


|                                                  |                                    |
|--------------------------------------------------|------------------------------------|
| Project Number: Design Qualification Test Report | Tracking Code: 404787_Report_Rev_1 |
| Requested by: John Liao                          | Date: 5/10/2016                    |
| Part #: RF047-10SP9-10SP9-0305/RSP-122811-01     | Tech: Kason He                     |
| Part description: RF047/RSP                      | Qty to test: 50                    |
| Test Start: 10/20/2014                           | Test Completed: 11/30/2014         |



## **DESIGN QUALIFICATION TEST REPORT**

**RF047-10SP9-10SP9-0305/RSP-122811-01**  
**RF047/RSP**

**REVISION HISTORY**

| DATA       | REV.NUM. | DESCRIPTION   | ENG |
|------------|----------|---------------|-----|
| 07/30/2015 | 1        | Initial Issue | PC  |

## CERTIFICATION

All instruments and measuring equipment were calibrated to National Institute for Standards and Technology (NIST) traceable standards according to ISO 10012-1 and ANSI/NCSL 2540-1, as applicable.

All contents contained herein are the property of Samtec. No portion of this report, in part or in full shall be reproduced without prior written approval of Samtec.

## SCOPE

To perform the following tests: Design Qualification test. Please see test plan.

## APPLICABLE DOCUMENTS

Standards: EIA Publication 364

## TEST SAMPLES AND PREPARATION

- 1) All materials were manufactured in accordance with the applicable product specification.
- 2) All test samples were identified and encoded to maintain traceability throughout the test sequences.
- 3) After soldering, the parts to be used for LLCR and DWV/IR testing were cleaned according to TLWI-0001.
- 4) Either an automated cleaning procedure or an ultrasonic cleaning procedure may be used.
- 5) The automated procedure is used with aqueous compatible soldering materials.
- 6) Parts not intended for testing LLCR and DWV/IR are visually inspected and cleaned if necessary.
- 7) Any additional preparation will be noted in the individual test sequences.
- 8) Solder Information: Lead free
- 9) Samtec Test PCBs used: PCB-104382-TST-XX, PCB-104383-TST-XX.

**FLOWCHARTS****Gas Tight**Group 1

RF047-10SP9-10SP9-0305

RSP-122811-01

8 Assemblies

**Step    Description**

1. LLCR (2)  
Max Delta = 15 mOhm
2. Gas Tight (1)
3. LLCR (2)  
Max Delta = 15 mOhm

---

(1) Gas Tight = EIA-364-36

(2) LLCR = EIA-364-23  
Open Circuit Voltage = 20 mV Max  
Test Current = 100 mA Max

**Thermal Aging**Group 1

RF047-10SP9-10SP9-0305

RSP-122811-01

8 Assemblies

**Step    Description**

1. Contact Gaps
2. Mating/Unmating Force (2)
3. LLCR (1)  
Max Delta = 15 mOhm
4. Thermal Age (3)
5. LLCR (1)  
Max Delta = 15 mOhm
6. Mating/Unmating Force (2)
7. Contact Gaps

---

(1) LLCR = EIA-364-23  
Open Circuit Voltage = 20 mV Max  
Test Current = 100 mA Max

(2) Mating/Unmating Force = EIA-364-13

(3) Thermal Age = EIA-364-17  
Test Condition = 4 (105°C)  
Time Condition = B (250 Hours)

**FLOWCHARTS Continued****Normal Force**

Group 1  
HMHF1-P-C-X-ST-C47-SKT

8 Contacts Minimum  
Signal Without Thermals

| Step | Description                                                                            |
|------|----------------------------------------------------------------------------------------|
| 1.   | Contact Gaps                                                                           |
| 2.   | Normal Force (1)<br>Deflection = 0.003937 "<br>Expected Force at Max Deflection = 20 g |

Group 2  
HMHF1-P-C-X-ST-C47-CBDY

8 Contacts Minimum  
Ground Without Thermals

| Step | Description                                                                            |
|------|----------------------------------------------------------------------------------------|
| 1.   | Contact Gaps                                                                           |
| 2.   | Normal Force (1)<br>Deflection = 0.005905 "<br>Expected Force at Max Deflection = 40 g |

Group 3  
HMHF1-P-C-X-ST-C47-SKT  
RSP-122811-01  
8 Contacts Minimum  
Signal With Thermals

| Step | Description                                                                            |
|------|----------------------------------------------------------------------------------------|
| 1.   | Contact Gaps                                                                           |
| 2.   | Thermal Age (2)                                                                        |
| 3.   | Contact Gaps                                                                           |
| 4.   | Normal Force (1)<br>Deflection = 0.003937 "<br>Expected Force at Max Deflection = 20 g |

Group 4  
HMHF1-P-C-X-ST-C47-CBDY  
RSP-122811-01  
8 Contacts Minimum  
Ground With Thermals

| Step | Description                                                                            |
|------|----------------------------------------------------------------------------------------|
| 1.   | Contact Gaps                                                                           |
| 2.   | Thermal Age (2)                                                                        |
| 3.   | Contact Gaps                                                                           |
| 4.   | Normal Force (1)<br>Deflection = 0.005905 "<br>Expected Force at Max Deflection = 40 g |

(1) Normal Force = EIA-364-04

(2) Thermal Age = EIA-364-17

Test Condition = 4 (105°C)

Time Condition = B (250 Hours)

**FLOWCHARTS Continued****Mating/Unmating/Durability****Group 1**

RF047-10SP9-10SP9-0305

RSP-122811-01

8 Assemblies

*Note: 500 cycles test. After each 125 cycles test, changing PCB connector (RSP-122811-01). cycled by machine.*

**Step      Description**

1. Contact Gaps
2. LLCR <sup>(2)</sup>  
Max Delta = 15 mOhm
3. Mating/Unmating Force <sup>(3)</sup>
4. Cycles  
Quantity = 125 Cycles  
*Note:*
5. Mating/Unmating Force <sup>(3)</sup>
6. Cycles  
Quantity = 125 Cycles  
*Note: Using new PCB connector (RSP-122811-01) for following 125 cycles test*
7. Mating/Unmating Force <sup>(3)</sup>
8. Cycles  
Quantity = 125 Cycles  
*Note: Using new PCB connector (RSP-122811-01) for following 125 cycles test*
9. Mating/Unmating Force <sup>(3)</sup>
10. Cycles  
Quantity = 125 Cycles  
*Note: Using new PCB connector (RSP-122811-01) for following 125 cycles test*
11. Mating/Unmating Force <sup>(3)</sup>
12. Contact Gaps

## FLOWCHARTS Continued

13. LLCR (2)  
Max Delta = 15 mOhm
14. Thermal Shock (4)
15. LLCR (2)  
Max Delta = 15 mOhm
16. Humidity (1)
17. LLCR (2)  
Max Delta = 15 mOhm
18. Mating/Unmating Force (3)

---

(1) Humidity = EIA-364-31

Test Condition = B (240 Hours)

Test Method = III (+25°C to +65°C @ 90% RH to 98% RH)

Test Exceptions: ambient pre-condition and delete steps 7a and 7b

(2) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max

Test Current = 100 mA Max

(3) Mating/Unmating Force = EIA-364-13

(4) Thermal Shock = EIA-364-32

Exposure Time at Temperature Extremes = 1/2 Hour

Method A, Test Condition = I (-55°C to +85°C)

Test Duration = A-3 (100 Cycles)

## FLOWCHARTS Continued

### IR/DWV

#### Pin-to-Ground

| <u>Group 1</u><br>RF047-10SP9-10SP9-0305<br>RSP-122811-01<br>2 Assemblies                                                                                                                 |                   | <u>Group 2</u><br>RF047-10SP9-10SP9-0305<br>2 Assemblies |                   | <u>Group 3</u><br>RSP-122811-01<br>2 Assemblies |                         | <u>Group 4</u><br>RF047-10SP9-10SP9-0305<br>RSP-122811-01<br>2 Assemblies |             |             |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------------------------------------|-------------------|-------------------------------------------------|-------------------------|---------------------------------------------------------------------------|-------------|-------------|--|
| Step                                                                                                                                                                                      | Description       | Step                                                     | Description       | Step                                            | Description             | Step                                                                      | Description |             |  |
| 1.                                                                                                                                                                                        | DWV Breakdown (2) | 1.                                                       | DWV Breakdown (2) | 1.                                              | DWV Breakdown (2)       | 1.                                                                        | IR (4)      |             |  |
| <u>Group 5</u><br>RF047-10RP9-10RP9-0305<br>RSP-122811-01<br>2 Assemblies                                                                                                                 |                   | <u>Group 6</u><br>RF047-10RP9-10RP9-0305<br>2 Assemblies |                   | <u>Group 7</u><br>RSP-122811-01<br>2 Assemblies |                         | <u>Group 8</u><br>RF047-10RP9-10RP9-0305<br>RSP-122811-01<br>2 Assemblies |             |             |  |
| Step                                                                                                                                                                                      | Description       | Step                                                     | Description       | Step                                            | Note: Same as Group 3.2 |                                                                           | Step        | Description |  |
| 1.                                                                                                                                                                                        | DWV Breakdown (2) | 1.                                                       | DWV Breakdown (2) | 1.                                              | DWV Breakdown (2)       |                                                                           | 1.          | IR (4)      |  |
| (1) DWV at Test Voltage = EIA-364-20<br>Test Condition = 1 (Sea Level)<br>DWV test voltage is equal to 75% of the lowest breakdown voltage<br>Test voltage applied for 60 seconds         |                   |                                                          |                   |                                                 |                         |                                                                           |             |             |  |
| (2) DWV Breakdown = EIA-364-20<br>Test Condition = 1 (Sea Level)<br>DWV test voltage is equal to 75% of the lowest breakdown voltage<br>Test voltage applied for 60 seconds               |                   |                                                          |                   |                                                 |                         |                                                                           |             |             |  |
| (3) Humidity = EIA-364-31<br>Test Condition = B (240 Hours)<br>Test Method = III (+25°C to +65°C @ 90% RH to 98% RH)<br>Test Exceptions: ambient pre-condition and delete steps 7a and 7b |                   |                                                          |                   |                                                 |                         |                                                                           |             |             |  |
| (4) IR = EIA-364-21<br>Test Condition = 500 Vdc, 2 Minutes Max                                                                                                                            |                   |                                                          |                   |                                                 |                         |                                                                           |             |             |  |
| (5) Thermal Shock = EIA-364-32<br>Exposure Time at Temperature Extremes = 1/2 Hour<br>Method A, Test Condition = I (-55°C to +85°C)<br>Test Duration = A-3 (100 Cycles)                   |                   |                                                          |                   |                                                 |                         |                                                                           |             |             |  |

(1) DWV at Test Voltage = EIA-364-20  
 Test Condition = 1 (Sea Level)  
 DWV test voltage is equal to 75% of the lowest breakdown voltage  
 Test voltage applied for 60 seconds

(2) DWV Breakdown = EIA-364-20  
 Test Condition = 1 (Sea Level)  
 DWV test voltage is equal to 75% of the lowest breakdown voltage  
 Test voltage applied for 60 seconds

(3) Humidity = EIA-364-31  
 Test Condition = B (240 Hours)  
 Test Method = III (+25°C to +65°C @ 90% RH to 98% RH)  
 Test Exceptions: ambient pre-condition and delete steps 7a and 7b

(4) IR = EIA-364-21  
 Test Condition = 500 Vdc, 2 Minutes Max

(5) Thermal Shock = EIA-364-32  
 Exposure Time at Temperature Extremes = 1/2 Hour  
 Method A, Test Condition = I (-55°C to +85°C)  
 Test Duration = A-3 (100 Cycles)

## FLOWCHARTS Continued

### Mechanical Shock/Random Vibration/LLCR

#### Group 1

RF047-10SP9-10SP9-0305

RSP-122811-01

8 Assemblies

---

**Step Description**

1. LLCR <sup>(1)</sup>  
Max Delta = 15 mOhm
2. Mechanical Shock <sup>(2)</sup>
3. Random Vibration <sup>(3)</sup>
4. LLCR <sup>(1)</sup>  
Max Delta = 15 mOhm

---

(1) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max  
Test Current = 100 mA Max

(2) Mechanical Shock = EIA-364-27

Test Condition = C (100 G Peak, 6 milliseconds, Half Sine)  
Number of Shocks = 3 Per Direction, Per Axis, 18 Total

(3) Random Vibration = EIA-364-28

Condition = VB (7.56 gRMS Average, 2 Hours/Axis)

### Mechanical Shock/Random Vibration/Event Detection

#### Group 1

RF047-10SP9-10SP9-0305

RSP-122811-01

8 Assemblies

---

**Step Description**

1. Nanosecond Event Detection  
(Mechanical Shock) <sup>(1)</sup>
2. Nanosecond Event Detection  
(Random Vibration) <sup>(2)</sup>

---

(1) Nanosecond Event Detection (Mechanical Shock)

Use EIA-364-87 for Nanosecond Event Detection:  
Test Condition = F (50 nanoseconds at 10 ohms)  
Use EIA-364-27 for Mechanical Shock:  
Test Condition = C (100 G Peak, 6 milliseconds, Half Sine)  
Number of Shocks = 3 Per Direction, Per Axis, 18 Total

(2) Nanosecond Event Detection (Random Vibration)

Use EIA-364-87 for Nanosecond Event Detection:  
Test Condition = F (50 nanoseconds at 10 ohms)  
Use EIA-364-28 for Random Vibration:  
Condition = VB (7.56 gRMS Average, 2 Hours/Axis)

**FLOWCHARTS Continued****Cable Pull**

Group 1  
RF047-10SP9-10SP9-0305  
RSP-122811-01  
5 Assemblies  
0 Degrees

Group 2  
RF047-10SP9-10SP9-0305  
RSP-122811-01  
5 Assemblies  
90 Degrees

**Step**   **Description**  
1.      Cable Pull <sup>(1)</sup>

**Step**   **Description**  
1.      Cable Pull <sup>(1)</sup>

---

(1) Cable Pull = EIA-364-38

Measure and Record Force Required to Failure  
Failure = Discontinuity >1 microsecond at 10 ohms

## ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

### **THERMAL SHOCK:**

- 1) EIA-364-32, *Thermal Shock (Temperature Cycling) Test Procedure for Electrical Connectors.*
- 2) Test Condition 1: -55°C to +85°C
- 3) Test Time: ½ hour dwell at each temperature extreme
- 4) Number of Cycles: 100
- 5) All test samples are pre-conditioned at ambient.
- 6) All test samples are exposed to environmental stressing in the mated condition.

### **THERMAL:**

- 1) EIA-364-17, *Temperature Life with or without Electrical Load Test Procedure for Electrical Connectors.*
- 2) Test Condition 4 at 105° C.
- 3) Test Time Condition B for 250 hours.
- 4) All test samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

### **HUMIDITY:**

- 1) Reference document: EIA-364-31, *Humidity Test Procedure for Electrical Connectors.*
- 2) Test Condition B, 240 Hours.
- 3) Method III, +25° C to + 65° C, 90% to 98% Relative Humidity excluding sub-cycles 7a and 7b.
- 4) All samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

### **MECHANICAL SHOCK (Specified Pulse):**

- 1) Reference document: EIA-364-27, *Mechanical Shock Test Procedure for Electrical Connectors*
- 2) Test Condition C
- 3) Peak Value: 100 G
- 4) Duration: 6 Milliseconds
- 5) Wave Form: Half Sine
- 6) Velocity: 12.3 ft/s
- 7) Number of Shocks: 3 Shocks / Direction, 3 Axis (18 Total)

### **VIBRATION:**

- 1) Reference document: EIA-364-28, *Vibration Test Procedure for Electrical Connectors*
- 2) Test Condition V, Letter B
- 3) Power Spectral Density: 0.04 G<sup>2</sup> / Hz
- 4) G 'RMS': 7.56
- 5) Frequency: 50 to 2000 Hz
- 6) Duration: 2.0 Hours per axis (3 axis total)

### **NANOSECOND-EVENT DETECTION:**

- 1) Reference document: EIA-364-87, *Nanosecond-Event Detection for Electrical Connectors*
- 2) Prior to test, the samples were characterized to assure the low nanosecond event being monitored will trigger the detector.
- 3) After characterization it was determined the test samples could be monitored for 50 nanosecond events

## ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

### MATING/UNMATING:

- 1) Reference document: EIA-364-13, *Mating and Unmating Forces Test Procedure for Electrical Connectors*.
- 2) The full insertion position was to within 0.003" to 0.004" of the plug bottoming out in the receptacle to prevent damage to the system under test.
- 3) One of the mating parts is secured to a floating X-Y table to prevent damage during cycling.

### NORMAL FORCE (FOR CONTACTS TESTED OUTSIDE THE HOUSING):

- 1) Reference document: EIA-364-04, *Normal Force Test Procedure for Electrical Connectors*.
- 2) The contacts shall be tested in the loose state, *not* inserted in connector housing.
- 3) The contacts shall be prepared to allow access to the spring member at the same attitude and deflection level as would occur in actual use.
- 4) In the event that portions of the contact prevent insertion of the test probe and/or deflection of the spring member under evaluation, said material shall be removed leaving the appropriate contact surfaces exposed.
- 5) In the case of multi-tine contacts, each tine shall be tested independently on separate samples as required.
- 6) The connector housing shall be simulated, if required, in order to provide an accurate representation of the actual contact system performance.
- 7) A holding fixture shall be fashioned to allow the contact to be properly deflected.
- 8) Said holding fixture shall be mounted on a floating, adjustable, X-Y table on the base of the Dillon TC<sup>2</sup>, computer controlled test stand with a deflection measurement system accuracy of 5  $\mu$ m (0.0002").
- 9) The probe shall be attached to a Dillon P/N 49761-0105, 5 N (1.1 Lb) load cell providing an accuracy of  $\pm$  0.2%.
- 10) The nominal deflection rate shall be 5 mm (0.2")/minute.
- 11) Unless otherwise noted a minimum of five contacts shall be tested.
- 12) The force/deflection characteristic to load and unload each contact shall be repeated five times.
- 13) The system shall utilize the TC<sup>2</sup> software in order to acquire and record the test data.
- 14) The permanent set of each contact shall be measured within the TC<sup>2</sup> software.
- 15) The acquired data shall be graphed with the deflection data on the X-axis and the force data on the Y-axis and a print out will be stored with the Tracking Code paperwork.

### INSULATION RESISTANCE (IR):

To determine the resistance of insulation materials to leakage of current through or on the surface of these materials when a DC potential is applied.

- 1) PROCEDURE:
  - a. Reference document: EIA-364-21, *Insulation Resistance Test Procedure for Electrical Connectors*.
  - b. Test Conditions:
    - i. Between Adjacent Contacts or Signal-to-Ground
    - ii. Electrification Time 2.0 minutes
    - iii. Test Voltage (500 VDC) corresponds to calibration settings for measuring resistances.
- 2) MEASUREMENTS:
- 3) When the specified test voltage is applied (VDC), the insulation resistance shall not be less than 1000 megohms.

## ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

### DIELECTRIC WITHSTANDING VOLTAGE (DWV):

To determine if the sockets can operate at its rated voltage and withstand momentary over potentials due to switching, surges, and other similar phenomenon. Separate samples are used to evaluate the effect of environmental stresses so not to influence the readings from arcing that occurs during the measurement process.

#### 1) PROCEDURE:

- a. Reference document: EIA-364-20, *Withstanding Voltage Test Procedure for Electrical Connectors*.
- b. Test Conditions:
  - i. Between Adjacent Contacts or Signal-to-Ground
  - ii. Barometric Test Condition 1
  - iii. Rate of Application 500 V/Sec
  - iv. Test Voltage (VAC) until breakdown occurs

#### 2) MEASUREMENTS/CALCULATIONS

- a. The breakdown voltage shall be measured and recorded.
- b. The dielectric withstanding voltage shall be recorded as 75% of the minimum breakdown voltage.
- c. The working voltage shall be recorded as one-third (1/3) of the dielectric withstanding voltage (one-fourth of the breakdown voltage).

### CABLE PULL:

#### 1) Secure cable near center and pull on connector

- a. At 90°, right angle to cable
- b. At 0°, in-line with cable

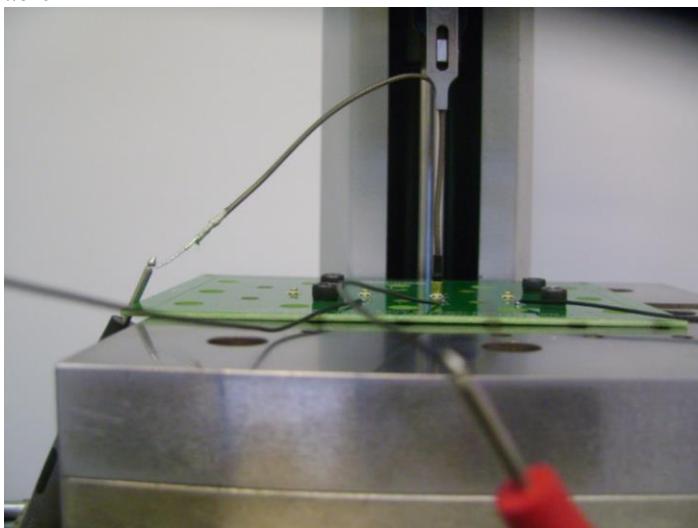



Fig. 1  
0° Connector pull, notice the electrical continuity hook-up wires.

## RESULTS

### Mating/Unmating Forces: Thermal Aging Group

- Initial
  - Mating
    - Min ----- 2.29 Lbs
    - Max ----- 2.70 Lbs
  - Unmating
    - Min ----- 2.55 Lbs
    - Max ----- 2.93 Lbs
- After Thermal
  - Mating
    - Min ----- 2.35 Lbs
    - Max ----- 2.55 Lbs
  - Unmating
    - Min ----- 3.09 Lbs
    - Max ----- 3.61 Lbs

### Mating/Unmating Forces: Mating/Unmating Durability Group

- Initial
  - Mating
    - Min ----- 2.47 Lbs
    - Max ----- 2.74 Lbs
  - Unmating
    - Min ----- 2.84 Lbs
    - Max ----- 3.44 Lbs
- After 125 Cycles
  - Mating
    - Min ----- 2.86 Lbs
    - Max ----- 4.24 Lbs
  - Unmating
    - Min ----- 3.39 Lbs
    - Max ----- 4.53 Lbs
- After 250 Cycles
  - Mating
    - Min ----- 2.75 Lbs
    - Max ----- 4.83 Lbs
  - Unmating
    - Min ----- 3.55 Lbs
    - Max ----- 4.85 Lbs
- After 375 Cycles
  - Mating
    - Min ----- 3.02 Lbs
    - Max ----- 4.79 Lbs
  - Unmating
    - Min ----- 3.72 Lbs
    - Max ----- 4.82 Lbs
- After 500 Cycles
  - Mating
    - Min ----- 3.59 Lbs
    - Max ----- 4.25 Lbs
  - Unmating
    - Min ----- 3.07 Lbs
    - Max ----- 4.84 Lbs

## RESULTS Continued

- After Humidity
  - Mating
    - Min ----- 2.04 Lbs
    - Max ----- 2.32 Lbs
  - Unmating
    - Min ----- 2.41 Lbs
    - Max ----- 2.83 Lbs

### Normal force:

Signal pin at 0.0015 Inch deflections

- Initial
  - Min ----- 126.50 gf Set ----- 0.0000 Inch
  - Max ----- 133.65 gf Set ----- 0.0001 Inch
- Thermal
  - Min ----- 96.50 gf Set ----- 0.0000 Inch
  - Max ----- 113.14 gf Set ----- 0.0002 Inch

Ground pin at 0.0036 Inch deflections

- Initial
  - Min ----- 238.30 gf Set ----- 0.0001 Inch
  - Max ----- 263.12 gf Set ----- 0.0003 Inch
- Thermal
  - Min ----- 205.30 gf Set ----- 0.0003 Inch
  - Max ----- 230.34 gf Set ----- 0.0005 Inch

### Cable pull force:

- 0° Pull
  - Min ----- 2.14 Lbs
  - Max ----- 2.82 Lbs
- 90° Pull
  - Min ----- 0.30 Lbs
  - Max ----- 0.47 Lbs

### Insulation Resistance minimums, IR

RF047-10SP9-10SP9-0305/RSP-122811-01

#### Pin to Ground

- Initial
  - Mated ----- 10000 Meg Ω ----- Passed
  - Unmated ----- 10000 Meg Ω ----- Passed
- Thermal Shock
  - Mated ----- 10000 Meg Ω ----- Passed
  - Unmated ----- 10000 Meg Ω ----- Passed
- Humidity
  - Mated ----- 10000 Meg Ω ----- Passed
  - Unmated ----- 10000 Meg Ω ----- Passed

## RESULTS Continued

### RF047-10RP9-10RP9-0305/RSP-122811-01

#### Pin to Ground

- Initial
  - Mated ----- 8769 Meg Ω ----- Passed
  - Unmated ----- 10000 Meg Ω ----- Passed
- Thermal Shock
  - Mated ----- 10000 Meg Ω ----- Passed
  - Unmated ----- 10000 Meg Ω ----- Passed
- Humidity
  - Mated ----- 10000 Meg Ω ----- Passed
  - Unmated ----- 10000 Meg Ω ----- Passed

#### Dielectric Withstanding Voltage minimums, DWV

- Minimums
  - Breakdown Voltage ----- 750VAC
  - Test Voltage ----- 565 VAC
  - Working Voltage ----- 185 VAC

#### Pin to Ground

- Initial DWV ----- Passed
- Thermal DWV ----- Passed
- Humidity DWV ----- Passed

#### LLCR Gas Tight (20 LLCR test points)

##### Signal pin:

- Initial ----- 37.57 mOhms Max

##### Ground pin:

- Initial ----- 14.03 mOhms Max
- Gas-Tight
  - <= +5.0 mOhms ----- 20 Points ----- Stable
  - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
  - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
  - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
  - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
  - >+2000 mOhms ----- 0 Points ----- Open Failure

#### LLCR Thermal Aging (20 LLCR test points)

##### Signal pin:

- Initial ----- 37.39 mOhms Max

##### Ground pin:

- Initial ----- 14.01 mOhms Max
- Thermal Aging
  - <= +5.0 mOhms ----- 20 Points ----- Stable
  - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
  - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
  - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
  - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
  - >+2000 mOhms ----- 0 Points ----- Open Failure

## RESULTS Continued

## LLCR Durability (20 LLCR test points)

### Signal pin:

- Initial ..... 37.04 mOhms Max

### Ground pin:

- Initial ..... 14.20 mOhms Max

- **Durability, 500 Cycles**
  - <= +5.0 mOhms ----- 20 Points ----- Stable
  - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
  - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
  - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
  - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
  - >+2000 mOhms ----- 0 Points ----- Open Failure
- **Thermal**
  - <= +5.0 mOhms ----- 20 Points ----- Stable
  - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
  - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
  - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
  - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
  - >+2000 mOhms ----- 0 Points ----- Open Failure
- **Humidity**
  - <= +5.0 mOhms ----- 20 Points ----- Stable
  - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
  - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
  - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
  - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
  - >+2000 mOhms ----- 0 Points ----- Open Failure

## LLCR Shock & Vibration (16 LLCR test points)

### Signal pin:

- Initial ..... 73.61 mOhms Max

### Ground pin:

- Initial ----- **26.23 mOhms Max**
- Shock &Vibration
  - <= +5.0 mOhms ----- **16 Points** ----- Stable
  - +5.1 to +10.0 mOhms ----- **0 Points** ----- Minor
  - +10.1 to +15.0 mOhms ----- **0 Points** ----- Acceptable
  - +15.1 to +50.0 mOhms ----- **0 Points** ----- Marginal
  - +50.1 to +2000 mOhms ----- **0 Points** ----- Unstable
  - >+2000 mOhms ----- **0 Points** ----- Open Failure

## Mechanical Shock & Random Vibration:

- Shock
  - No Damage----- Pass
  - 50 Nanoseconds----- Pass
- Vibration
  - No Damage----- Pass
  - 50 Nanoseconds----- Pass

## DATA SUMMARIES

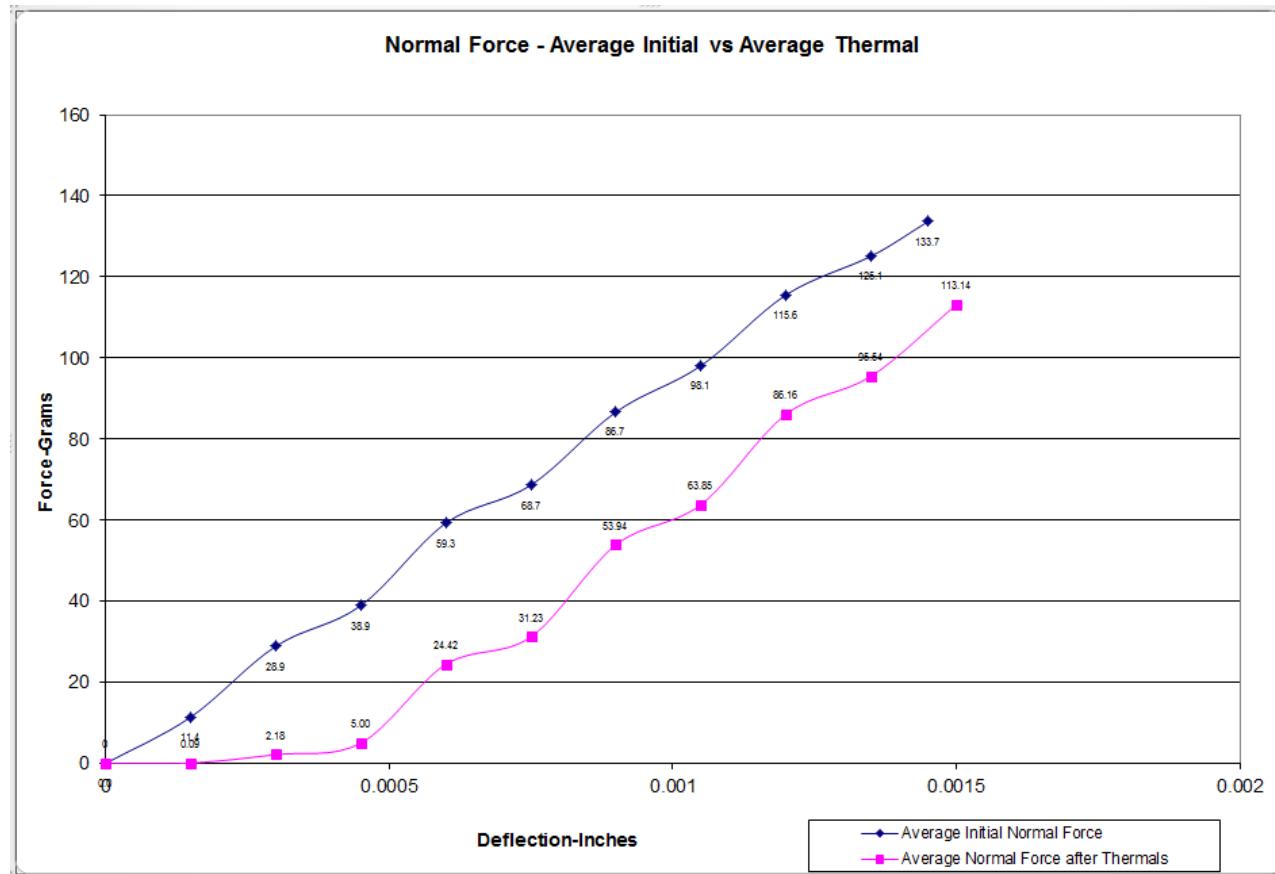
## Mating\Unmating Force: Thermal Aging Group

|         | Initial |             |          |             | After Thermals |             |          |             |
|---------|---------|-------------|----------|-------------|----------------|-------------|----------|-------------|
|         | Mating  |             | Unmating |             | Mating         |             | Unmating |             |
|         | Newton  | Force (Lbs) | Newton   | Force (Lbs) | Newton         | Force (Lbs) | Newton   | Force (Lbs) |
| Minimum | 10.19   | 2.29        | 11.34    | 2.55        | 10.45          | 2.35        | 13.74    | 3.09        |
| Maximum | 12.01   | 2.70        | 13.03    | 2.93        | 11.34          | 2.55        | 16.06    | 3.61        |
| Average | 11.21   | <b>2.52</b> | 12.51    | <b>2.81</b> | 10.83          | <b>2.43</b> | 14.79    | <b>3.33</b> |
| St Dev  | 0.59    | 0.13        | 0.51     | 0.12        | 0.30           | 0.07        | 0.77     | 0.17        |
| Count   | 10      | 10          | 10       | 10          | 10             | 10          | 10       | 10          |

## Mating\Unmating Force: Mating\Unmating Durability Group

|         | Initial          |              |             |              | After 125 Cycles |              |             |              |             |
|---------|------------------|--------------|-------------|--------------|------------------|--------------|-------------|--------------|-------------|
|         | Mating           |              | Unmating    |              | Mating           |              | Unmating    |              |             |
|         | Newton           | Force (Lbs)  | Newton      | Force (Lbs)  | Newton           | Force (Lbs)  | Newton      | Force (Lbs)  |             |
| Minimum | 10.99            | 2.47         | 12.63       | 2.84         | 12.72            | 2.86         | 15.08       | 3.39         |             |
| Maximum | 12.19            | 2.74         | 15.30       | 3.44         | 18.86            | 4.24         | 20.15       | 4.53         |             |
| Average | 11.55            | <b>2.60</b>  | 14.10       | <b>3.17</b>  | 14.92            | <b>3.35</b>  | 17.73       | <b>3.99</b>  |             |
| St Dev  | 0.34             | 0.08         | 0.87        | 0.20         | 1.85             | 0.42         | 1.68        | 0.38         |             |
| Count   | 10               | 10           | 10          | 10           | 10               | 10           | 10          | 10           |             |
|         | After 250 Cycles |              |             |              | After 375 Cycles |              |             |              |             |
|         | Mating           |              | Unmating    |              | Mating           |              | Unmating    |              |             |
|         | Newton           | Force (Lbs)  | Newton      | Force (Lbs)  | Newton           | Force (Lbs)  | Newton      | Force (Lbs)  |             |
|         | 12.23            | 2.75         | 15.79       | 3.55         | 13.43            | 3.02         | 16.55       | 3.72         |             |
|         | 21.48            | 4.83         | 21.57       | 4.85         | 21.31            | 4.79         | 21.44       | 4.82         |             |
|         | Average          | <b>17.10</b> | <b>3.85</b> | <b>18.41</b> | <b>4.14</b>      | <b>16.62</b> | <b>3.74</b> | <b>18.36</b> | <b>4.13</b> |
|         | St Dev           | 2.94         | 0.66        | 1.99         | 0.45             | 2.32         | 0.52        | 1.41         | 0.32        |
|         | Count            | 10           | 10          | 10           | 10               | 10           | 10          | 10           |             |
|         | After 500 Cycles |              |             |              | After Humidity   |              |             |              |             |
|         | Mating           |              | Unmating    |              | Mating           |              | Unmating    |              |             |
|         | Newton           | Force (Lbs)  | Newton      | Force (Lbs)  | Newton           | Force (Lbs)  | Newton      | Force (Lbs)  |             |
|         | 15.97            | 3.59         | 13.66       | 3.07         | 9.07             | 2.04         | 10.72       | 2.41         |             |
|         | Maximum          | 18.90        | 4.25        | 21.53        | 4.84             | 10.32        | 2.32        | 12.59        | 2.83        |
|         | Average          | <b>17.19</b> | <b>3.87</b> | <b>17.74</b> | <b>3.99</b>      | <b>9.64</b>  | <b>2.17</b> | <b>11.59</b> | <b>2.61</b> |
|         | St Dev           | 1.00         | 0.22        | 2.13         | 0.48             | 0.41         | 0.09        | 0.52         | 0.12        |
|         | Count            | 10           | 10          | 10           | 10               | 10           | 10          | 10           |             |

## DATA SUMMARIES Continued

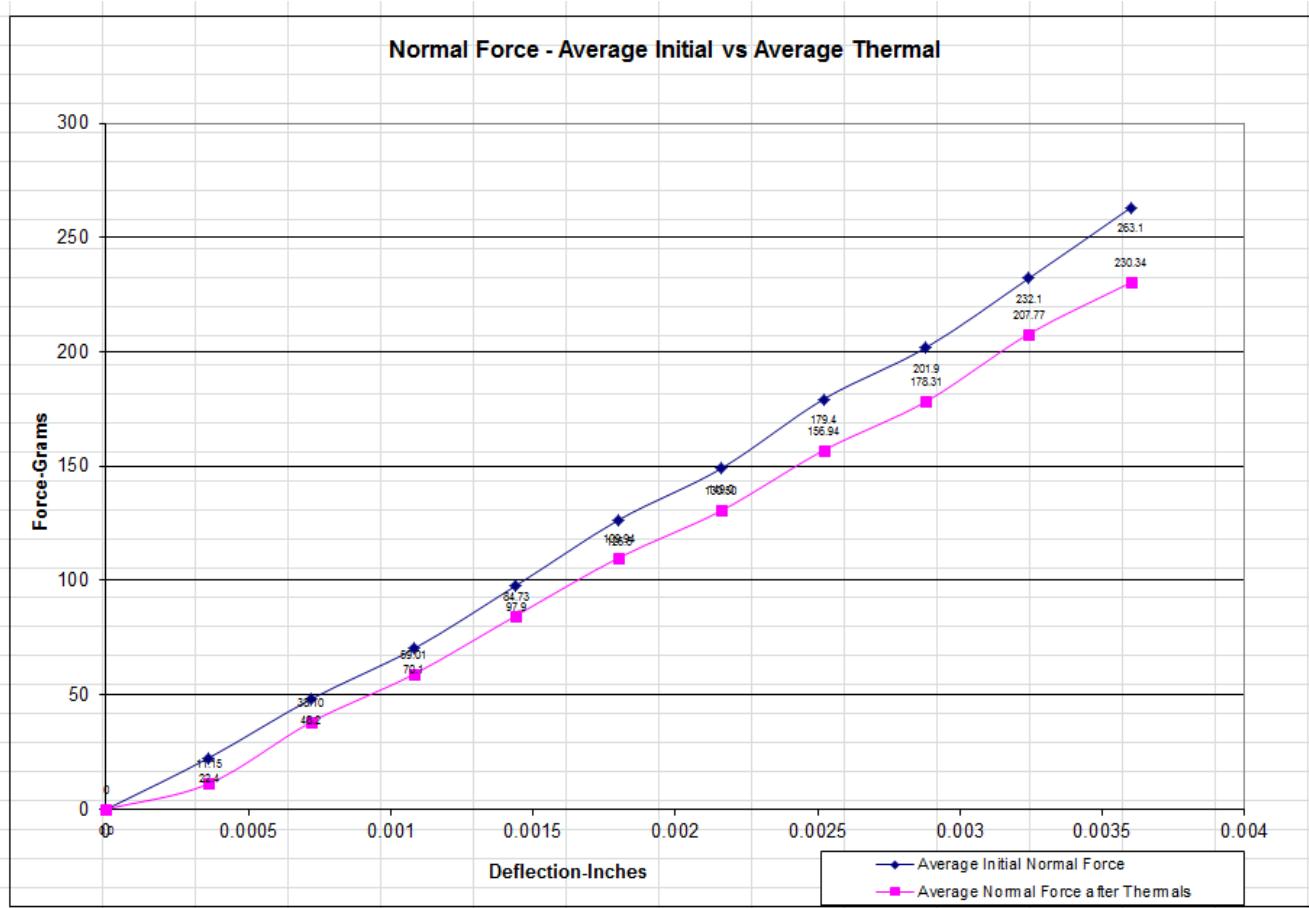

### NORMAL FORCE (FOR CONTACTS TESTED OUTSIDE THE HOUSING):

- 1) Calibrated force gauges are used along with computer controlled positioning equipment.
- 2) Typically, 8-10 readings are taken and the averages reported.

#### Signal pin:

| Initial         | Deflections in inches Forces in Grams |               |               |               |               |               |               |               |               |               |            |
|-----------------|---------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|------------|
|                 | <b>0.0002</b>                         | <b>0.0003</b> | <b>0.0005</b> | <b>0.0006</b> | <b>0.0008</b> | <b>0.0009</b> | <b>0.0011</b> | <b>0.0012</b> | <b>0.0014</b> | <b>0.0015</b> | <b>SET</b> |
| <b>Averages</b> | 11.41                                 | 28.90         | 38.90         | 59.26         | 68.65         | 86.69         | 98.12         | 115.59        | 125.14        | 133.65        | 0.0001     |
| <b>Min</b>      | 5.30                                  | 22.20         | 31.30         | 47.80         | 55.60         | 70.40         | 87.60         | 100.70        | 110.50        | 126.50        | 0.0000     |
| <b>Max</b>      | 20.50                                 | 33.10         | 45.60         | 70.70         | 85.00         | 100.80        | 110.90        | 128.60        | 142.50        | 145.20        | 0.0001     |
| <b>St. Dev</b>  | 4.521                                 | 3.172         | 4.802         | 6.424         | 8.907         | 9.502         | 8.423         | 9.374         | 10.569        | 6.344         | 0.0001     |
| <b>Count</b>    | 10                                    | 10            | 10            | 10            | 10            | 10            | 10            | 10            | 10            | 10            | 10         |

| After<br>Thermals | Deflections in inches Forces in Grams |               |               |               |               |               |               |               |               |               |            |
|-------------------|---------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|------------|
|                   | <b>0.0002</b>                         | <b>0.0003</b> | <b>0.0005</b> | <b>0.0006</b> | <b>0.0008</b> | <b>0.0009</b> | <b>0.0011</b> | <b>0.0012</b> | <b>0.0014</b> | <b>0.0015</b> | <b>SET</b> |
| <b>Averages</b>   | 0.09                                  | 2.18          | 5.00          | 24.42         | 31.23         | 53.94         | 63.85         | 86.16         | 95.54         | 113.14        | 0.0002     |
| <b>Min</b>        | -0.40                                 | -0.40         | -0.20         | 12.30         | 20.50         | 39.40         | 53.60         | 68.60         | 79.20         | 96.50         | 0.0000     |
| <b>Max</b>        | 0.90                                  | 16.10         | 22.40         | 45.30         | 45.30         | 64.30         | 76.50         | 95.10         | 105.70        | 125.30        | 0.0003     |
| <b>St. Dev</b>    | 0.354                                 | 5.084         | 7.586         | 9.873         | 7.746         | 8.551         | 7.838         | 7.835         | 7.348         | 8.679         | 0.0001     |
| <b>Count</b>      | 10                                    | 10            | 10            | 10            | 10            | 10            | 10            | 10            | 10            | 10            | 10         |




## DATA SUMMARIES Continued

**Ground pin:**

|                 | Deflections in inches Forces in Grams |               |               |               |               |               |               |               |               |               |               |
|-----------------|---------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
|                 | Initial                               | <b>0.0004</b> | <b>0.0007</b> | <b>0.0011</b> | <b>0.0014</b> | <b>0.0018</b> | <b>0.0022</b> | <b>0.0025</b> | <b>0.0029</b> | <b>0.0032</b> | <b>0.0036</b> |
| <b>Averages</b> | 22.42                                 | 48.23         | 70.13         | 97.88         | 126.51        | 148.98        | 179.35        | 201.90        | 232.11        | 263.12        | 0.0003        |
| <b>Min</b>      | 16.10                                 | 40.40         | 64.20         | 86.40         | 117.70        | 135.40        | 166.40        | 184.30        | 213.70        | 238.30        | 0.0001        |
| <b>Max</b>      | 40.60                                 | 57.70         | 78.90         | 112.60        | 142.80        | 166.10        | 205.50        | 225.10        | 263.60        | 296.10        | 0.0005        |
| <b>St. Dev</b>  | 6.916                                 | 5.189         | 4.691         | 6.980         | 7.295         | 8.394         | 11.029        | 11.666        | 14.817        | 17.533        | 0.0001        |
| <b>Count</b>    | 10                                    | 10            | 10            | 10            | 10            | 10            | 10            | 10            | 10            | 10            | 10            |

|                 | Deflections in inches Forces in Grams |               |               |               |               |               |               |               |               |               |               |
|-----------------|---------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
|                 | After                                 | <b>0.0004</b> | <b>0.0007</b> | <b>0.0011</b> | <b>0.0014</b> | <b>0.0018</b> | <b>0.0022</b> | <b>0.0025</b> | <b>0.0029</b> | <b>0.0032</b> | <b>0.0036</b> |
| <b>Thermals</b> | 11.15                                 | 38.10         | 59.01         | 84.73         | 109.94        | 130.50        | 156.94        | 178.31        | 207.77        | 230.34        | 0.0005        |
| <b>Averages</b> | -0.10                                 | 12.80         | 36.60         | 55.40         | 77.40         | 103.30        | 127.10        | 150.10        | 181.20        | 205.30        | 0.0003        |
| <b>Min</b>      | 27.90                                 | 56.60         | 77.20         | 100.60        | 140.50        | 160.00        | 193.60        | 222.40        | 258.50        | 257.50        | 0.0008        |
| <b>Max</b>      | 10.168                                | 13.693        | 11.596        | 12.587        | 15.554        | 15.525        | 18.091        | 20.649        | 23.467        | 20.110        | 0.0001        |
| <b>St. Dev</b>  | 10                                    | 10            | 10            | 10            | 10            | 10            | 10            | 10            | 10            | 10            | 10            |
| <b>Count</b>    | 10                                    | 10            | 10            | 10            | 10            | 10            | 10            | 10            | 10            | 10            | 10            |



**DATA SUMMARIES Continued****Cable pull force:****0° Pull**

|         | Force<br>(lbs) |
|---------|----------------|
| Minimum | <b>2.14</b>    |
| Maximum | 2.82           |
| Average | 2.49           |

**90° Pull**

|         | Force<br>(lbs) |
|---------|----------------|
| Minimum | <b>0.30</b>    |
| Maximum | 0.47           |
| Average | 0.36           |

**INSULATION RESISTANCE (IR):**

| Pin to Ground (10SP9) |                  |              |            |
|-----------------------|------------------|--------------|------------|
|                       | Mated            | Unmated      | Unmated    |
| Minimum               | <b>RF047/RSP</b> | <b>RF047</b> | <b>RSP</b> |
| <b>Initial</b>        | 10000            | 10000        | 10000      |
| <b>Thermal</b>        | 10000            | 10000        | 10000      |
| <b>Humidity</b>       | 10000            | 10000        | 10000      |

| Pin to Ground (10RP9) |                  |              |            |
|-----------------------|------------------|--------------|------------|
|                       | Mated            | Unmated      | Unmated    |
| Minimum               | <b>RF047/RSP</b> | <b>RF047</b> | <b>RSP</b> |
| <b>Initial</b>        | 8769             | 10000        | 10000      |
| <b>Thermal</b>        | 10000            | 10000        | 10000      |
| <b>Humidity</b>       | 10000            | 10000        | 10000      |

**DATA SUMMARIES Continued****DIELECTRIC WITHSTANDING VOLTAGE (DWV):**

| Voltage Rating Summary |           |
|------------------------|-----------|
| Minimum                | RF047/RSP |
| Break Down Voltage     | 750       |
| Test Voltage           | 565       |
| Working Voltage        | 185       |

**Pin to Pin**

|                             |        |
|-----------------------------|--------|
| Initial Test Voltage        | Passed |
| After Thermal Test Voltage  | Passed |
| After Humidity Test Voltage | Passed |

**Pin to Ground**

|                             |        |
|-----------------------------|--------|
| Initial Test Voltage        | Passed |
| After Thermal Test Voltage  | Passed |
| After Humidity Test Voltage | Passed |

## DATA SUMMARIES Continued

### LLCR Durability:

- 1) A total of 20 points were measured.
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
  - a.  $\leq +5.0$  mOhms: ----- Stable
  - b.  $+5.1$  to  $+10.0$  mOhms: ----- Minor
  - c.  $+10.1$  to  $+15.0$  mOhms: ----- Acceptable
  - d.  $+15.1$  to  $+50.0$  mOhms: ----- Marginal
  - e.  $+50.1$  to  $+2000$  mOhms ----- Unstable
  - f.  $>+2000$  mOhms: ----- Open Failure

|                    |            | LLCR Measurement Summaries by Pin Type |                  |                 |                |
|--------------------|------------|----------------------------------------|------------------|-----------------|----------------|
| Date               | Technician | 10/24/2014                             | 10/31/2014       | 11/6/2014       | 11/17/2014     |
|                    |            | Room Temp (Deg C)                      | Rel Humidity (%) | Kason He        | Kason He       |
|                    |            | 23                                     | 51               | 22              | 21             |
|                    |            | 51                                     | 51               | 48              | 51             |
| mOhm values        |            | Actual Initial                         | Delta 500 Cycles | Delta Them Shck | Delta Humidity |
| Pin Type 1: Ground |            |                                        |                  |                 |                |
| Average            |            | 13.89                                  | 0.57             | 0.41            | 0.57           |
| St. Dev.           |            | 0.20                                   | 0.29             | 0.29            | 0.50           |
| Min                |            | 13.60                                  | 0.09             | 0.06            | 0.09           |
| Max                |            | 14.20                                  | 1.05             | 0.96            | 1.87           |
| Summary Count      |            | 10                                     | 10               | 10              | 10             |
| Total Count        |            | 10                                     | 10               | 10              | 10             |
| Pin Type 2: Signal |            |                                        |                  |                 |                |
| Average            |            | 36.75                                  | 0.51             | 0.40            | 0.28           |
| St. Dev.           |            | 0.28                                   | 0.44             | 0.37            | 0.41           |
| Min                |            | 36.31                                  | 0.05             | 0.01            | 0.00           |
| Max                |            | 37.04                                  | 1.60             | 1.13            | 1.39           |
| Summary Count      |            | 10                                     | 10               | 10              | 10             |
| Total Count        |            | 10                                     | 10               | 10              | 10             |

| LLCR Delta Count by Category |          |                         |                          |                          |                            |         |
|------------------------------|----------|-------------------------|--------------------------|--------------------------|----------------------------|---------|
| mOhms                        | Stable   | Minor                   | Acceptable               | Marginal                 | Unstable                   | Open    |
| 500 Cycles                   | $\leq 5$ | $>5 \text{ & } \leq 10$ | $>10 \text{ & } \leq 15$ | $>15 \text{ & } \leq 50$ | $>50 \text{ & } \leq 1000$ | $>1000$ |
| Them Shck                    | 20       | 0                       | 0                        | 0                        | 0                          | 0       |
| Humidity                     | 20       | 0                       | 0                        | 0                        | 0                          | 0       |

## DATA SUMMARIES Continued

### LLCR Thermal Aging:

- 1) A total of 20 points were measured.
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
  - a.  $\leq +5.0$  mOhms: ----- Stable
  - b.  $+5.1$  to  $+10.0$  mOhms: ----- Minor
  - c.  $+10.1$  to  $+15.0$  mOhms: ----- Acceptable
  - d.  $+15.1$  to  $+50.0$  mOhms: ----- Marginal
  - e.  $+50.1$  to  $+2000$  mOhms: ----- Unstable
  - f.  $>+2000$  mOhms: ----- Open Failure

| LLCR Measurement Summaries by Pin Type |            |           |       |       |  |  |
|----------------------------------------|------------|-----------|-------|-------|--|--|
| Date                                   | 10/24/2014 | 11/6/2014 |       |       |  |  |
|                                        | 23         | 22        |       |       |  |  |
| Room Temp (Deg C)                      | 51         | 48        |       |       |  |  |
| Rel Humidity (%)                       | Kason He   | Kason He  |       |       |  |  |
| Technician                             | Actual     | Delta     | Delta | Delta |  |  |
| mOhm values                            | Initial    | Thermal   |       |       |  |  |
| Pin Type 1: Ground                     |            |           |       |       |  |  |
| Average                                | 13.64      | 0.60      |       |       |  |  |
| St. Dev.                               | 0.22       | 0.15      |       |       |  |  |
| Min                                    | 13.35      | 0.43      |       |       |  |  |
| Max                                    | 14.01      | 0.89      |       |       |  |  |
| Summary Count                          | 10         | 10        |       |       |  |  |
| Total Count                            | 10         | 10        |       |       |  |  |
| Pin Type 2: Signal                     |            |           |       |       |  |  |
| Average                                | 36.78      | 0.21      |       |       |  |  |
| St. Dev.                               | 0.33       | 0.14      |       |       |  |  |
| Min                                    | 36.20      | 0.02      |       |       |  |  |
| Max                                    | 37.39      | 0.44      |       |       |  |  |
| Summary Count                          | 10         | 10        |       |       |  |  |
| Total Count                            | 10         | 10        |       |       |  |  |

| LLCR Delta Count by Category |          |                         |                          |                          |                            |         |
|------------------------------|----------|-------------------------|--------------------------|--------------------------|----------------------------|---------|
| mOhms                        | Stable   | Minor                   | Acceptable               | Marginal                 | Unstable                   | Open    |
|                              | $\leq 5$ | $>5 \text{ & } \leq 10$ | $>10 \text{ & } \leq 15$ | $>15 \text{ & } \leq 50$ | $>50 \text{ & } \leq 1000$ | $>1000$ |
| Thermal                      | 20       | 0                       | 0                        | 0                        | 0                          | 0       |

## DATA SUMMARIES Continued

### LLCR Gas Tight:

- 1) A total of 20 points were measured.
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
  - a.  $\leq +5.0$  mOhms: ----- Stable
  - b.  $+5.1$  to  $+10.0$  mOhms: ----- Minor
  - c.  $+10.1$  to  $+15.0$  mOhms: ----- Acceptable
  - d.  $+15.1$  to  $+50.0$  mOhms: ----- Marginal
  - e.  $+50.1$  to  $+2000$  mOhms: ----- Unstable
  - f.  $>+2000$  mOhms: ----- Open Failure

| LLCR Measurement Summaries by Pin Type |            |            |            |       |       |       |
|----------------------------------------|------------|------------|------------|-------|-------|-------|
| Date                                   | 10/21/2014 | 10/23/2014 |            |       |       |       |
|                                        | 22         | 23         |            |       |       |       |
| Room Temp (Deg C)                      | 48         | 49         |            |       |       |       |
|                                        | Kason He   | Kason He   |            |       |       |       |
| Rel Humidity (%)                       | Technician | Actual     | Delta      | Delta | Delta | Delta |
|                                        |            | Initial    | Acid Vapor |       |       |       |
| mOhm values                            |            |            |            |       |       |       |
| Technician                             | Actual     | Delta      | Delta      | Delta | Delta | Delta |
|                                        | Initial    | Acid Vapor |            |       |       |       |
| Pin Type 1: Ground                     |            |            |            |       |       |       |
| Average                                | 13.53      | 0.27       |            |       |       |       |
|                                        | 0.40       | 0.15       |            |       |       |       |
| St. Dev.                               | 12.83      | 0.00       |            |       |       |       |
|                                        | 14.03      | 0.51       |            |       |       |       |
| Min                                    | 10         | 10         |            |       |       |       |
|                                        | 10         | 10         |            |       |       |       |
| Pin Type 2: Signal                     |            |            |            |       |       |       |
| Average                                | 36.55      | 0.38       |            |       |       |       |
|                                        | 0.47       | 0.28       |            |       |       |       |
| St. Dev.                               | 36.07      | 0.03       |            |       |       |       |
|                                        | 37.57      | 0.87       |            |       |       |       |
| Min                                    | 10         | 10         |            |       |       |       |
|                                        | 10         | 10         |            |       |       |       |
| Max                                    | 10         | 10         |            |       |       |       |
|                                        | 10         | 10         |            |       |       |       |
| Summary Count                          |            |            |            |       |       |       |
|                                        |            |            |            |       |       |       |
| Total Count                            |            |            |            |       |       |       |
|                                        |            |            |            |       |       |       |

| LLCR Delta Count by Category |          |                         |                          |                          |                            |         |
|------------------------------|----------|-------------------------|--------------------------|--------------------------|----------------------------|---------|
| mOhms                        | Stable   | Minor                   | Acceptable               | Marginal                 | Unstable                   | Open    |
|                              | $\leq 5$ | $>5 \text{ & } \leq 10$ | $>10 \text{ & } \leq 15$ | $>15 \text{ & } \leq 50$ | $>50 \text{ & } \leq 1000$ | $>1000$ |
| Acid Vapor                   | 20       | 0                       | 0                        | 0                        | 0                          | 0       |

## DATA SUMMARIES Continued

**LLCR Shock & Vibration:**

- 1). A total of 16 points were measured.
- 2). EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3). The following guidelines are used to categorize the changes in LLCR as a result from stressing.
  - a. <= +5.0 mOhms: ----- Stable
  - b. +5.1 to +10.0 mOhms: ----- Minor
  - c. +10.1 to +15.0 mOhms: ----- Acceptable
  - d. +15.1 to +50.0 mOhms: ----- Marginal
  - e. +50.1 to +2000 mOhms ----- Unstable
  - f. >+2000 mOhms: ----- Open Failure

| LLCR Measurement Summaries by Pin Type |                    |                 |           |       |       |       |
|----------------------------------------|--------------------|-----------------|-----------|-------|-------|-------|
| mOhm values                            | Date               | 11/18/2014      | 12/2/2014 | Delta | Delta | Delta |
|                                        | Room Temp (Deg C)  | 22              | 21        |       |       |       |
|                                        | Rel Humidity (%)   | 21              | 34        |       |       |       |
|                                        | Technician         | Troy Cook       | Troy Cook |       |       |       |
|                                        | Actual Initial     | Delta Shock-Vib | Delta     | Delta |       |       |
|                                        | Pin Type 1: GROUND |                 |           |       |       |       |
|                                        | Average            | 24.35           | 0.49      |       |       |       |
| Summary Count                          | St. Dev.           | 1.19            | 0.35      |       |       |       |
|                                        | Min                | 22.91           | 0.17      |       |       |       |
|                                        | Max                | 26.23           | 1.26      |       |       |       |
|                                        | Total Count        | 8               | 8         |       |       |       |
|                                        | Average            | 72.36           | 0.83      |       |       |       |
|                                        | St. Dev.           | 0.92            | 0.20      |       |       |       |
|                                        | Min                | 70.24           | 0.50      |       |       |       |
| Summary Count                          | Max                | 73.61           | 1.11      |       |       |       |
|                                        | Total Count        | 8               | 8         |       |       |       |
|                                        | Average            | 72.36           | 0.83      |       |       |       |
|                                        | St. Dev.           | 0.92            | 0.20      |       |       |       |
|                                        | Min                | 70.24           | 0.50      |       |       |       |
|                                        | Max                | 73.61           | 1.11      |       |       |       |
|                                        | Total Count        | 8               | 8         |       |       |       |

| LLCR Delta Count by Category |        |           |            |            |              |       |
|------------------------------|--------|-----------|------------|------------|--------------|-------|
| mOhms                        | Stable | Minor     | Acceptable | Marginal   | Unstable     | Open  |
| Shock-Vib                    | <=5    | >5 & <=10 | >10 & <=15 | >15 & <=50 | >50 & <=1000 | >1000 |

**Nanosecond Event Detection:**

| Shock and Vibration Event Detection Summary |                           |
|---------------------------------------------|---------------------------|
| Contacts tested                             | 16                        |
| Test Condition                              | C, 100g's, 6ms, Half-Sine |
| Shock Events                                | 0                         |
| Test Condition                              | V-B, 7.56 rms g           |
| Vibration Events                            | 0                         |
| Total Events                                | 0                         |

## EQUIPMENT AND CALIBRATION SCHEDULES

**Equipment #:** HZ-HPM-01

**Description:** IR/DWV Tester

**Manufacturer:** AN9636H

**Model:** AN9636H

**Serial #:** 089601091

**Accuracy:** Last Cal: 2015-7-6, Next Cal: 2016-7-5

**Equipment #:** HZ-TCT-01

**Description:** Normal force analyzer

**Manufacturer:** Mecmesin Multitester

**Model:** Mecmesin Multitester 2.5-i

**Serial #:** 08-1049-04

**Accuracy:** Last Cal: 2015-4-28, Next Cal: 2016-4-27

**Equipment #:** HZ-OV-01

**Description:** Oven

**Manufacturer:** Huida

**Model:** CS101-1E

**Serial #:** CS101-1E-B

**Accuracy:** Last Cal: 2014-12-14, Next Cal: 2015-12-13

**Equipment #:** HZ-THC-01

**Description:** Humidity transmitter

**Manufacturer:** Thermtron

**Model:** HMM30C

**Serial #:** D0240037

**Accuracy:** Last Cal: 2015-3-3, Next Cal: 2016-3-2

**Equipment #:** HZ-TSC-01

**Description:** Thermal Shock transmitter

**Manufacturer:** CSZ

**Model:** 10-VT14994

**Serial #:** VTS-3-6-6-SC/AC

**Accuracy:** Last Cal: 2014-11-1, Next Cal: 2015-11-1

**Equipment #:** HZ-MO-05

**Description:** Micro-ohmmeter

**Manufacturer:** Keithley

**Model:** 3706

**Serial #:** 297288

**Accuracy:** Last Cal: 2014-8-6, Next Cal: 2015-8-5

## EQUIPMENT AND CALIBRATION SCHEDULES

**Equipment #:** MO-02**Description:** Multimeter /Data Acquisition System**Manufacturer:** Keithley**Model:** 2700**Serial #:** 0780546**Accuracy:** Last Cal: 2015-6-16, Next Cal: 2016-6-16**Equipment #:** PS-01**Description:** Power Supply**Manufacturer:** Hewlett Packard**Model:** 6033A**Serial #:** 3329A-07330**Accuracy:** Last Cal: 2015-6-12, Next Cal: 2016-6-12**Equipment #:** PS-02**Description:** Power Supply**Manufacturer:** Hewlett Packard**Model:** 6033A**Serial #:** 2847A-04167**Accuracy:** Last Cal: 2015-6-12, Next Cal: 2016-6-12**Equipment #:** SVC-01**Description:** Shock & Vibration Table**Manufacturer:** Data Physics**Model:** LE-DSA-10-20K**Serial #:** 10037**Accuracy:** See Manual

... Last Cal: 2014-11-31, Next Cal: 2015-11-31

**Equipment #:** ACLM-01**Description:** Accelerometer**Manufacturer:** PCB Piezotronics**Model:** 352C03**Serial #:** 115819**Accuracy:** See Manual

... Last Cal: 2015-07-9, Next Cal: 2016-7-9

**Equipment #:** ED-03**Description:** Event Detector**Manufacturer:** Analysis Tech**Model:** 32EHD**Serial #:** 1100604**Accuracy:** See Manual

... Last Cal: 2015-06-4, Next Cal: 2016-06-4