+2000 mOhms ----- 0 Points ----- Open Failure
- Humidity
  - <= +5.0 mOhms ----- 72 Points ----- Stable
  - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
  - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
  - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
  - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
  - >+2000 mOhms ----- 0 Points ----- Open Failure

## RESULTS Continued

### Row 2

- Initial ----- **36.07 mOhms Max**
- Durability, 25 Cycles
  - <= +5.0 mOhms ----- 104 Points ----- Stable
  - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
  - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
  - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
  - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
  - >+2000 mOhms ----- 0 Points ----- Open Failure
- Thermal Shock
  - <= +5.0 mOhms ----- 104 Points ----- Stable
  - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
  - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
  - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
  - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
  - >+2000 mOhms ----- 0 Points ----- Open Failure
- Humidity
  - <= +5.0 mOhms ----- 104 Points ----- Stable
  - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
  - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
  - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
  - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
  - >+2000 mOhms ----- 0 Points ----- Open Failure

### Ground

- Initial ----- **3.01 mOhms Max**
- Durability, 25 Cycles
  - <= +5.0 mOhms ----- 16 Points ----- Stable
  - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
  - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
  - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
  - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
  - >+2000 mOhms ----- 0 Points ----- Open Failure
- Thermal Shock
  - <= +5.0 mOhms ----- 16 Points ----- Stable
  - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
  - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
  - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
  - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
  - >+2000 mOhms ----- 0 Points ----- Open Failure
- Humidity
  - <= +5.0 mOhms ----- 16 Points ----- Stable
  - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
  - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
  - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
  - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
  - >+2000 mOhms ----- 0 Points ----- Open Failure

## RESULTS Continued

### LLCR Gas Tight Group (192 LLCR test points)

#### Row 1

- Initial ----- 29.88 mOhms Max
- Gas-Tight
  - <= +5.0 mOhms ----- 72 Points ----- Stable
  - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
  - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
  - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
  - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
  - >+2000 mOhms ----- 0 Points ----- Open Failure

#### Row 2

- Initial ----- 35.80 mOhms Max
- Gas-Tight
  - <= +5.0 mOhms ----- 104 Points ----- Stable
  - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
  - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
  - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
  - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
  - >+2000 mOhms ----- 0 Points ----- Open Failure

#### Ground

- Initial ----- 3.00 mOhms Max
- Gas-Tight
  - <= +5.0 mOhms ----- 16 Points ----- Stable
  - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
  - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
  - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
  - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
  - >+2000 mOhms ----- 0 Points ----- Open Failure

### LLCR Shock & Vibration Group (192 LLCR test points)

#### Row 1

- Initial ----- 30.52 mOhms Max
- Shock & Vibration
  - <= +5.0 mOhms ----- 72 Points ----- Stable
  - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
  - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
  - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
  - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
  - >+2000 mOhms ----- 0 Points ----- Open Failure

#### Row 2

- Initial ----- 36.18 mOhms Max
- Shock & Vibration
  - <= +5.0 mOhms ----- 104 Points ----- Stable
  - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
  - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
  - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
  - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
  - >+2000 mOhms ----- 0 Points ----- Open Failure

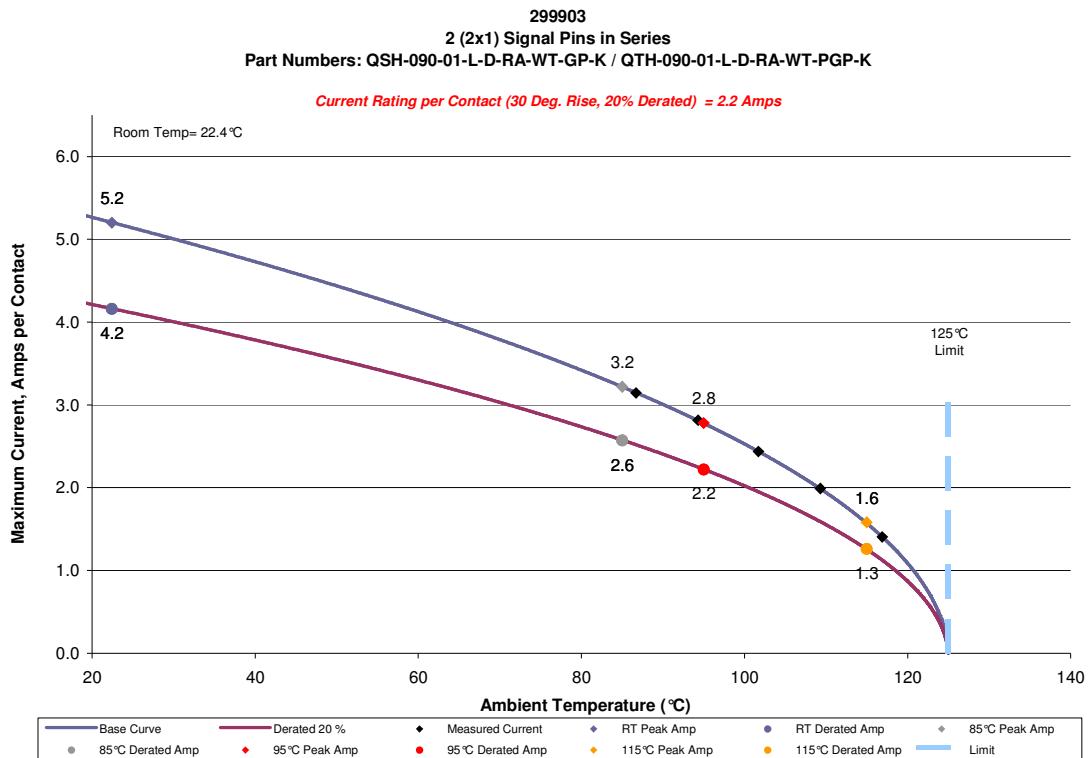
## RESULTS Continued

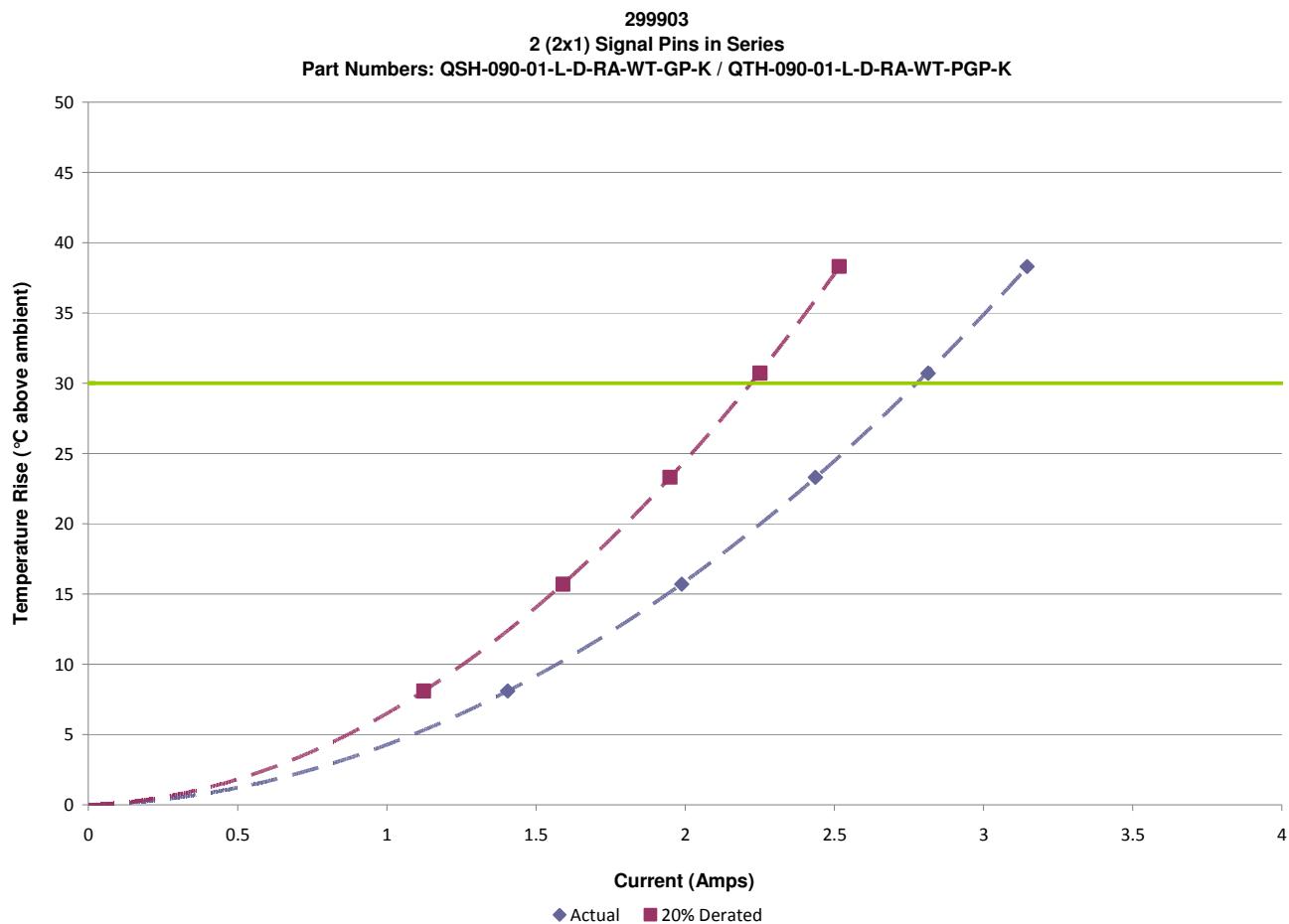
### Ground

- Initial ----- 3.50 mOhms Max
- Shock & Vibration
  - <= +5.0 mOhms ----- 16 Points ----- Stable
  - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
  - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
  - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
  - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
  - >+2000 mOhms ----- 0 Points ----- Open Failure

### Mechanical Shock & Random Vibration:

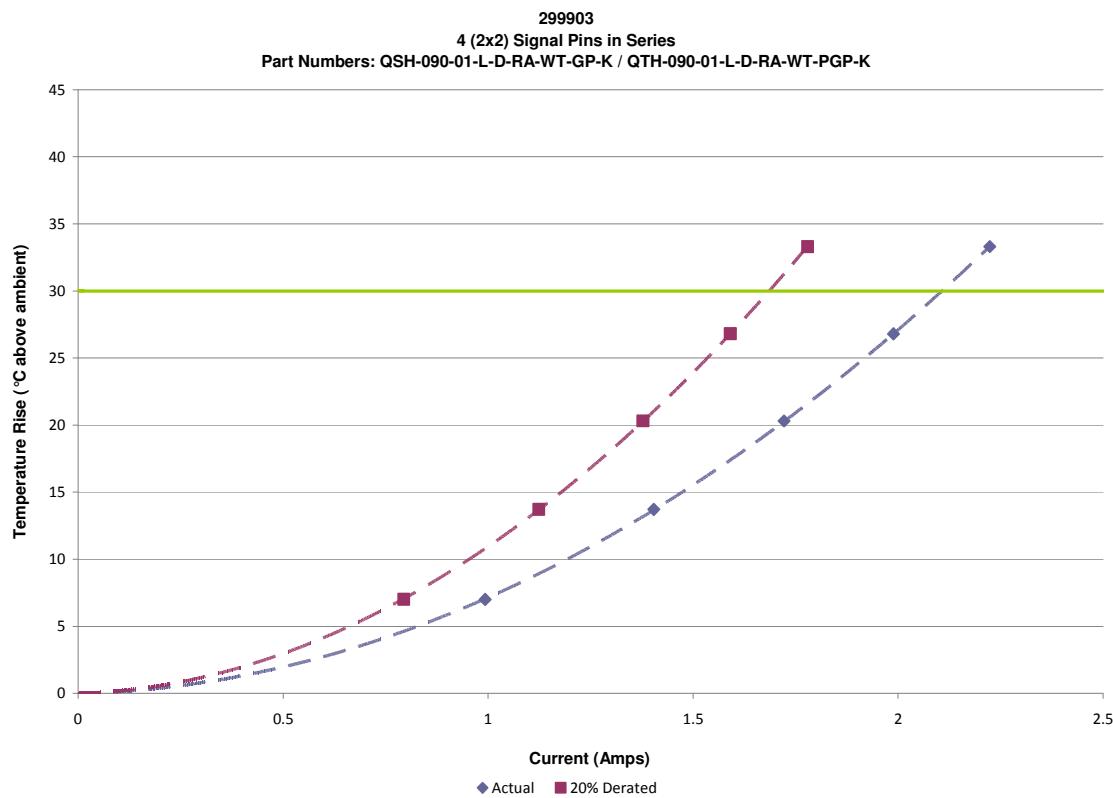
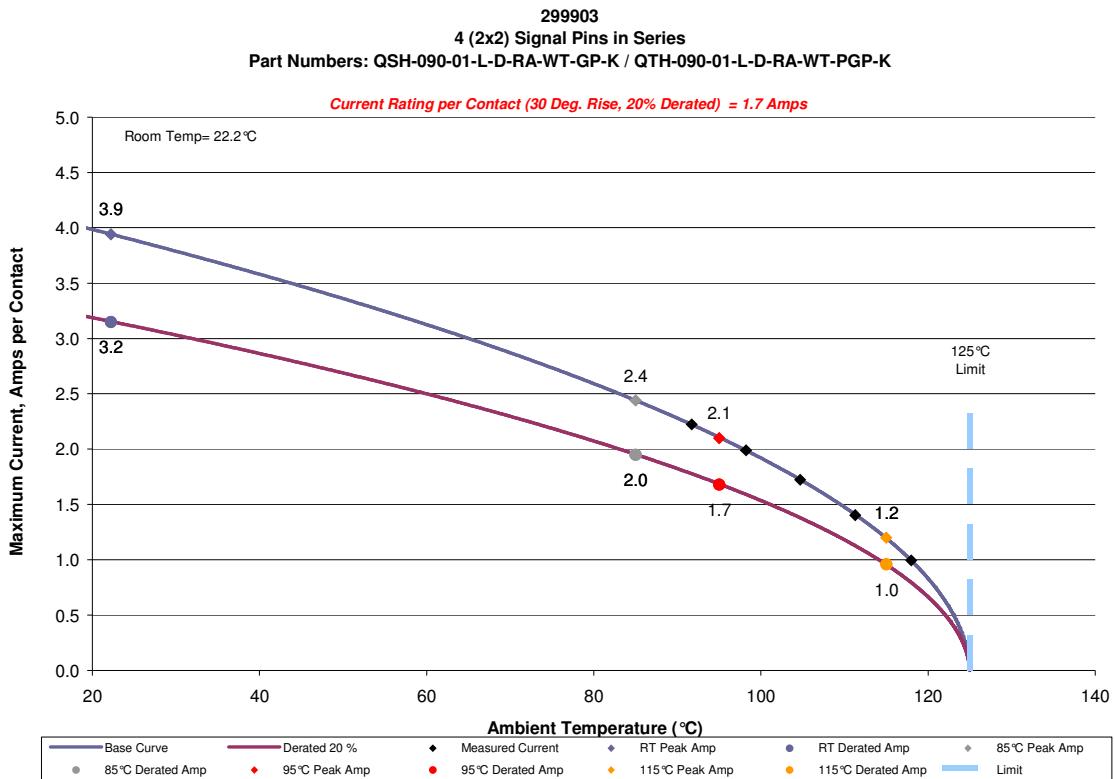
- Shock
  - No Damage----- ----- Pass
  - 50 Nanoseconds----- ----- Pass
- Vibration
  - No Damage----- ----- Pass
  - 50 Nanoseconds----- ----- Pass


## DATA SUMMARIES


### TEMPERATURE RISE (Current Carrying Capacity, CCC):

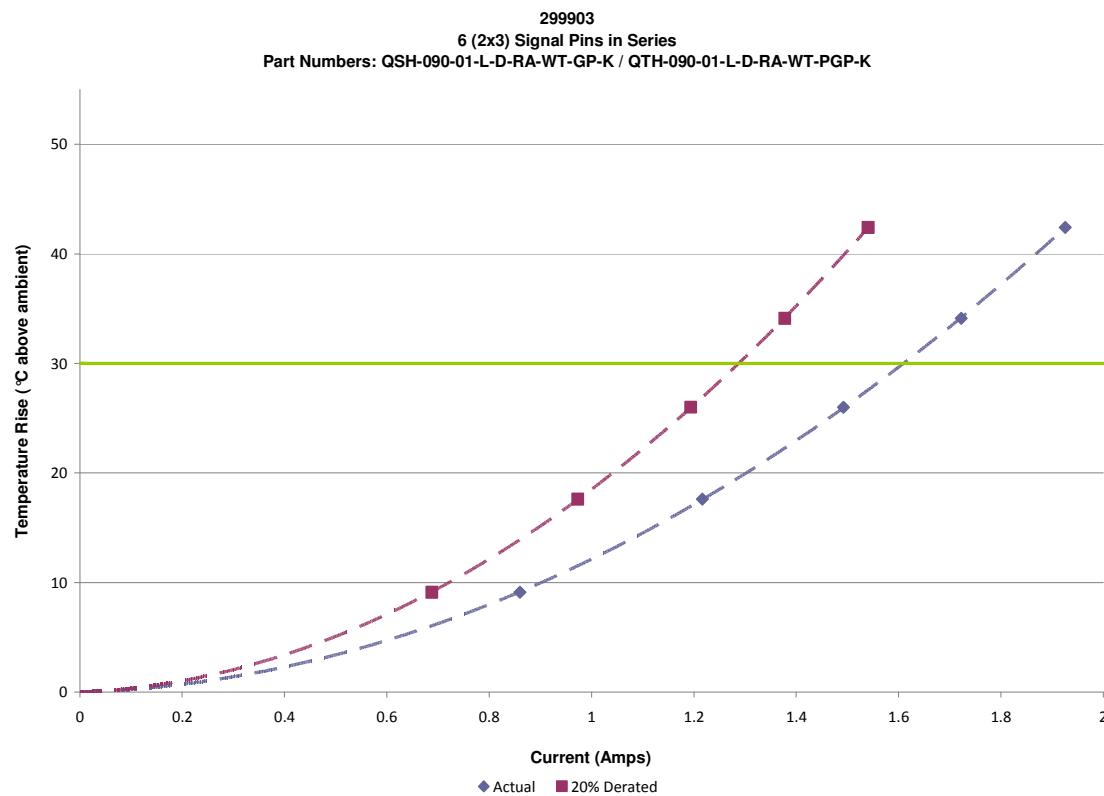
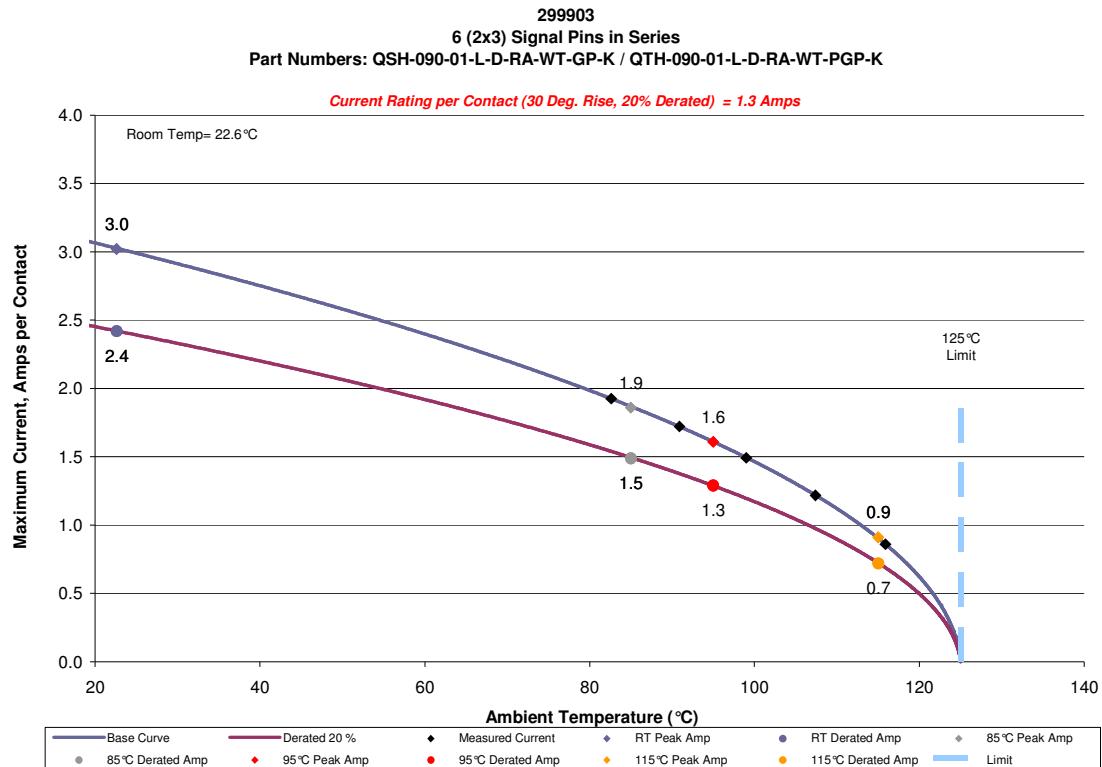
- 1) High quality thermocouples whose temperature slopes track one another were used for temperature monitoring.
- 2) The thermocouples were placed at a location to sense the maximum temperature generated during testing.
- 3) Temperature readings recorded are those for which three successive readings, 15 minutes apart, differ less than 1°C (computer controlled data acquisition).
- 4) Adjacent contacts were powered:

#### Signal Pin



- a. Linear configuration with 2 adjacent signal conductors/contacts powered

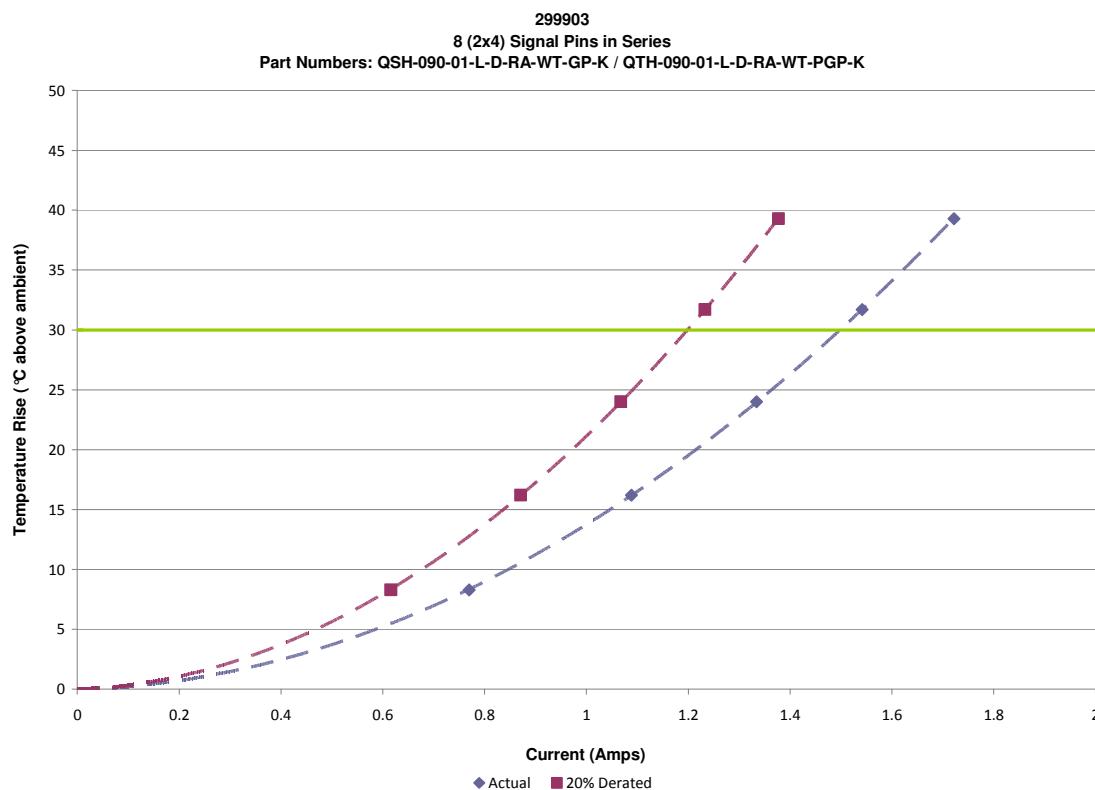
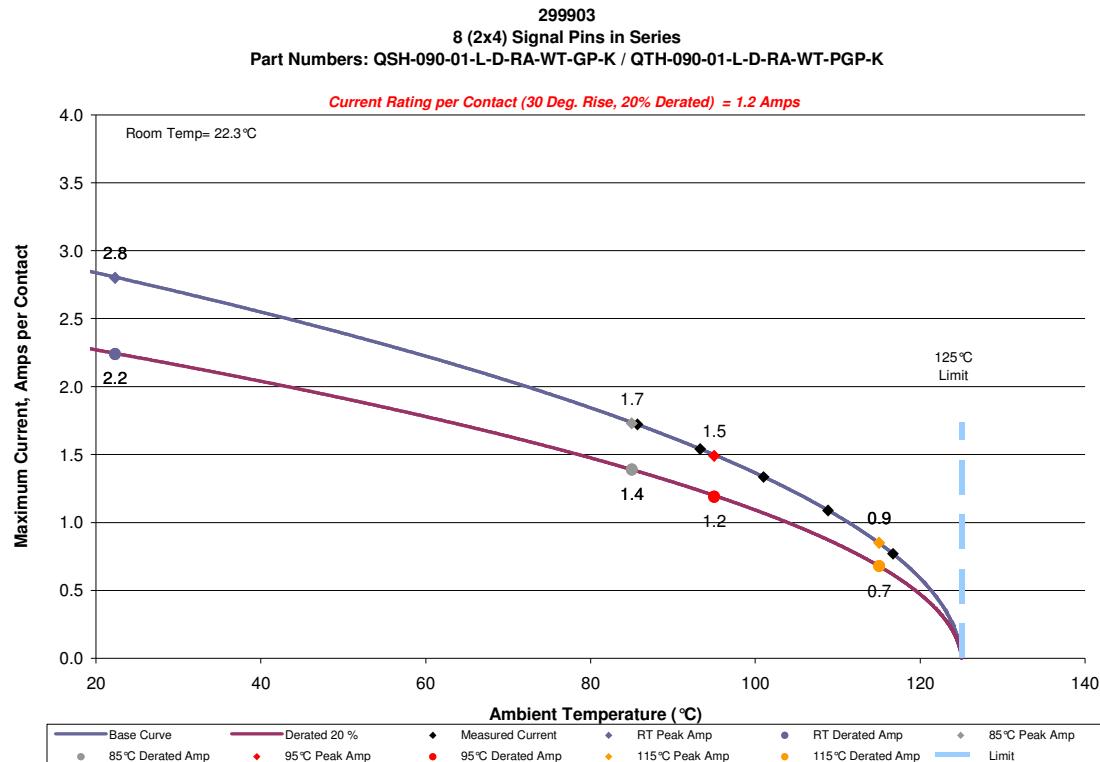


**DATA SUMMARIES Continued**



## DATA SUMMARIES Continued

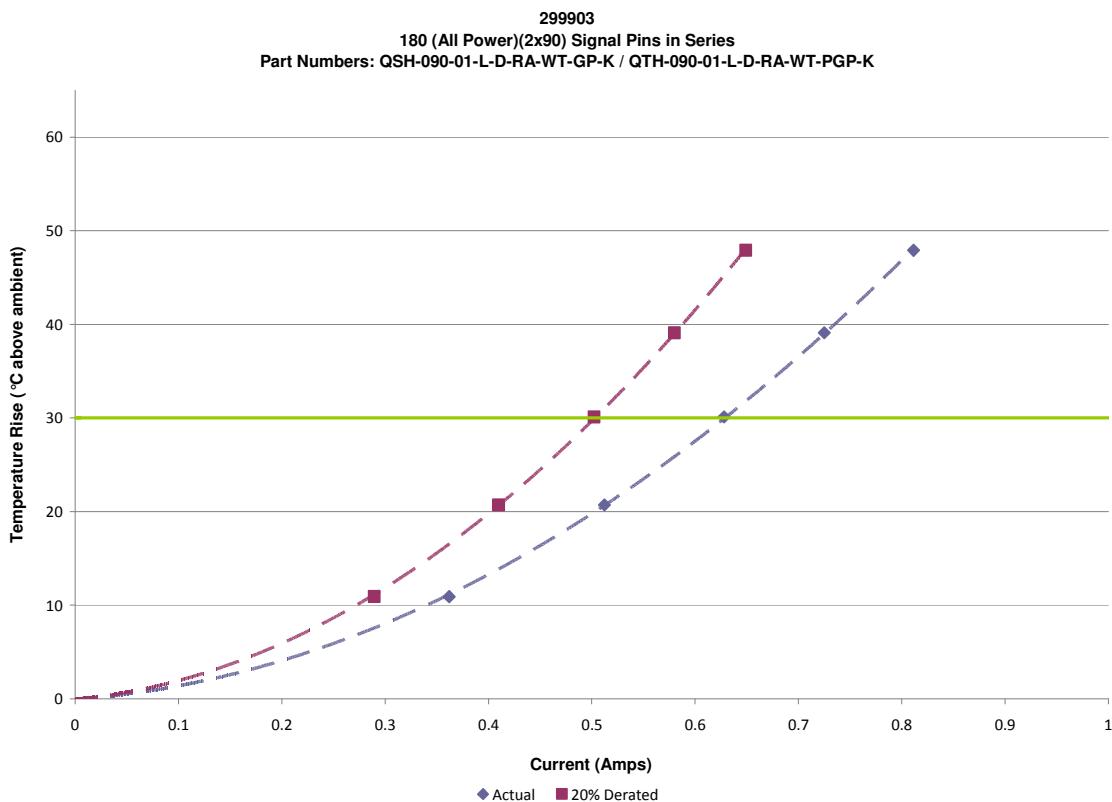
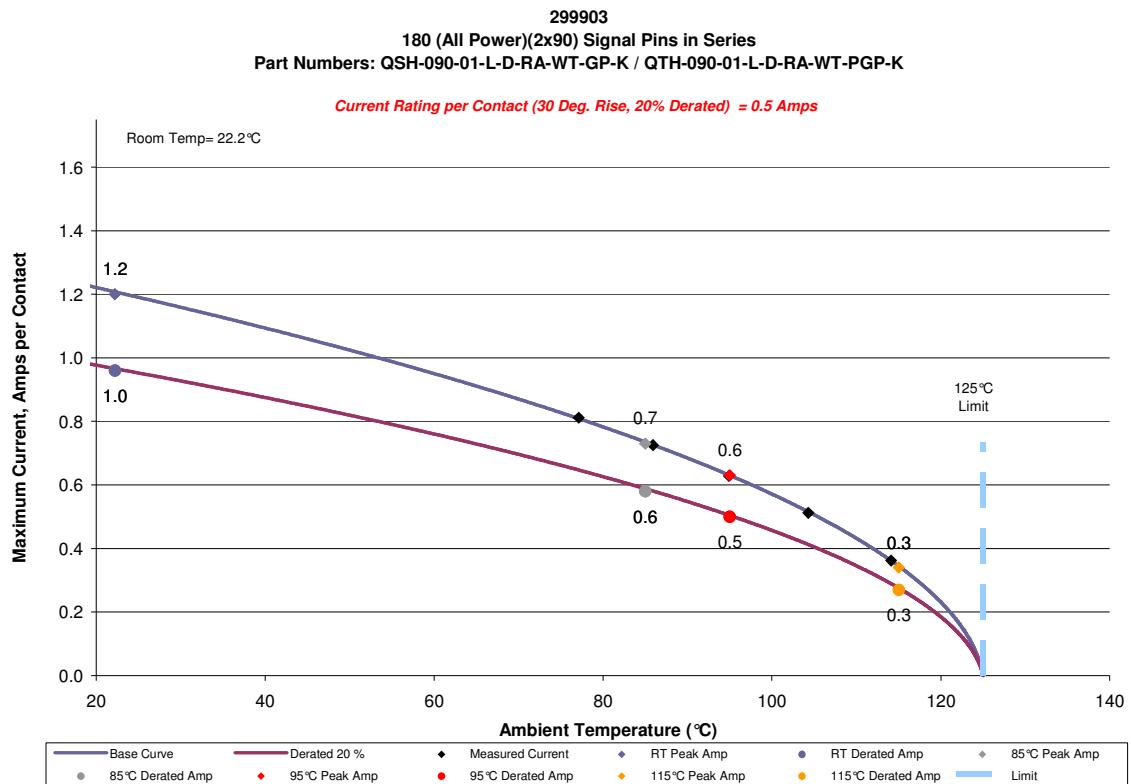
b. Linear configuration with 4 adjacent signal conductors/contacts powered





## DATA SUMMARIES Continued

### c. Linear configuration with 6 adjacent signal conductors/contacts powered

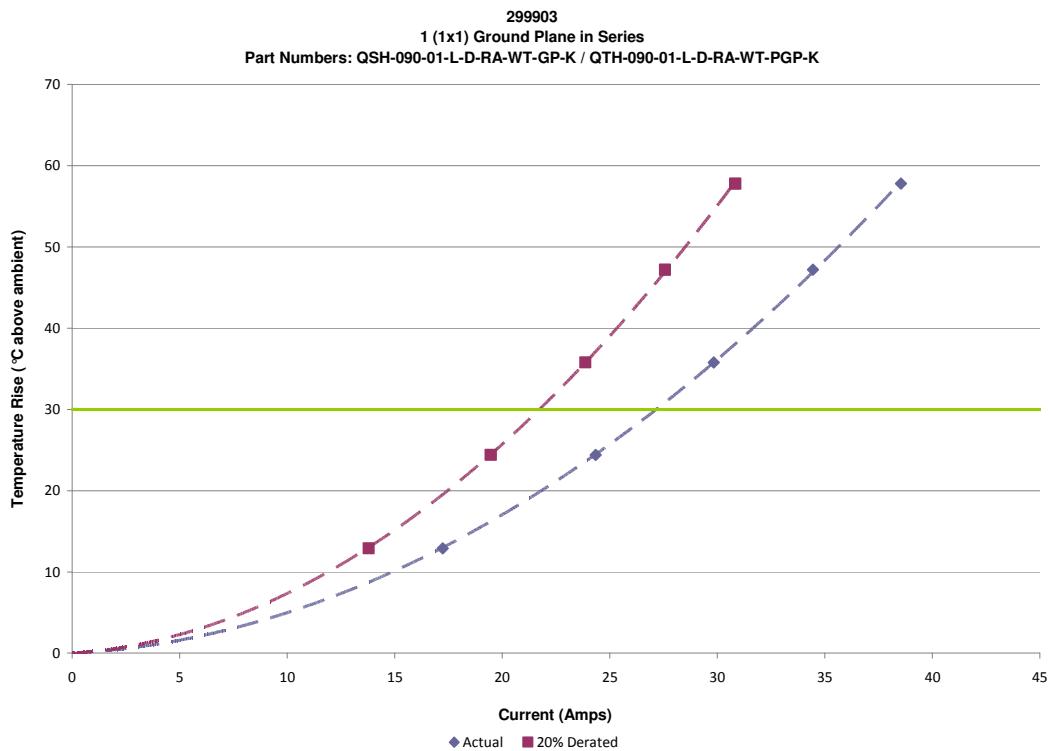
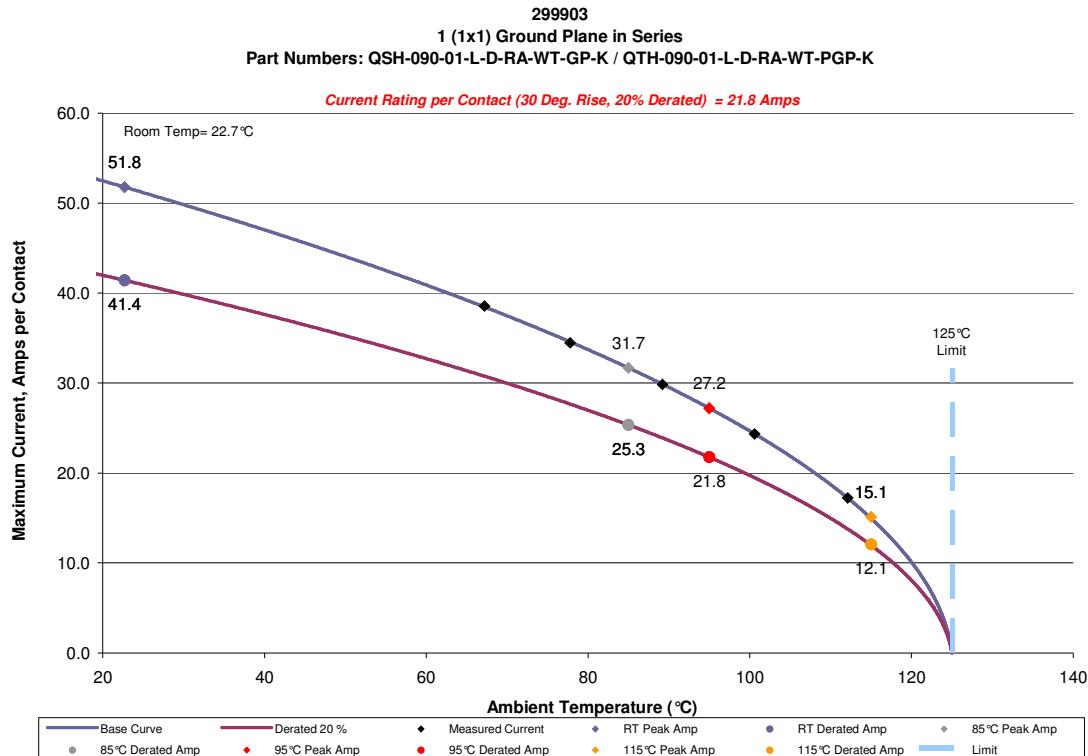




## DATA SUMMARIES Continued

d. Linear configuration with 8 adjacent signal conductors/contacts powered

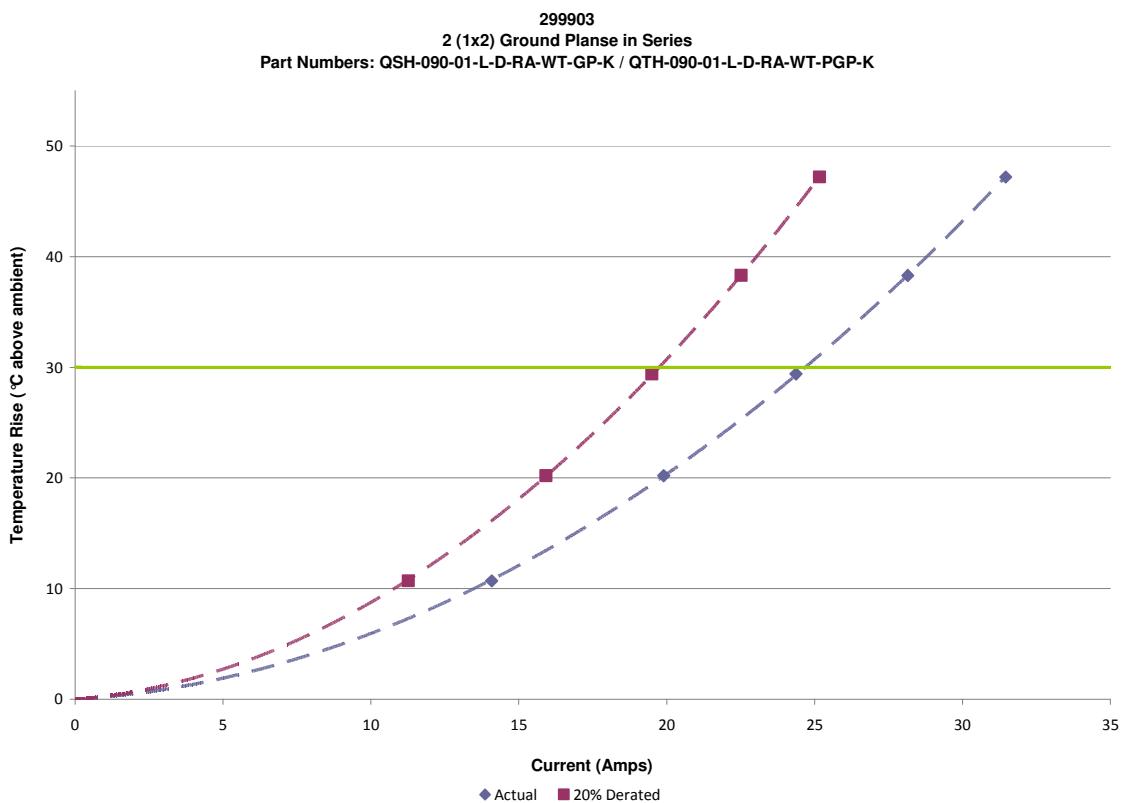
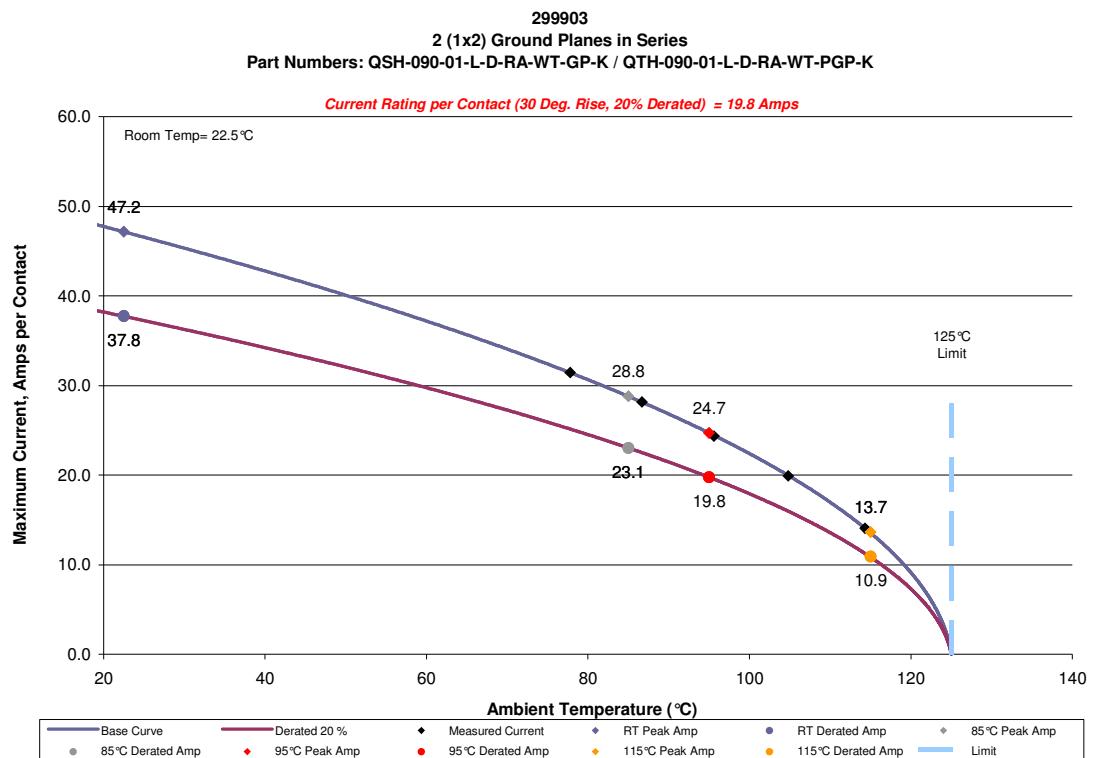


**DATA SUMMARIES Continued**



e. Linear configuration with all adjacent signal conductors/contacts powered

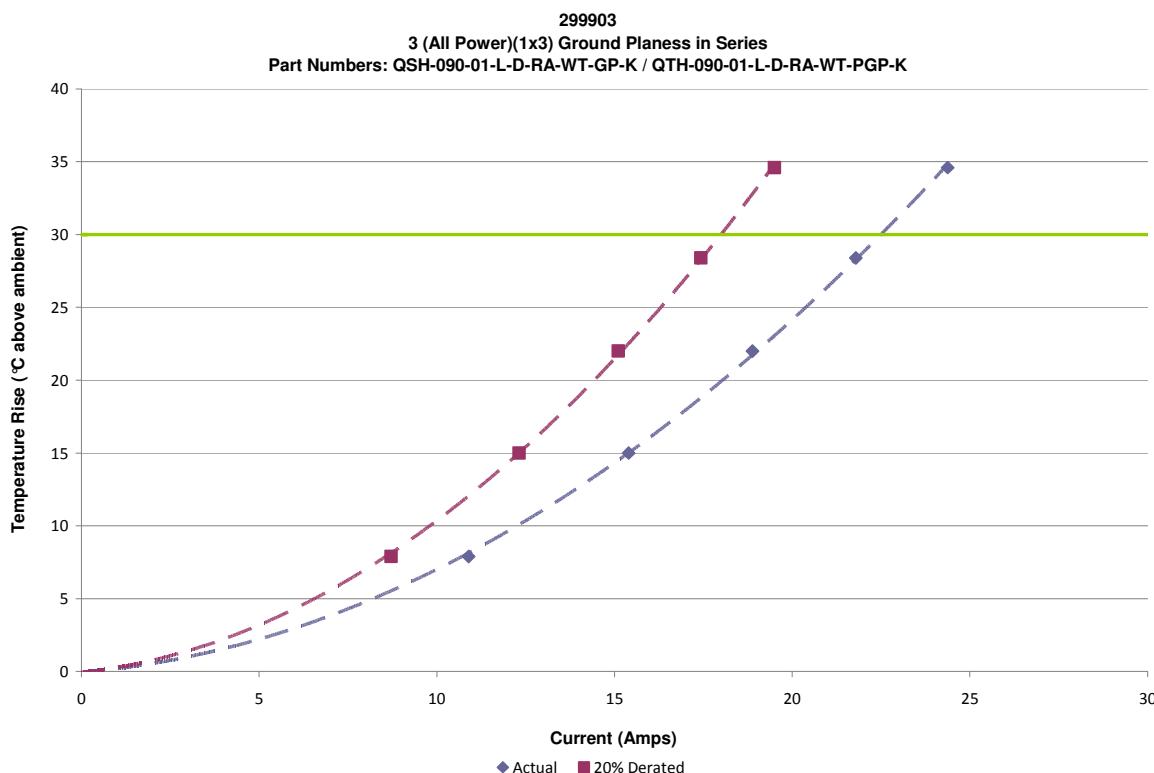
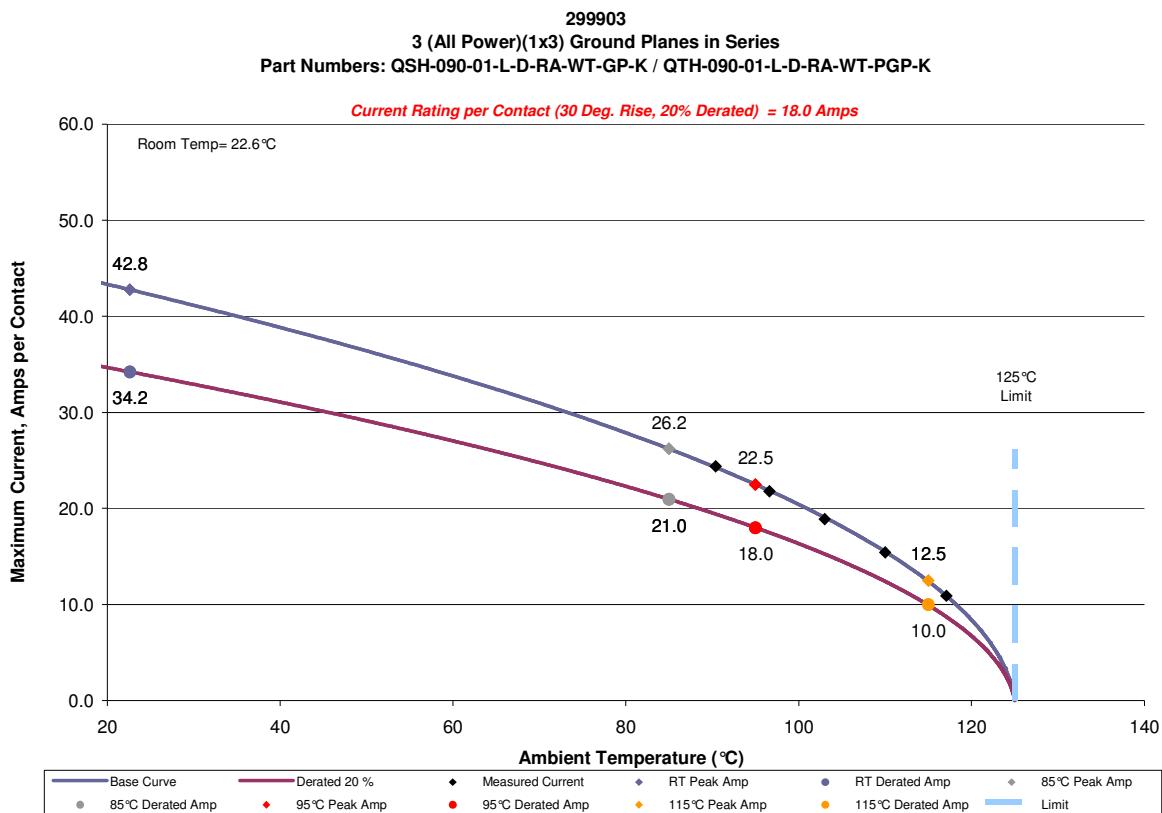


## DATA SUMMARIES Continued



### Ground pin

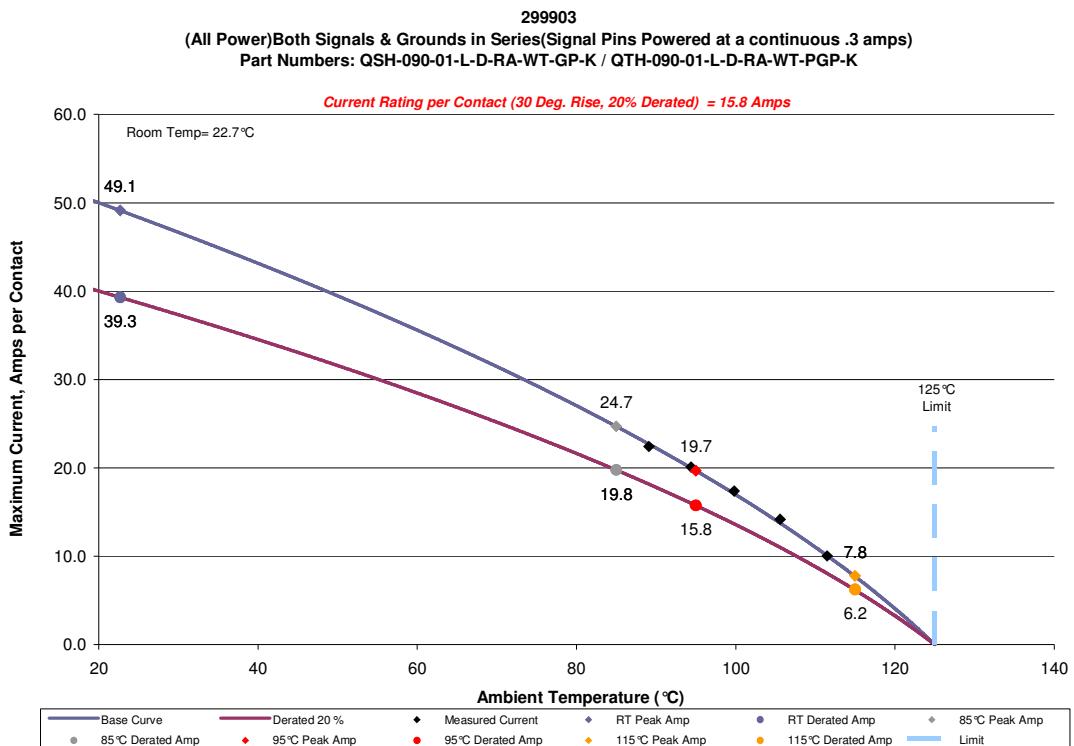
- f. Linear configuration with 1 adjacent ground plane powered





## DATA SUMMARIES Continued

g. Linear configuration with 2 adjacent ground planes powered




## DATA SUMMARIES Continued

### h. Linear configuration with all adjacent ground planes powered



## DATA SUMMARIES Continued

i. Linear configuration with all adjacent ground planes powered and signal pins powered at a continuous .3 amps)



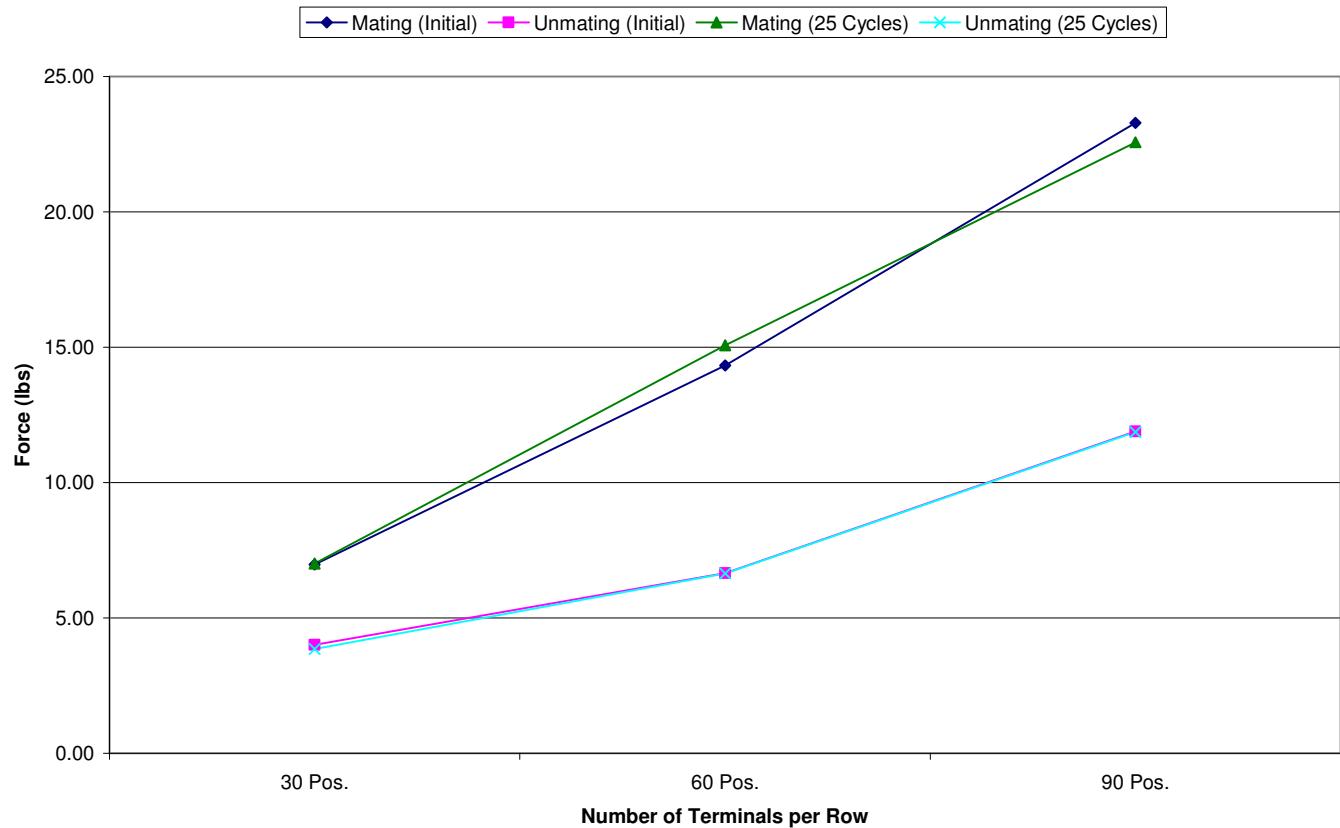
**DATA SUMMARIES Continued****MATING-UNMATING FORCE:**

Thermal Aging Group (QSH-060-01-L-D-RA-WT-GP-K/QTH-060-01-L-D-RA-WT-PGP-K)

|                | Initial      |              |              |             | After Thermals |             |              |             |
|----------------|--------------|--------------|--------------|-------------|----------------|-------------|--------------|-------------|
|                | Mating       |              | Unmating     |             | Mating         |             | Unmating     |             |
|                | Newton       | Force (Lbs)  | Newton       | Force (Lbs) | Newton         | Force (Lbs) | Newton       | Force (Lbs) |
| Minimum        | 64.85        | 14.58        | 31.19        | 7.01        | 38.83          | 8.73        | 21.13        | 4.75        |
| Maximum        | 78.05        | 17.55        | 41.72        | 9.38        | 44.75          | 10.06       | 23.35        | 5.25        |
| <b>Average</b> | <b>71.03</b> | <b>15.97</b> | <b>36.50</b> | <b>8.21</b> | <b>41.47</b>   | <b>9.32</b> | <b>21.98</b> | <b>4.94</b> |
| St Dev         | 4.38         | 0.98         | 3.20         | 0.72        | 1.79           | 0.40        | 0.75         | 0.17        |
| Count          | 8            | 8            | 8            | 8           | 8              | 8           | 8            | 8           |

Mating-Unmating Durability Group (QSH-060-01-L-D-RA-WT-GP-K/QTH-060-01-L-D-RA-WT-PGP-K)

|                | Initial        |              |              |             | After 25 Cycles |              |              |             |  |
|----------------|----------------|--------------|--------------|-------------|-----------------|--------------|--------------|-------------|--|
|                | Mating         |              | Unmating     |             | Mating          |              | Unmating     |             |  |
|                | Newton         | Force (Lbs)  | Newton       | Force (Lbs) | Newton          | Force (Lbs)  | Newton       | Force (Lbs) |  |
| Minimum        | 59.78          | 13.44        | 19.97        | 4.49        | 63.92           | 14.37        | 13.17        | 2.96        |  |
| Maximum        | 66.50          | 14.95        | 35.85        | 8.06        | 70.37           | 15.82        | 35.41        | 7.96        |  |
| <b>Average</b> | <b>63.70</b>   | <b>14.32</b> | <b>29.57</b> | <b>6.65</b> | <b>67.03</b>    | <b>15.07</b> | <b>29.55</b> | <b>6.64</b> |  |
| St Dev         | 2.59           | 0.58         | 4.90         | 1.10        | 2.38            | 0.53         | 8.07         | 1.81        |  |
| Count          | 8              | 8            | 8            | 8           | 8               | 8            | 8            | 8           |  |
|                | After Humidity |              |              |             |                 |              |              |             |  |
|                | Mating         |              | Unmating     |             |                 |              |              |             |  |
|                | Newton         | Force (Lbs)  | Newton       | Force (Lbs) |                 |              |              |             |  |
|                | Minimum        | 38.65        | 8.69         | 18.15       | 4.08            |              |              |             |  |
|                | Maximum        | 42.61        | 9.58         | 23.75       | 5.34            |              |              |             |  |
| <b>Average</b> | <b>39.83</b>   | <b>8.95</b>  | <b>20.94</b> | <b>4.71</b> |                 |              |              |             |  |
| St Dev         | 1.25           | 0.28         | 1.81         | 0.41        |                 |              |              |             |  |
| Count          | 8              | 8            | 8            | 8           |                 |              |              |             |  |


### DATA SUMMARIES Continued

#### Mating-Unmating Basic (QSH-090-01-L-D-RA-WT-GP-K/QTH-090-01-L-D-RA-WT-PGP-K)

|         | Initial |              |          |              | After 25 Cycles |              |          |              |
|---------|---------|--------------|----------|--------------|-----------------|--------------|----------|--------------|
|         | Mating  |              | Unmating |              | Mating          |              | Unmating |              |
|         | Newton  | Force (Lbs)  | Newton   | Force (Lbs)  | Newton          | Force (Lbs)  | Newton   | Force (Lbs)  |
| Minimum | 97.28   | 21.87        | 33.89    | 7.62         | 92.79           | 20.86        | 37.54    | 8.44         |
| Maximum | 109.82  | 24.69        | 57.51    | 12.93        | 107.15          | 24.09        | 57.20    | 12.86        |
| Average | 103.58  | <b>23.29</b> | 52.87    | <b>11.89</b> | 100.42          | <b>22.58</b> | 52.81    | <b>11.87</b> |
| St Dev  | 4.61    | 1.04         | 7.74     | 1.74         | 5.04            | 1.13         | 6.74     | 1.51         |
| Count   | 8       | 8            | 8        | 8            | 8               | 8            | 8        | 8            |

#### Mating-Unmating Basic (QSH-030-01-L-D-RA-WT-GP-K/QTH-030-01-L-D-RA-WT-PGP-K)

|         | Initial |             |          |             | After 25 Cycles |             |          |             |
|---------|---------|-------------|----------|-------------|-----------------|-------------|----------|-------------|
|         | Mating  |             | Unmating |             | Mating          |             | Unmating |             |
|         | Newton  | Force (Lbs) | Newton   | Force (Lbs) | Newton          | Force (Lbs) | Newton   | Force (Lbs) |
| Minimum | 28.73   | 6.46        | 14.14    | 3.18        | 30.34           | 6.82        | 14.19    | 3.19        |
| Maximum | 33.45   | 7.52        | 20.91    | 4.70        | 32.65           | 7.34        | 19.17    | 4.31        |
| Average | 31.02   | <b>6.97</b> | 17.84    | <b>4.01</b> | 31.20           | <b>7.01</b> | 17.10    | <b>3.84</b> |
| St Dev  | 1.45    | 0.32        | 2.32     | 0.52        | 0.79            | 0.18        | 1.54     | 0.35        |
| Count   | 8       | 8           | 8        | 8           | 8               | 8           | 8        | 8           |

**DATA SUMMARIES Continued****Mating\Unmating Force Comparison****Mating\Unmating Data for 30, 60 and 90 Position BSH/BTH**

**DATA SUMMARIES Continued****INSULATION RESISTANCE (IR):**

|                 |                      | Pin to Pin    |               |         |
|-----------------|----------------------|---------------|---------------|---------|
|                 |                      | Mated         | Unmated       | Unmated |
| Minimum         | <b>QSH-RA/QTH-RA</b> | <b>QSH-RA</b> | <b>QTH-RA</b> |         |
| <b>Initial</b>  | 45000                | 45000         | 45000         |         |
| <b>Thermal</b>  | 45000                | 45000         | 45000         |         |
| <b>Humidity</b> | 20300                | 31000         | 45000         |         |

|                 |                      | Pin to Ground |               |         |
|-----------------|----------------------|---------------|---------------|---------|
|                 |                      | Mated         | Unmated       | Unmated |
| Minimum         | <b>QSH-RA/QTH-RA</b> | <b>QSH-RA</b> | <b>QTH-RA</b> |         |
| <b>Initial</b>  | 45000                | 45000         | 45000         |         |
| <b>Thermal</b>  | 45000                | 45000         | 45000         |         |
| <b>Humidity</b> | 45000                | 45000         | 45000         |         |

|                 |                      | Ground to Closest Metallic Hardware |               |         |
|-----------------|----------------------|-------------------------------------|---------------|---------|
|                 |                      | Mated                               | Unmated       | Unmated |
| Minimum         | <b>QSH-RA/QTH-RA</b> | <b>QSH-RA</b>                       | <b>QTH-RA</b> |         |
| <b>Initial</b>  | 45000                | 45000                               | 45000         |         |
| <b>Thermal</b>  | 45000                | 45000                               | 45000         |         |
| <b>Humidity</b> | 45000                | 45000                               | 45000         |         |

|                 |                      | Row to Row    |               |         |
|-----------------|----------------------|---------------|---------------|---------|
|                 |                      | Mated         | Unmated       | Unmated |
| Minimum         | <b>QSH-RA/QTH-RA</b> | <b>QSH-RA</b> | <b>QTH-RA</b> |         |
| <b>Initial</b>  | 45000                | 45000         | 45000         |         |
| <b>Thermal</b>  | 45000                | 45000         | 45000         |         |
| <b>Humidity</b> | 45000                | 45000         | 45000         |         |

|                 |                      | Pin to Closest Metallic Hardware |               |         |
|-----------------|----------------------|----------------------------------|---------------|---------|
|                 |                      | Mated                            | Unmated       | Unmated |
| Minimum         | <b>QSH-RA/QTH-RA</b> | <b>QSH-RA</b>                    | <b>QTH-RA</b> |         |
| <b>Initial</b>  | 45000                | 45000                            | 45000         |         |
| <b>Thermal</b>  | 45000                | 45000                            | 45000         |         |
| <b>Humidity</b> | 45000                | 45000                            | 45000         |         |

**DATA SUMMARIES Continued****DIELECTRIC WITHSTANDING VOLTAGE (DWV):**

| Voltage Rating Summary    |               |
|---------------------------|---------------|
| Minimum                   | QSH-RA/QTH-RA |
| <b>Break Down Voltage</b> | 895           |
| <b>Test Voltage</b>       | 671           |
| <b>Working Voltage</b>    | 220           |

| Pin to Pin                         |        |
|------------------------------------|--------|
| <b>Initial Test Voltage</b>        | Passed |
| <b>After Thermal Test Voltage</b>  | Passed |
| <b>After Humidity Test Voltage</b> | Passed |

| Row to Row                         |        |
|------------------------------------|--------|
| <b>Initial Test Voltage</b>        | Passed |
| <b>After Thermal Test Voltage</b>  | Passed |
| <b>After Humidity Test Voltage</b> | Passed |

| Pin to Ground                      |        |
|------------------------------------|--------|
| <b>Initial Test Voltage</b>        | Passed |
| <b>After Thermal Test Voltage</b>  | Passed |
| <b>After Humidity Test Voltage</b> | Passed |

| Pin to Closest Metallic Hardware   |        |
|------------------------------------|--------|
| <b>Initial Test Voltage</b>        | Passed |
| <b>After Thermal Test Voltage</b>  | Passed |
| <b>After Humidity Test Voltage</b> | Passed |

| Ground to Closest Metallic Hardware |        |
|-------------------------------------|--------|
| <b>Initial Test Voltage</b>         | Passed |
| <b>After Thermal Test Voltage</b>   | Passed |
| <b>After Humidity Test Voltage</b>  | Passed |

## DATA SUMMARIES Continued

### LLCR Thermal Aging Group

- 1) A total of 104 points were measured.
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
  - a.  $\leq +5.0$  mOhms: ----- Stable
  - b.  $+5.1$  to  $+10.0$  mOhms: ----- Minor
  - c.  $+10.1$  to  $+15.0$  mOhms: ----- Acceptable
  - d.  $+15.1$  to  $+50.0$  mOhms: ----- Marginal
  - e.  $+50.1$  to  $+2000$  mOhms ----- Unstable
  - f.  $>+2000$  mOhms: ----- Open Failure

| LLCR Measurement Summaries by Pin Type |                   |           |           |       |  |  |
|----------------------------------------|-------------------|-----------|-----------|-------|--|--|
| mOhm values                            | Date              | 1/30/2014 | 2/17/2014 |       |  |  |
|                                        | Room Temp (Deg C) | 24        | 22        |       |  |  |
|                                        | Rel Humidity (%)  | 30        | 34        |       |  |  |
|                                        | Technician        | Troy Cook | Troy Cook |       |  |  |
|                                        | Actual            | Delta     | Delta     | Delta |  |  |
|                                        | Initial           | Thermal   |           |       |  |  |
|                                        | Pin Type 1: Row 1 |           |           |       |  |  |
|                                        | Average           | 29.28     | 0.38      |       |  |  |
|                                        | St. Dev.          | 0.31      | 0.34      |       |  |  |
| Summary Count                          | Min               | 28.65     | 0.00      |       |  |  |
|                                        | Max               | 30.03     | 1.70      |       |  |  |
|                                        | Total Count       | 72        | 72        |       |  |  |
|                                        | Average           | 72        | 72        |       |  |  |
|                                        | Pin Type 2: Row 2 |           |           |       |  |  |
|                                        | St. Dev.          | 34.95     | 0.42      |       |  |  |
|                                        | Min               | 0.30      | 0.28      |       |  |  |
|                                        | Max               | 34.43     | 0.00      |       |  |  |
|                                        | Total Count       | 104       | 104       |       |  |  |
| Summary Count                          | Average           | 104       | 104       |       |  |  |
|                                        | St. Dev.          | 36.84     | 1.38      |       |  |  |
|                                        | Min               | 2.47      | 0.42      |       |  |  |
|                                        | Max               | 0.30      | 0.28      |       |  |  |
|                                        | Total Count       | 34.43     | 0.00      |       |  |  |
|                                        | Average           | 36.84     | 1.38      |       |  |  |
|                                        | St. Dev.          | 2.07      | 0.00      |       |  |  |
|                                        | Min               | 2.88      | 0.09      |       |  |  |
|                                        | Total Count       | 2.88      | 0.09      |       |  |  |
| Pin Type 3: Ground                     |                   |           |           |       |  |  |
| Summary Count                          | Average           | 2.47      | 0.04      |       |  |  |
|                                        | St. Dev.          | 0.34      | 0.02      |       |  |  |
|                                        | Min               | 2.07      | 0.00      |       |  |  |
|                                        | Max               | 2.88      | 0.09      |       |  |  |
|                                        | Total Count       | 2.88      | 0.09      |       |  |  |
|                                        | Average           | 16        | 16        |       |  |  |
|                                        | St. Dev.          | 16        | 16        |       |  |  |
|                                        | Min               | 16        | 16        |       |  |  |
|                                        | Total Count       | 16        | 16        |       |  |  |

| LLCR Delta Count by Category |          |                         |                          |                          |                            |         |
|------------------------------|----------|-------------------------|--------------------------|--------------------------|----------------------------|---------|
| mOhms                        | Stable   | Minor                   | Acceptable               | Marginal                 | Unstable                   | Open    |
|                              | $\leq 5$ | $>5 \text{ & } \leq 10$ | $>10 \text{ & } \leq 15$ | $>15 \text{ & } \leq 50$ | $>50 \text{ & } \leq 1000$ | $>1000$ |
| Thermal                      | 192      | 0                       | 0                        | 0                        | 0                          | 0       |

## DATA SUMMARIES Continued

### LLCR Mating/Unmating Durability Group

- 1). A total of 104 points were measured.
- 2). EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3). A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4). The following guidelines are used to categorize the changes in LLCR as a result from stressing.
  - a. <= +5.0 mOhms: ----- Stable
  - b. +5.1 to +10.0 mOhms: ----- Minor
  - c. +10.1 to +15.0 mOhms: ----- Acceptable
  - d. +15.1 to +50.0 mOhms: ----- Marginal
  - e. +50.1 to +2000 mOhms ----- Unstable
  - f. > +2000 mOhms: ----- Open Failure

|                    |  | LLCR Measurement Summaries by Pin Type |                    |                     |                   |
|--------------------|--|----------------------------------------|--------------------|---------------------|-------------------|
|                    |  | 1/29/2014                              | 2/5/2014           | 2/10/2014           | 2/21/2014         |
| Date               |  | 23                                     | 23                 | 23                  | 23                |
| Room Temp (Deg C)  |  | 32                                     | 35                 | 33                  | 33                |
| Rel Humidity (%)   |  | Troy Cook                              | Troy Cook          | Troy Cook           | Troy Cook         |
| Technician         |  | Actual<br>Initial                      | Delta<br>25 Cycles | Delta<br>Therm Shck | Delta<br>Humidity |
| mOhm values        |  |                                        |                    |                     |                   |
| Pin Type 1: Row 1  |  |                                        |                    |                     |                   |
| Average            |  | 29.28                                  | 0.43               | 0.44                | 0.47              |
| St. Dev.           |  | 0.40                                   | 0.25               | 0.36                | 0.41              |
| Min                |  | 28.09                                  | 0.00               | 0.01                | 0.00              |
| Max                |  | 30.76                                  | 1.04               | 1.58                | 2.02              |
| Summary Count      |  | 72                                     | 72                 | 72                  | 72                |
| Total Count        |  | 72                                     | 72                 | 72                  | 72                |
| Pin Type 2: Row 2  |  |                                        |                    |                     |                   |
| Average            |  | 35.04                                  | 0.26               | 0.25                | 0.30              |
| St. Dev.           |  | 0.36                                   | 0.21               | 0.21                | 0.25              |
| Min                |  | 34.25                                  | 0.00               | 0.01                | 0.01              |
| Max                |  | 36.07                                  | 0.95               | 1.13                | 1.41              |
| Summary Count      |  | 104                                    | 104                | 104                 | 104               |
| Total Count        |  | 104                                    | 104                | 104                 | 104               |
| Pin Type 3: Ground |  |                                        |                    |                     |                   |
| Average            |  | 2.51                                   | 0.04               | 0.04                | 0.08              |
| St. Dev.           |  | 0.37                                   | 0.03               | 0.04                | 0.05              |
| Min                |  | 2.10                                   | 0.01               | 0.00                | 0.01              |
| Max                |  | 3.01                                   | 0.12               | 0.16                | 0.19              |
| Summary Count      |  | 16                                     | 16                 | 16                  | 16                |
| Total Count        |  | 16                                     | 16                 | 16                  | 16                |

| LLCR Delta Count by Category |        |       |            |          |          |      |
|------------------------------|--------|-------|------------|----------|----------|------|
| mOhms                        | Stable | Minor | Acceptable | Marginal | Unstable | Open |
| 25 Cycles                    | 192    | 0     | 0          | 0        | 0        | 0    |
| Therm Shck                   | 192    | 0     | 0          | 0        | 0        | 0    |
| Humidity                     | 192    | 0     | 0          | 0        | 0        | 0    |

## DATA SUMMARIES Continued

### LLCR Gas Tight Group

- 1) A total of 104 points were measured.
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
  - a.  $\leq +5.0$  mOhms: ----- Stable
  - b.  $+5.1$  to  $+10.0$  mOhms: ----- Minor
  - c.  $+10.1$  to  $+15.0$  mOhms: ----- Acceptable
  - d.  $+15.1$  to  $+50.0$  mOhms: ----- Marginal
  - e.  $+50.1$  to  $+2000$  mOhms: ----- Unstable
  - f.  $>+2000$  mOhms: ----- Open Failure

| LLCR Measurement Summaries by Pin Type |                    |            |           |       |  |
|----------------------------------------|--------------------|------------|-----------|-------|--|
| mOhm values                            | Date               | 1/22/2014  | 1/22/2014 |       |  |
|                                        | Room Temp (Deg C)  | 23         | 22        |       |  |
|                                        | Rel Humidity (%)   | 31         | 29        |       |  |
|                                        | Technician         | Troy Cook  | Troy Cook |       |  |
|                                        | Actual             | Delta      | Delta     | Delta |  |
|                                        | Initial            | Acid Vapor |           |       |  |
|                                        | Pin Type 1: Row 1  |            |           |       |  |
|                                        | Average            | 29.11      | 0.23      |       |  |
|                                        | St. Dev.           | 0.32       | 0.17      |       |  |
|                                        | Min                | 28.52      | 0.00      |       |  |
|                                        | Max                | 29.88      | 0.66      |       |  |
|                                        | Summary Count      | 72         | 72        |       |  |
|                                        | Total Count        | 72         | 72        |       |  |
| Pin Type 2: Row 2                      |                    |            |           |       |  |
|                                        | Average            | 35.06      | 0.27      |       |  |
|                                        | St. Dev.           | 0.25       | 0.19      |       |  |
|                                        | Min                | 34.49      | 0.00      |       |  |
|                                        | Max                | 35.80      | 0.97      |       |  |
|                                        | Summary Count      | 104        | 104       |       |  |
|                                        | Total Count        | 104        | 104       |       |  |
|                                        | Pin Type 3: Ground |            |           |       |  |
|                                        | Average            | 2.50       | 0.03      |       |  |
|                                        | St. Dev.           | 0.36       | 0.03      |       |  |
|                                        | Min                | 2.10       | 0.00      |       |  |
|                                        | Max                | 3.00       | 0.12      |       |  |
|                                        | Summary Count      | 16         | 16        |       |  |
|                                        | Total Count        | 16         | 16        |       |  |

| LLCR Delta Count by Category |        |           |            |            |              |       |
|------------------------------|--------|-----------|------------|------------|--------------|-------|
| mOhms                        | Stable | Minor     | Acceptable | Marginal   | Unstable     | Open  |
|                              | <=5    | >5 & <=10 | >10 & <=15 | >15 & <=50 | >50 & <=1000 | >1000 |
| Acid Vapor                   | 192    | 0         | 0          | 0          | 0            | 0     |

## DATA SUMMARIES Continued

### LLCR Shock & Vibration Group

- 1) A total of 104 points were measured.
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
  - a.  $\leq +5.0$  mOhms: ----- Stable
  - b.  $+5.1$  to  $+10.0$  mOhms: ----- Minor
  - c.  $+10.1$  to  $+15.0$  mOhms: ----- Acceptable
  - d.  $+15.1$  to  $+50.0$  mOhms: ----- Marginal
  - e.  $+50.1$  to  $+2000$  mOhms ----- Unstable
  - f.  $>+2000$  mOhms: ----- Open Failure

| LLCR Measurement Summaries by Pin Type |                    |           |           |       |       |
|----------------------------------------|--------------------|-----------|-----------|-------|-------|
| mOhm values                            | Date               | 2/3/2014  | 2/6/2014  |       |       |
|                                        | Room Temp (Deg C)  | 24        | 24        |       |       |
|                                        | Rel Humidity (%)   | 30        | 31        |       |       |
|                                        | Technician         | Troy Cook | Troy Cook |       |       |
|                                        | Actual             | Delta     |           | Delta | Delta |
|                                        | Initial            | Shock-Vib |           |       |       |
|                                        | Pin Type 1: Row 1  |           |           |       |       |
|                                        | Average            | 29.40     | 0.35      |       |       |
|                                        | St. Dev.           | 0.44      | 0.30      |       |       |
| Summary                                | Min                | 28.51     | 0.01      |       |       |
|                                        | Max                | 30.52     | 1.21      |       |       |
|                                        | Count              | 72        | 72        |       |       |
|                                        | Total Count        | 72        | 72        |       |       |
|                                        | Pin Type 2: Row 2  |           |           |       |       |
|                                        | Average            | 35.17     | 0.40      |       |       |
|                                        | St. Dev.           | 0.38      | 0.31      |       |       |
|                                        | Min                | 34.48     | 0.01      |       |       |
|                                        | Max                | 36.16     | 1.28      |       |       |
| Total                                  | Summary Count      | 104       | 104       |       |       |
|                                        | Total Count        | 104       | 104       |       |       |
|                                        | Pin Type 3: Ground |           |           |       |       |
|                                        | Average            | 2.72      | 0.47      |       |       |
|                                        | St. Dev.           | 0.46      | 0.36      |       |       |
|                                        | Min                | 1.91      | 0.01      |       |       |
|                                        | Max                | 3.50      | 1.04      |       |       |
|                                        | Summary Count      | 16        | 16        |       |       |
|                                        | Total Count        | 16        | 16        |       |       |

| LLCR Delta Count by Category |          |                         |                          |                          |                            |         |
|------------------------------|----------|-------------------------|--------------------------|--------------------------|----------------------------|---------|
| mOhms                        | Stable   | Minor                   | Acceptable               | Marginal                 | Unstable                   | Open    |
|                              | $\leq 5$ | $>5 \text{ & } \leq 10$ | $>10 \text{ & } \leq 15$ | $>15 \text{ & } \leq 50$ | $>50 \text{ & } \leq 1000$ | $>1000$ |
| Shock-Vib                    | 192      | 0                       | 0                        | 0                        | 0                          | 0       |

**DATA SUMMARIES Continued****Nanosecond Event Detection:**

| <b>Shock and Vibration Event Detection Summary</b> |                           |
|----------------------------------------------------|---------------------------|
| Contacts tested                                    | 60                        |
| Test Condition                                     | C, 100g's, 6ms, Half-Sine |
| Shock Events                                       | 0                         |
| Test Condition                                     | V-B, 7.56 rms g           |
| Vibration Events                                   | 0                         |
| <b>Total Events</b>                                | <b>0</b>                  |

## EQUIPMENT AND CALIBRATION SCHEDULES

**Equipment #:** THC-02

**Description:** Temperature/Humidity Chamber

**Manufacturer:** Thermotron

**Model:** SE-1000-6-6

**Serial #:** 31808

**Accuracy:** See Manual

... Last Cal: 02/16/2014, Next Cal: 02/16/2015

**Equipment #:** OV-05

**Description:** Forced Air Oven, 5 Cu. Ft., 120 V (Chamber Room)

**Manufacturer:** Sheldon Mfg.

**Model:** CE5F

**Serial #:** 02008008

**Accuracy:** +/- 5 deg. C

... Last Cal: 02/03/2014, Next Cal: 02/03/2015

**Equipment #:** HPM-01

**Description:** Hipot Megohmmeter

**Manufacturer:** Hipotronics

**Model:** H306B-A

**Serial #:** M9905004

**Accuracy:** 2 % Full Scale Accuracy

... Last Cal: 05/24/2013, Next Cal: 05/24/2014

**Equipment #:** TSC-01

**Description:** Vertical Thermal Shock Chamber

**Manufacturer:** Cincinnati Sub Zero

**Model:** VTS-3-6-6-SC/AC

**Serial #:** 10-VT14993

**Accuracy:** See Manual

... Last Cal: 05/18/2013, Next Cal: 05/18/2014

**Equipment #:** MO-04

**Description:** Multimeter /Data Acquisition System

**Manufacturer:** Keithley

**Model:** 2700

**Serial #:** 0798688

**Accuracy:** See Manual

... Last Cal: 04/30/2013, Next Cal: 04/30/2014

**EQUIPMENT AND CALIBRATION SCHEDULES Continued****Equipment #:** TCT-01**Description:** Test Stand**Manufacturer:** Chatillon**Model:** TCD-1000**Serial #:** 05 23 00 02**Accuracy:** Speed Accuracy: +/-5% of max speed; Displacement: +/- .5% or +/- .005, whichever is greater.

... Last Cal: 08/24/2013, Next Cal: 08/24/2014

Equipment #: PS-01

Description: Power Supply

Manufacturer: Agilent

Model: AT-6032A

Serial #: MY41001186

Accuracy: Last Cal: 06/12/2013, Next Cal: 06/12/2014

Equipment #: SVC-01

Description: Shock &amp; Vibration Table

Manufacturer: Data Physics

Model: LE-DSA-10-20K

Serial #: 10037

Accuracy: See Manual

... Last Cal: 11/31/2013, Next Cal: 11/31/2014

Equipment #: ACLM-01

Description: Accelerometer

Manufacturer: PCB Piezotronics

Model: 352C03

Serial #: 115819

Accuracy: See Manual

... Last Cal: 07/09/2013, Next Cal: 07/09/2014

Equipment #: ED-03

Description: Event Detector

Manufacturer: Analysis Tech

Model: 32EHD

Serial #: 1100604

Accuracy: See Manual

... Last Cal: 06/04/2013, Next Cal: 06/04/2014

**Equipment #:** MO-04**Description:** Multimeter /Data Acquisition System**Manufacturer:** Keithley**Model:** 2700**Serial #:** 0798688**Accuracy:** See Manual

... Last Cal: 03/27/2013, Next Cal: 03/27/2014