

Project Number: Design Qualification Test Report	Tracking Code: 346579_Report_Rev_1
Requested by: Liam Parkes	Date: 12/22/2014
Part #: ESCA-30-10-16.00-FS-MS/SEAF8-30-05.0-S-10-2	Tech: Aaron McKim
Part description: ESCA/SEAF8	Qty to test: 40
Test Start: 10/31/2014	Test Completed: 12/9/2014

(Actual part not depicted)

DESIGN QUALIFICATION TEST REPORT

ESCA/SEAF8
ESCA-30-10-16.00-FS-MS/SEAF8-30-05.0-S-10-2

REVISION HISTORY

DATA	REV.NUM.	DESCRIPTION	ENG
12/18/2014	1	Initial Issue	PC

CERTIFICATION

All instruments and measuring equipment were calibrated to National Institute for Standards and Technology (NIST) traceable standards according to ISO 10012-1 and ANSI/NCSL 2540-1, as applicable.

All contents contained herein are the property of Samtec. No portion of this report, in part or in full shall be reproduced without prior written approval of Samtec.

SCOPE

To perform the following tests: Design Qualification test. Please see test plan.

APPLICABLE DOCUMENTS

Standards: EIA Publication 364

TEST SAMPLES AND PREPARATION

- 1) All materials were manufactured in accordance with the applicable product specification.
- 2) All test samples were identified and encoded to maintain traceability throughout the test sequences.
- 3) After soldering, the parts to be used for LLCR and DWV/IR testing were cleaned according to TLWI-0001.
- 4) Either an automated cleaning procedure or an ultrasonic cleaning procedure may be used.
- 5) The automated procedure is used with aqueous compatible soldering materials.
- 6) Parts not intended for testing LLCR and DWV/IR are visually inspected and cleaned if necessary.
- 7) Any additional preparation will be noted in the individual test sequences.
- 8) Solder Information: Lead free
- 9) Samtec Test PCBs used: PCB-106284-TST/ PCB-106285-TST.

FLOWCHARTS

IR/DWV

Pin-to-Pin

Group 1
 ESCA-30-10-06.0-FS-MS
 SEAF8-30-05.0-S-10-2
 2 Assemblies

Group 2
 ESCA-30-10-06.0-FS-MS
 2 Assemblies

Group 3
 ESCA-30-10-06.0-FS-MS
 SEAF8-30-05.0-S-10-2
 2 Assemblies

Step **Description**
 1. DWV Breakdown (2)

Step **Description**
 1. DWV Breakdown (2)

Step **Description**
 1. IR (4)
 2. DWV at Test Voltage (1)
 3. Thermal Shock (5)
 4. IR (4)
 5. DWV at Test Voltage (1)
 6. Humidity (3)
 7. IR (4)
 8. DWV at Test Voltage (1)

Row-to-Row

Group 4
 ESCA-30-10-06.0-FS-MS
 SEAF8-30-05.0-S-10-2
 2 Assemblies

Group 5
 ESCA-30-10-06.0-FS-MS
 2 Assemblies

Group 6
 ESCA-30-10-06.0-FS-MS
 SEAF8-30-05.0-S-10-2
 2 Assemblies

Step **Description**
 1. DWV Breakdown (2)

Step **Description**
 1. DWV Breakdown (2)

Step **Description**
 1. IR (4)
 2. DWV at Test Voltage (1)
 3. Thermal Shock (5)
 4. IR (4)
 5. DWV at Test Voltage (1)
 6. Humidity (3)
 7. IR (4)
 8. DWV at Test Voltage (1)

FLOWCHARTS Continued

Signal-to-Ground

Group 7

ESCA-30-10-06.0-FS-MS
SEAF8-30-05.0-S-10-2
2 Assemblies

Group 8

ESCA-30-10-06.0-FS-MS
2 Assemblies

Group 9

ESCA-30-10-06.0-FS-MS
SEAF8-30-05.0-S-10-2
2 Assemblies

Step Description

1. DWV Breakdown (2)

Step Description

1. DWV Breakdown (2)

Step Description

1. IR (4)
2. DWV at Test Voltage (1)
3. Thermal Shock (5)
4. IR (4)
5. DWV at Test Voltage (1)
6. Humidity (3)
7. IR (4)
8. DWV at Test Voltage (1)

(1) DWV at Test Voltage = EIA-364-20

Test Condition = 1 (Sea Level)

DWV test voltage is equal to 75% of the lowest breakdown voltage

Test voltage applied for 60 seconds

(2) DWV Breakdown = EIA-364-20

Test Condition = 1 (Sea Level)

DWV test voltage is equal to 75% of the lowest breakdown voltage

Test voltage applied for 60 seconds

(3) Humidity = EIA-364-31

Test Condition = B (240 Hours)

Test Method = III (+25°C to +65°C @ 90% RH to 98% RH)

Test Exceptions: ambient pre-condition and delete steps 7a and 7b

(4) IR = EIA-364-21

Test Condition = 500 Vdc, 2 Minutes Max

(5) Thermal Shock = EIA-364-32

Exposure Time at Temperature Extremes = 1/2 Hour

Method A, Test Condition = I (-55°C to +85°C)

Test Duration = A-3 (100 Cycles)

FLOWCHARTS Continued**Mechanical Shock/Random Vibration/LLCR**Group 1

ESCA-30-10-12.0-FS-MS

SEAF8-30-05.0-S-10-2

8 Assemblies

Step Description

1. LLCR (1)
Max Delta = 15 mOhm
2. Mechanical Shock (2)
3. Random Vibration (3)
4. LLCR (1)
Max Delta = 15 mOhm

(1) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max

Test Current = 100 mA Max

(2) Mechanical Shock = EIA-364-27

Test Condition = C (100 G Peak, 6 milliseconds, Half Sine)

Number of Shocks = 3 Per Direction, Per Axis, 18 Total

(3) Random Vibration = EIA-364-28

Condition = VB (7.56 gRMS Average, 2 Hours/Axis)

Mechanical Shock/Random Vibration/Event DetectionGroup 1

ESCA-30-10-12.0-FS-MS

SEAF8-30-05.0-S-10-2

60 Points

Step Description

1. Nanosecond Event Detection
(Mechanical Shock) (1)
2. Nanosecond Event Detection
(Random Vibration) (2)

(1) Nanosecond Event Detection (Mechanical Shock)

Use EIA-364-87 for Nanosecond Event Detection:

Test Condition = F (50 nanoseconds at 10 ohms)

Use EIA-364-27 for Mechanical Shock:

Test Condition = C (100 G Peak, 6 milliseconds, Half Sine)

Number of Shocks = 3 Per Direction, Per Axis, 18 Total

(2) Nanosecond Event Detection (Random Vibration)

Use EIA-364-87 for Nanosecond Event Detection:

Test Condition = F (50 nanoseconds at 10 ohms)

Use EIA-364-28 for Random Vibration:

Condition = VB (7.56 gRMS Average, 2 Hours/Axis)

FLOWCHARTS Continued**Cable Pull**

Note: The female end of ESCA need to mate with SEAM8-30-S02.0-S-10-2

Group 1
ESCA-30-10-12.0-FS-MS
SEAF8-30-05.0-S-10-2
5 Assemblies
0 Degrees

Group 2
ESCA-30-10-12.0-FS-MS
SEAF8-30-05.0-S-10-2
5 Assemblies
90 Degrees

Group 3
ESCA-30-10-12.0-FS-MS
SEAF8-30-05.0-S-10-2
5 Assemblies
90 Degrees Transverse

Step **Description**
1. Cable Pull (1)

Step **Description**
1. Cable Pull (1)

Step **Description**
1. Cable Pull (1)

(1) Cable Pull = EIA-364-38

Measure and Record Force Required to Failure
Failure = Discontinuity >1 microsecond at 10 ohms

FLOWCHARTS Continued

Cable Flex

Note: The female end of ESCA need to mate with SEAM8-30-S02.0-S-10-2

Group 1

ESCA-30-10-14.0-FS-MS

SEAF8-30-05.0-S-10-2

8 Assemblies

Flat Cable

Step Description

1. IR⁽³⁾
2. DWV at Test Voltage⁽²⁾
Note: DWV test voltage is equal to 75% of the lowest breakdown voltage from 'Sequence IR/DWV'
3. Cable Flex⁽¹⁾
4. Visual Inspection
5. IR⁽³⁾
6. DWV at Test Voltage⁽²⁾
Note: DWV test voltage is equal to 75% of the lowest breakdown voltage from 'Sequence IR/DWV'

(1) Cable Flex = EIA-364-41

 Circular Jacket Cable - to be tested 90° each direction (180° total)

 Flat Cable - to be tested 70° each direction (140° total)

 Monitor continuity during flex testing

 Failure = Discontinuity >1 microsecond at 10 ohms

(2) DWV at Test Voltage = EIA-364-20

 Test Condition = 1 (Sea Level)

 DWV test voltage is equal to 75% of the lowest breakdown voltage

 Test voltage applied for 60 seconds

(3) IR = EIA-364-21

 Test Condition = 500 Vdc, 2 Minutes Max

ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

THERMAL SHOCK:

- 1) EIA-364-32, *Thermal Shock (Temperature Cycling) Test Procedure for Electrical Connectors*.
- 2) Test Condition 1: -55°C to +85°C
- 3) Test Time: ½ hour dwell at each temperature extreme
- 4) Number of Cycles: 100
- 5) All test samples are pre-conditioned at ambient.
- 6) All test samples are exposed to environmental stressing in the mated condition.

HUMIDITY:

- 1) Reference document: EIA-364-31, *Humidity Test Procedure for Electrical Connectors*.
- 2) Test Condition B, 240 Hours.
- 3) Method III, +25° C to +65° C, 90% to 98% Relative Humidity excluding sub-cycles 7a and 7b.
- 4) All samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

MECHANICAL SHOCK (Specified Pulse):

- 1) Reference document: EIA-364-27, *Mechanical Shock Test Procedure for Electrical Connectors*
- 2) Test Condition C
- 3) Peak Value: 100 G
- 4) Duration: 6 Milliseconds
- 5) Wave Form: Half Sine
- 6) Velocity: 12.3 ft/s
- 7) Number of Shocks: 3 Shocks / Direction, 3 Axis (18 Total)

VIBRATION:

- 1) Reference document: EIA-364-28, *Vibration Test Procedure for Electrical Connectors*
- 2) Test Condition V, Letter B
- 3) Power Spectral Density: 0.04 G² / Hz
- 4) G 'RMS': 7.56
- 5) Frequency: 50 to 2000 Hz
- 6) Duration: 2.0 Hours per axis (3 axis total)

NANOSECOND-EVENT DETECTION:

- 1) Reference document: EIA-364-87, *Nanosecond-Event Detection for Electrical Connectors*
- 2) Prior to test, the samples were characterized to assure the low nanosecond event being monitored will trigger the detector.
- 3) After characterization it was determined the test samples could be monitored for 50 nanosecond events

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

LLCR:

- 1) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
 - a. $\leq +5.0$ mOhms: Stable
 - b. $+5.1$ to $+10.0$ mOhms: Minor
 - c. $+10.1$ to $+15.0$ mOhms: Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: Marginal
 - e. $+50.1$ to $+2000$ mOhms: Unstable
 - f. $>+2000$ mOhms: Open Failure

INSULATION RESISTANCE (IR):

To determine the resistance of insulation materials to leakage of current through or on the surface of these materials when a DC potential is applied.

- 1) PROCEDURE:
 - a. Reference document: EIA-364-21, *Insulation Resistance Test Procedure for Electrical Connectors*.
 - b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Electrification Time 2.0 minutes
 - iii. Test Voltage (500 VDC) corresponds to calibration settings for measuring resistances.
- 2) MEASUREMENTS:
- 3) When the specified test voltage is applied (VDC), the insulation resistance shall not be less than 1000 megohms.

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

To determine if the sockets can operate at its rated voltage and withstand momentary over potentials due to switching, surges, and other similar phenomenon. Separate samples are used to evaluate the effect of environmental stresses so not to influence the readings from arcing that occurs during the measurement process.

- 1) PROCEDURE:
 - a. Reference document: EIA-364-20, *Withstanding Voltage Test Procedure for Electrical Connectors*.
 - b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Barometric Test Condition 1
 - iii. Rate of Application 500 V/Sec
 - iv. Test Voltage (VAC) until breakdown occurs
- 2) MEASUREMENTS/CALCULATIONS
 - a. The breakdown voltage shall be measured and recorded.
 - b. The dielectric withstand voltage shall be recorded as 75% of the minimum breakdown voltage.
 - c. The working voltage shall be recorded as one-third (1/3) of the dielectric withstand voltage (one-fourth of the breakdown voltage).

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

CONNECTOR PULL:

- 1) Secure cable near center and pull on connector
 - a. At 90°, right angle to cable.
 - b. At 0°, in-line with cable

Fig. 1

CABLE Flex Test:

- 1) Oscillate and monitor electrical continuity for open circuit indication.
 - a. $\pm 70^\circ$ Pendulum Mode, bend up to 500 cycles with 32 oz. load on cable end.

Fig. 2

RESULTS

Cable Pull force

- **0° Pull**
 - Min ----- 151.00 Lbs
 - Max ----- 186.00 Lbs
- **90° Pull**
 - Min ----- 38.00 Lbs
 - Max ----- 43.50 Lbs
- **90° Pull (Traverse)**
 - Min ----- 27.00 Lbs
 - Max ----- 32.50 Lbs

Insulation Resistance minimums, IR

Pin to Pin

- **Initial**
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed
- **Thermal Shock**
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed
- **Humidity**
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed

Row to Row

- **Initial**
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed
- **Thermal Shock**
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed
- **Humidity**
 - Mated ----- 18100 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed

Pin to Ground

- **Initial**
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed
- **Thermal Shock**
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed
- **Humidity**
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed

RESULTS Continued

Dielectric Withstanding Voltage minimums, DWV

• Minimums

- Breakdown Voltage ----- 780 VAC
- Test Voltage ----- 585 VAC
- Working Voltage ----- 195 VAC

Pin to Pin

- Initial DWV ----- Passed
- Thermal DWV ----- Passed
- Humidity DWV ----- Passed

Row to Row

- Initial DWV ----- Passed
- Thermal DWV ----- Passed
- Humidity DWV ----- Passed

Pin to Ground

- Initial DWV ----- Passed
- Thermal DWV ----- Passed
- Humidity DWV ----- Passed

CABLE FLEX

Insulation Resistance minimums, IR

Pin to Pin

- Initial
 - Mated ----- 45000 Meg Ω ----- Passed
- After flex test
 - Mated ----- 45000 Meg Ω ----- Passed

Row to Row

- Initial
 - Mated ----- 45000 Meg Ω ----- Passed
- After flex test
 - Mated ----- 45000 Meg Ω ----- Passed

Pin to Ground

- Initial
 - Mated ----- 45000 Meg Ω ----- Passed
- After flex test
 - Mated ----- 45000 Meg Ω ----- Passed

Dielectric Withstanding Voltage minimums, DWV

Pin to Pin

- Initial DWV ----- Passed
- After Flex DWV ----- Passed

Row to Row

- Initial DWV ----- Passed
- After Flex DWV ----- Passed

Pin to Ground

- Initial DWV ----- Passed
- After Flex DWV ----- Passed

RESULTS Continued

LLCR Shock & Vibration Group (192 LLCR test points)

Signal pin

- Initial ----- 279.39 mOhms Max

Ground pin

- Initial ----- 26.91 mOhms Max

Row 2 pin

- Initial ----- 461.77 mOhms Max

Shock & Vibration

- <= +5.0 mOhms ----- 184 Points ----- Stable
- +5.1 to +10.0 mOhms ----- 7 Points ----- Minor
- +10.1 to +15.0 mOhms ----- 1 Points ----- Acceptable
- +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
- +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
- >+2000 mOhms ----- 0 Points ----- Open Failure

Mechanical Shock & Random Vibration:

- Shock
 - No Damage----- ----- Pass
 - 50 Nanoseconds----- ----- Pass
- Vibration
 - No Damage----- ----- Pass
 - 50 Nanoseconds----- ----- Pass

DATA SUMMARIES

Cable Pull force**0° Pull**

	Force (lbs)
Minimum	151.00
Maximum	186.00
Average	169.60

90° Pull

	Force (lbs)
Minimum	38.00
Maximum	43.50
Average	40.20

90° Pull (Traverse)

	Force (lbs)
Minimum	27.00
Maximum	32.50
Average	29.50

DATA SUMMARIES Continued**INSULATION RESISTANCE (IR):**

	Pin to Pin		
	Mated	Unmated	Unmated
Minimum	ESCA/SEAF8	ESCA	SEAF8
Initial	45000	45000	Not Tested
Thermal	45000	45000	Not Tested
Humidity	45000	45000	Not Tested

	Pin to Ground		
	Mated	Unmated	Unmated
Minimum	ESCA/SEAF8	ESCA	SEAF8
Initial	45000	45000	Not Tested
Thermal	45000	45000	Not Tested
Humidity	45000	45000	Not Tested

	Row to Row		
	Mated	Unmated	Unmated
Minimum	ESCA/SEAF8	ESCA	SEAF8
Initial	45000	45000	Not Tested
Thermal	45000	45000	Not Tested
Humidity	18100	45000	Not Tested

DATA SUMMARIES Continued**DIELECTRIC WITHSTANDING VOLTAGE (DWV):**

Voltage Rating Summary	
Minimum	ESCA/SEAF8
Break Down Voltage	780
Test Voltage	585
Working Voltage	195

Pin to Pin	
Initial Test Voltage	Passed
After Thermal Test Voltage	Passed
After Humidity Test Voltage	Passed

Row to Row	
Initial Test Voltage	Passed
After Thermal Test Voltage	Passed
After Humidity Test Voltage	Passed

Pin to Ground	
Initial Test Voltage	Passed
After Thermal Test Voltage	Passed
After Humidity Test Voltage	Passed

DATA SUMMARIES Continued**Cable Flex test****INSULATION RESISTANCE (IR):**

Pin to Pin	
Mated	
Minimum	
Initial	45000
After 500 Flex Cycles	45000

Pin to Ground	
Mated	
Minimum	
Initial	45000
After 500 Flex Cycles	45000

Row to Row	
Mated	
Minimum	
Initial	45000
After 500 Flex Cycles	45000

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

Voltage Rating Summary	
Minimum	
Break Down Voltage	780
Test Voltage	585
Working Voltage	195

Pin to Pin	
Initial Test Voltage	Passed
After 500 Flex Cycles Test Voltage	Passed

Row to Row	
Initial Test Voltage	Passed
After 500 Flex Cycles Test Voltage	Passed

Pin to Ground	
Initial Test Voltage	Passed
After 500 Flex Cycles Test Voltage	Passed

DATA SUMMARIES Continued

LLCR Shock & Vibration Group

- 1) A total of 192 points were measured.
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. $\leq +5.0$ mOhms: ----- Stable
 - b. $+5.1$ to $+10.0$ mOhms: ----- Minor
 - c. $+10.1$ to $+15.0$ mOhms: ----- Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: ----- Marginal
 - e. $+50.1$ to $+2000$ mOhms ----- Unstable
 - f. $>+2000$ mOhms: ----- Open Failure

LLCR Measurement Summaries by Pin Type							
mOhm values	Date	10/31/2014	12/9/2014				
	Room Temp (Deg C)	22	22				
	Rel Humidity (%)	34	35				
	Technician	Aaron McKim	Aaron McKim				
	Actual	Delta		Delta	Delta		
	Initial	Shock-Vib					
	Pin Type 1: Signal						
	Average	266.20	1.29				
	St. Dev.	6.17	2.02				
	Min	257.31	0.01				
	Max	279.39	13.46				
	Summary Count	56	56				
	Total Count	56	56				
Pin Type 2: Ground							
Average	18.38	1.31					
St. Dev.	2.14	1.71					
Min	16.26	0.00					
Max	26.91	9.02					
Summary Count	96	96					
Total Count	96	96					
Pin Type 3: Row 2							
Average	425.76	1.09					
St. Dev.	17.84	1.25					
Min	393.58	0.12					
Max	461.77	7.91					
Summary Count	40	40					
Total Count	40	40					

LLCR Delta Count by Category						
mOhms	Stable	Minor	Acceptable	Marginal	Unstable	Open
	≤ 5	$>5 \text{ & } \leq 10$	$>10 \text{ & } \leq 15$	$>15 \text{ & } \leq 50$	$>50 \text{ & } \leq 1000$	>1000
Shock-Vib	184	7	1	0	0	0

DATA SUMMARIES Continued**Nanosecond Event Detection:**

Shock and Vibration Event Detection Summary	
Contacts tested	60
Test Condition	C, 100g's, 6ms, Half-Sine
Shock Events	0
Test Condition	V-B, 7.56 rms g
Vibration Events	0
Total Events	0

EQUIPMENT AND CALIBRATION SCHEDULES

Equipment #: THC-02

Description: Temperature/Humidity Chamber

Manufacturer: Thermotron

Model: SE-1000-6-6

Serial #: 31808

Accuracy: See Manual

... Last Cal: 02/16/2014, Next Cal: 02/16/2015

Equipment #: TSC-01

Description: Vertical Thermal Shock Chamber

Manufacturer: Cincinnati Sub Zero

Model: VTS-3-6-6-SC/AC

Serial #: 10-VT14993

Accuracy: See Manual

... Last Cal: 05/18/2014, Next Cal: 05/18/2015

Equipment #: MO-04

Description: Multimeter /Data Acquisition System

Manufacturer: Keithley

Model: 3706

Serial #: 0798688

Accuracy: See Manual

... Last Cal: 04/30/2014, Next Cal: 04/30/2015

Equipment #: TCT-01

Description: Test Stand

Manufacturer: Chatillon

Model: TCD-1000

Serial #: 05 23 00 02

Accuracy: Speed Accuracy: +/-5% of max speed; Displacement: +/- .5% or +/- .005, whichever is greater.

... Last Cal: 08/24/2014, Next Cal: 08/24/2015

Equipment #: SVC-01

Description: Shock & Vibration Table

Manufacturer: Data Physics

Model: LE-DSA-10-20K

Serial #: 10037

Accuracy: See Manual

... Last Cal: 11/31/2013, Next Cal: 11/31/2014

Equipment #: ACLM-01

Description: Accelerometer

Manufacturer: PCB Piezotronics

Model: 352C03

Serial #: 115819

Accuracy: See Manual

... Last Cal: 07/09/2014, Next Cal: 07/09/2015

EQUIPMENT AND CALIBRATION SCHEDULES Continued

Equipment #: ED-03

Description: Event Detector

Manufacturer: Analysis Tech

Model: 32EHD

Serial #: 1100604

Accuracy: See Manual

... Last Cal: 06/04/2014, Next Cal: 06/04/2015