


Project Number: Design Qualification Test Report	Tracking Code: 3399409_Report_Rev_1
Requested by: Iris Wang	Date: 7/12/2023
Part #: 185-J-P-EP-ST-EL-01/RF086-18SP-505050-0304	
Part description: 185-J-P / RF086	Tech: Keney Chen
Test Start: 8/1/2022	Test Completed: 9/15/2022

DESIGN QUALIFICATION TEST REPORT

185-J-P / RF086
185-J-P-EP-ST-EL-01 /RF086-18SP-505050-0304

REVISION HISTORY

DATA	REV.NUM.	DESCRIPTION	ENG
2/28/2023	1	Initial Issue	KC

CERTIFICATION

All instruments and measuring equipment were calibrated to National Institute for Standards and Technology (NIST) traceable standards according to ISO 10012-1 and ANSI/NCSL 2540-1, as applicable.

All contents contained herein are the property of Samtec. No portion of this report, in part or in full shall be reproduced without prior written approval of Samtec.

SCOPE

To perform the following tests: Design Qualification test. Please see test plan.

APPLICABLE DOCUMENTS

Standards: MIL-PRF-39012, EIA Publication 364.

TEST SAMPLES AND PREPARATION

- 1) All materials were manufactured in accordance with the applicable product specification.
- 2) All test samples were identified and encoded to maintain traceability throughout the test sequences.
- 3) Parts not intended for testing LLCR and DWV/IR are visually inspected and cleaned if necessary.
- 4) Any additional preparation will be noted in the individual test sequences.

FLOWCHARTS

IR/DWV

Pin-to-Ground

Group 1

185-J-P-EP-ST-EL-01

RF086-18SP-505050-0304

10 Assemblies

Step Description

1. Interface Gaging
Note: Measure and record center contact recess from interface reference plane
2. IR (2) - Non Standard
3. DWV at Test Voltage⁽¹⁾ - Non Standard
Test Voltage = 500 VAC
4. LLCR (3) - Non Standard
Note: Signal and ground.
5. Thermal Shock⁽⁴⁾ - Non Standard
6. IR (2) - Non Standard
7. DWV at Test Voltage⁽¹⁾ - Non Standard
Test Voltage = 500 VAC
8. LLCR (3) - Non Standard
Max Delta = 15 mOhm
Note: Signal and ground.
9. Interface Gaging
Note: Measure and record center contact recess from interface reference plane

(1) DWV at Test Voltage = Other

Test Condition = 1 (Sea Level) Test voltage applied for 60 seconds
MIL-PRF-39012, Paragraph. 4.6.14 per MIL-STD-202-301

(2) IR = Other

Test Condition = 500V DC, 2 Minutes Max
MIL-PRF-39012, Paragraph 4.6.8 per MIL-STD-202-302

(3) LLCR = Other

Open Circuit Voltage = 20 mV Max
Test Current = 100 mA Max
MIL-PRF-39012, Paragraph 4.6.13 except current to be 100mA nominal and voltage to be 20 mV maximum.

(4) Thermal Shock = Other

Exposure Time at Temperature Extremes = 1/2 Hour
Test Condition = I (-65°C to +125°C)
Test Duration = test condition B except 10 cycles instead of 5.
MIL-PRF-39012, Paragraph. 4.6.17 per MIL-STD-202-107

FLOWCHARTS Continued**Mechanical Shock/Random Vibration/Event Detection**Group 1

185-J-P-EP-ST-EL-01

RF086-18SP-505050-0304

10 Assemblies

Step Description

1. Nanosecond Event Detection
(Mechanical Shock)⁽¹⁾
2. Nanosecond Event Detection
(Random Vibration)⁽²⁾

(1) Nanosecond Event Detection (Mechanical Shock)

Use EIA-364-87 for Nanosecond Event Detection:

Test Condition = F (50 nanoseconds at 10 ohms)

Use EIA-364-27 for Mechanical Shock:

Test Condition = C (100 G Peak, 6 milliseconds, Half Sine)

Number of Shocks = 3 Per Direction, Per Axis, 18 Total

(2) Nanosecond Event Detection (Random Vibration)

Use EIA-364-87 for Nanosecond Event Detection:

Test Condition = F (50 nanoseconds at 10 ohms)

Use EIA-364-28 for Random Vibration:

Condition = VB (7.56 gRMS Average, 2 Hours/Axis)

FLOWCHARTS Continued**Center Contact Retention****Minimum Force****Group 1**

185-J-P-EP-ST-EL-01

5 Assemblies**Minimum Force**

Note: Test I.A.W. MIL-PRF-39012 par. 4.6.9.

Step Description

1. Measure Contact Recess @ Interface
2. Apply Minimum Force Onto Socket Face
Note: Applied Force = 4 lbf (17.8 N)
3. Apply Min Force Onto Contact In Opposite Direction
Note: Applied Force = 4 lbf (17.8 N)
4. Measure Contact Recess @ Interface

Center Contact Captivation**Group 1**

185-J-P-EP-ST-EL-01

5 Assemblies**Maximum Force.**

Note: This is a destructive test. Apply force to the center socket contact (push on contact from pin end of assembly) and record maximum force at captivation failure and note cause of failure. Examples of failure; Contact disengaged from internal dielectric capture bead. Interface bushing disengaged.

Step Description

1. Apply Force On The Socket Center Contact
Note: Crosshead speed range 0.5-5.0 mm/min will be sufficient. Maximum force is the load force measured at captivation failure.

ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

THERMAL SHOCK:

- 1) MIL-PRF-39012, paragraph. 4.6.17 per MIL-STD-202-107.
- 2) Test Condition I: -65°C to +125°C
- 3) Test Time: ½ hour dwell at each temperature extreme
- 4) Test Duration: test condition B except 10 Cycles instead of 5.
- 5) All test samples are pre-conditioned at ambient.
- 6) All test samples are exposed to environmental stressing in the mated condition.

LLCR:

- 1) MIL-PRF-39012, Paragraph 4.6.13 except current to be 100mA nominal and voltage to be 20 mV maximum.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
 - a. <= +5.0 mOhms: -----Stable
 - b. +5.1 to +10.0 mOhms: -----Minor
 - c. +10.1 to +15.0 mOhms: -----Acceptable
 - d. +15.1 to +50.0 mOhms: -----Marginal
 - e. +50.1 to +1000 mOhms: -----Unstable
 - f. >+1000 mOhms: -----Open Failure

Center Contact Retention:

- 1) Apply 4 pounds force Onto Socket Face and Onto Contact in Opposite Direction

Center Contact Captivation:

- 1) Apply force On The Socket Center Contact

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes

INSULATION RESISTANCE (IR):

To determine the resistance of insulation materials to leakage of current through or on the surface of these materials when a DC potential is applied.

- 1) PROCEDURE:
 - a. Reference document: MIL-PRF-39012, paragraph. 4.6.8 per MIL-STD-202-302.
 - b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Electrification Time 2.0 minutes
 - iii. Test Voltage (500 VDC) corresponds to calibration settings for measuring resistances.
- 2) MEASUREMENTS:
- 3) When the specified test voltage is applied (VDC), the insulation resistance shall not be less than 5000 megohms.

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

To determine if the sockets can operate at its rated voltage and withstand momentary over potentials due to switching, surges, and other similar phenomenon. Separate samples are used to evaluate the effect of environmental stresses so not to influence the readings from arcing that occurs during the measurement process.

- 1) PROCEDURE:
 - a. Reference document: MIL-PRF-39012, paragraph. 4.6.14 per MIL-STD-202-301.
 - b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Barometric Test Condition 1(Sea Level) Test voltage applied for 60 seconds.
 - iii. Rate of Application 500 V/Sec
 - iv. Test Voltage (VAC) until breakdown occurs
- 2) MEASUREMENTS/CALCULATIONS
 - a. The breakdown voltage shall be measured and recorded.
 - b. The dielectric withstand voltage shall be recorded as 75% of the minimum breakdown voltage.
 - c. The working voltage shall be recorded as one-third (1/3) of the dielectric withstand voltage (one-fourth of the breakdown voltage).

VIBRATION:

- 1) Reference document: EIA-364-28, *Vibration Test Procedure for Electrical Connectors*
- 2) Test Condition V, Letter B
- 3) Power Spectral Density: 0.04 G² / Hz
- 4) G 'RMS': 7.56
- 5) Frequency: 50 to 2000 Hz
- 6) Duration: 2.0 Hours per axis (3 axis total)

NANOSECOND-EVENT DETECTION:

- 1) Reference document: EIA-364-87, *Nanosecond-Event Detection for Electrical Connectors*
- 2) Prior to test, the samples were characterized to assure the low nanosecond event being monitored will trigger the detector.
- 3) After characterization it was determined the test samples could be monitored for 50 nanosecond events

RESULTS

Center Contact Captivation

- Min ----- 13.60 lbs
- Max ----- 15.08 lbs

Insulation Resistance minimums, IR

Pin to Ground

- Initial
 - Mated ----- 45000 Meg Ω ----- Passed
- Thermal Shock
 - Mated ----- 45000 Meg Ω ----- Passed

Dielectric Withstanding Voltage minimums, DWV

- Test Voltage ----- 500 VAC

Pin to Ground

- Initial DWV ----- Passed
- Thermal DWV ----- Passed

Interface Gaging

IR/DWV Group

Initial

- Min ----- 0.0010 inch (0.025mm)
- Max ----- 0.0020 inch (0.051mm)

After Retention

- Min ----- 0.0015 inch (0.038mm)
- Max ----- 0.0025 inch (0.064mm)

Center Contact Retention Group

Initial

- Min ----- 0.0010 inch (0.025mm)
- Max ----- 0.0020 inch (0.051mm)

After Retention

- Min ----- 0.0015 inch (0.038mm)
- Max ----- 0.0025 inch (0.064mm)

RESULTS Continued

LLCR IR/DWV (10 ground and 10 signal LLCR test points)

Ground pin

- Initial ----- 12.63 mOhms Max
- Thermal Shock
 - <= +5.0 mOhms----- 10 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +1000 mOhms----- 0 Points ----- Unstable
 - >+1000 mOhms ----- 0 Points ----- Open Failure

Signal pin

- Initial ----- 36.82 mOhms Max
- Thermal Shock
 - <= +5.0 mOhms----- 10 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +1000 mOhms----- 0 Points ----- Unstable
 - >+1000 mOhms ----- 0 Points ----- Open Failure

DATA SUMMARIES**INSULATION RESISTANCE (IR):**

Pin to Ground	
	Mated
Minimum	185-J-P/RF086
Initial	45000
Thermal Shock	45000

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

Voltage Rating Summary	
Minimum	185-JP-P/RF086
Test Voltage	500
Pin to Ground	
Initial Test Voltage	Pass
After Thermal Shock Test Voltage	Pass

Center Contact Captivation Force:

	Force (lbs)	Force (N)
Minimum	13.60	60.52
Maximum	15.08	67.11
Average	14.19	63.15

DATA SUMMARIES Continued

LLCR IR/DWV:

- 1) A total of 10 signal and 10 ground points were measured.
- 2) *MIL-PRF-39012, Paragraph 4.6.13 except current to be 100mA nominal and voltage to be 20 mV maximum.*
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. $\leq +5.0$ mOhms: -----Stable
 - b. $+5.1$ to $+10.0$ mOhms: -----Minor
 - c. $+10.1$ to $+15.0$ mOhms: -----Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: -----Marginal
 - e. $+50.1$ to $+1000$ mOhms: -----Unstable
 - f. $>+1000$ mOhms: -----Open Failure

LLCR Measurement Summaries by Pin Type						
Date	12/1/2022	12/13/2022				
Room Temp (Deg C)	22	22				
Rel Humidity (%)	50	50				
Technician	Keney Chen	Keney Chen				
mOhm values	Actual Initial	Delta Thermal Shock				
Pin Type: Signal 1						
Average	35.45	1.01				
St. Dev.	0.64	0.97				
Min	34.61	0.01				
Max	36.82	2.77				
Summary Count	10	10				
Total Count	10	10				
Pin Type: GND 1						
Average	11.22	0.63				
St. Dev.	0.90	0.66				
Min	9.75	0.07				
Max	12.63	2.23				
Summary Count	10	10				
Total Count	10	10				

LLCR Delta Count by Category						
	Stable	Minor	Acceptable	Marginal	Unstable	Open
mOhms	≤ 5	$>5 \text{ & } \leq 10$	$>10 \text{ & } \leq 15$	$>15 \text{ & } \leq 50$	$>50 \text{ & } \leq 1000$	>1000
After Thermal Shock	20	0	0	0	0	0

DATA SUMMARIES Continued**Nanosecond Event Detection:**

Shock and Vibration Event Detection Summary	
Contacts tested	20
Test Condition	C, 100g's, 6ms, Half-Sine
Shock Events	0
Test Condition	V-B, 7.56 rms g
Vibration Events	0
Total Events	0

EQUIPMENT AND CALIBRATION SCHEDULES

Equipment #: HZ-TCT-01

Description: Normal force analyzer

Manufacturer: Mecmesin Multitester

Model: Mecmesin Multitester 2.5-i

Serial #: 08-1049-04

Accuracy: Last Cal: 3/4/2022, Next Cal: 3/3/2023

Equipment #: HZ-TSC-01

Description: Vertical Thermal Shock Chamber

Manufacturer: Cincinnati Sub Zero

Model: VTS-3-6-6-SC/AC

Serial #: 10-VT14994

Accuracy: See Manual

... Last Cal: 04/16/2022, Next Cal: 04/15/2023

Equipment #: DG-HPT-01

Description: Hipot Safety Tester

Manufacturer: Vitrek

Model: V73

Serial #: 025866

Accuracy:

... Last Cal: 04/16/2022, Next Cal: 04/15/2023

Equipment #: HZ-MO-05

Description: Micro-ohmmeter

Manufacturer: Keithley

Model: 3706

Serial #: 1285188

Accuracy: Last Cal: 12/17/2022, Next Cal: 12/16/2023

Equipment #: MO-11

Description: Switch/Multimeter

Manufacturer: Keithley

Model: 3706

Serial #: 120169

Accuracy: See Manual

... Last Cal: 08/21/2022, Next Cal: 08/21/2023

Equipment #: SVC-01

Description: Shock & Vibration Table

Manufacturer: Data Physics

Model: LE-DSA-10-20K

Serial #: 10037

Accuracy: See Manual

... Last Cal: 11/31/2022, Next Cal: 11/31/2023

EQUIPMENT AND CALIBRATION SCHEDULES Continued**Equipment #:** ACLM-01**Description:** Accelerometer**Manufacturer:** PCB Piezotronics**Model:** 352C03**Serial #:** 115819**Accuracy:** See Manual

... Last Cal: 07/09/2022, Next Cal: 07/09/2023

Equipment #: ED-03**Description:** Event Detector**Manufacturer:** Analysis Tech**Model:** 32EHD**Serial #:** 1100604**Accuracy:** See Manual

... Last Cal: 06/04/2022, Next Cal: 06/04/2023