

Project Number: Design Qualification Test Report	Tracking Code: 788439_Report_Rev_2
Requested by: Ben Cooper	Date: 4/13/2018
Part #: FQSFP-01-02.36-L-PF-BC/ MATING-CARD	Tech: Tony Wagoner
Part description: FQSFP/CARD	Qty to test: 108
Test Start: 1/23/2017	Test Completed: 2/14/2017

Design Qualification Test Report

FQSFP/CARD
FQSFP-01-02.36-L-PF-BC/ MATING-CARD

Tracking Code: 788439_Report_Rev_2	Part #: FQSFP-01-02.36-L-PF-BC/ MATING-CARD
Part description: FQSFP/CARD	

REVISION HISTORY

DATA	REV.NUM.	DESCRIPTION	ENG
6/6/2017	1	Initial Issue	KH
4/13/2018	2	Add the cable flex test data	KH

Tracking Code: 788439_Report_Rev_2	Part #: FQSFP-01-02.36-L-PF-BC/ MATING-CARD
	Part description: FQSFP/CARD

CERTIFICATION

All instruments and measuring equipment were calibrated to National Institute for Standards and Technology (NIST) traceable standards according to ISO 10012-1 and ANSI/NCSL 2540-1, as applicable.

All contents contained herein are the property of Samtec. No portion of this report, in part or in full shall be reproduced without prior written approval of Samtec.

SCOPE

To perform the following tests: Design Qualification Test, Please see test plan.

APPLICABLE DOCUMENTS

Standards: EIA Publication 364

TEST SAMPLES AND PREPARATION

- 1) All materials were manufactured in accordance with the applicable product specification.
- 2) All test samples were identified and encoded to maintain traceability throughout the test sequences.
- 3) After soldering, the parts to be used for LLCR and DWV/IR testing were cleaned according to TLWI-0001.
- 4) Either an automated cleaning procedure or an ultrasonic cleaning procedure may be used.
- 5) The automated procedure is used with aqueous compatible soldering materials.
- 6) Parts not intended for testing LLCR and DWV/IR are visually inspected and cleaned if necessary.
- 7) Any additional preparation will be noted in the individual test sequences.
- 8) Samtec Test PCBs used: PCB-107074-TST-XX, PCB-107075-TST-XX, PCB-107076-TST-XX,
PCB-107168-TST-XX, PCB-107929-TST-XX, PCB-107103-TST-XX

Tracking Code: 788439_Report_Rev_2	Part #: FQSFP-01-02.36-L-PF-BC/ MATING-CARD
	Part description: FQSFP/CARD

FLOWCHARTS

Gas Tight

Group 1

FQSFP-01-02.36-L-PF-BC

MATING-CARD

8 Assemblies

ENIG .020" PTH

Note: HDR build number: HDR-187370-01

Step Description

1. LLCR ⁽²⁾
2. Gas Tight ⁽¹⁾
3. LLCR ⁽²⁾
Max Delta = 15 mOhm

(1) Gas Tight = EIA-364-36

(2) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max

Test Current = 100 mA Max

FLOWCHARTS Continued

Normal Force

Group 1		Group 2		Group 3		Group 4	
FQSFP-01-02.36-L-PF-BC MATING-CARD 8 Contacts Minimum C-416 Without Thermals		FQSFP-01-02.36-L-PF-BC MATING-CARD 8 Contacts Minimum C-416 With Thermals		FQSFP-01-02.36-L-PF-BC MATING-CARD 8 Contacts Minimum C-417 Without Thermals		FQSFP-01-02.36-L-PF-BC MATING-CARD 8 Contacts Minimum C-417 With Thermals	
Step	Description	Step	Description	Step	Description	Step	Description
1.	Contact Gaps	1.	Contact Gaps	1.	Contact Gaps	1.	Contact Gaps
2.	Normal Force ⁽¹⁾ Deflection = 0.015" Expected Force at Max Deflection = 100 g	2.	Thermal Age ⁽²⁾	2.	Normal Force ⁽¹⁾ Deflection = 0.015" Expected Force at Max Deflection = 100 g	2.	Thermal Age ⁽²⁾
		3.	Contact Gaps	3.	Contact Gaps	3.	Contact Gaps
		4.	Normal Force ⁽¹⁾ Deflection = 0.015" Expected Force at Max Deflection = 100 g	4.	Normal Force ⁽¹⁾ Deflection = 0.015" Expected Force at Max Deflection = 100 g	4.	Normal Force ⁽¹⁾ Deflection = 0.015" Expected Force at Max Deflection = 100 g
Group 5		Group 6		Group 7		Group 8	
FQSFP-01-02.36-L-PF-BC MATING-CARD 8 Contacts Minimum C-418 Signal Without Thermals		FQSFP-01-02.36-L-PF-BC MATING-CARD 8 Contacts Minimum C-418 Signal With Thermals		FQSFP-01-02.36-L-PF-BC MATING-CARD 8 Contacts Minimum C-418 Ground Without Thermals		FQSFP-01-02.36-L-PF-BC MATING-CARD 8 Contacts Minimum C-418 Ground With Thermals	
Step	Description	Step	Description	Step	Description	Step	Description
1.	Contact Gaps	1.	Contact Gaps	1.	Contact Gaps	1.	Contact Gaps
2.	Normal Force ⁽¹⁾ Deflection = 0.0206" Expected Force at Max Deflection = 83 g	2.	Thermal Age ⁽²⁾	2.	Normal Force ⁽¹⁾ Deflection = 0.0206" Expected Force at Max Deflection = 83 g	2.	Thermal Age ⁽²⁾
		3.	Contact Gaps	3.	Contact Gaps	3.	Contact Gaps
		4.	Normal Force ⁽¹⁾ Deflection = 0.0206" Expected Force at Max Deflection = 83 g	4.	Normal Force ⁽¹⁾ Deflection = 0.0206" Expected Force at Max Deflection = 83 g	4.	Normal Force ⁽¹⁾ Deflection = 0.0206" Expected Force at Max Deflection = 83 g

(1) Normal Force = EIA-364-04

(2) Thermal Age = EIA-364-17

Test Condition = 4 (105°C)

Time Condition = B (250 Hours)

Tracking Code: 788439_Report_Rev_2	Part #: FQSFP-01-02.36-L-PF-BC/ MATING-CARD
	Part description: FQSFP/CARD

FLOWCHARTS Continued

Thermal Aging

Group 1

FQSFP-01-02.36-L-PF-BC

MATING-CARD

8 Assemblies

ENIG .020" PTH

Note: HDR build number: HDR-187370-01

Step Description

1. Contact Gaps
2. Mating/Unmating Force⁽²⁾
3. LLCR⁽¹⁾
4. Thermal Age⁽³⁾
5. LLCR⁽¹⁾
Max Delta = 15 mOhm
6. Mating/Unmating Force⁽²⁾
7. Contact Gaps

(1) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max
Test Current = 100 mA Max

(2) Mating/Unmating Force = EIA-364-13

(3) Thermal Age = EIA-364-17
Test Condition = 4 (105°C)
Time Condition = B (250 Hours)

Tracking Code: 788439_Report_Rev_2	Part #: FQSFP-01-02.36-L-PF-BC/ MATING-CARD
	Part description: FQSFP/CARD

FLOWCHARTS Continued

Mating/Unmating/Durability

Group 1

FQSFP-01-02.36-L-PF-BC

MATING-CARD

8 Assemblies

ENIG .020" PTH

Note: HDR build number: HDR-187370-01

Step	Description
1.	Contact Gaps
2.	LLCR (2)
3.	Mating/Unmating Force (3)
4.	Cycles Quantity = 25 Cycles
5.	Mating/Unmating Force (3)
6.	Cycles Quantity = 25 Cycles
7.	Mating/Unmating Force (3)
8.	Cycles Quantity = 25 Cycles
9.	Mating/Unmating Force (3)
10.	Cycles Quantity = 25 Cycles
11.	Mating/Unmating Force (3)
12.	Contact Gaps
13.	LLCR (2) Max Delta = 15 mOhm
14.	Thermal Shock (4)
15.	LLCR (2) Max Delta = 15 mOhm
16.	Humidity (1)
17.	LLCR (2) Max Delta = 15 mOhm
18.	Mating/Unmating Force (3)

(1) Humidity = EIA-364-31

Test Condition = B (240 Hours)

Test Method = III (+25°C to +65°C @ 90% RH to 98% RH)

Test Exceptions: ambient pre-condition and delete steps 7a and 7b

(2) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max

Test Current = 100 mA Max

(3) Mating/Unmating Force = EIA-364-13

(4) Thermal Shock = Other

Exposure Time at Temperature Extremes = 1/2 Hour

Method A, Test Condition = (-25°C to +85°C)

Test Duration = A-3 (100 Cycles)

FLOWCHARTS Continued

IR/DWV

LS Pin-to-LS Pin

Group 1		Group 2		Group 3	
FQSFP-01-02.36-L-PF-BC	MATING-CARD	FQSFP-01-02.36-L-PF-BC	2 Assemblies	FQSFP-01-02.36-L-PF-BC	MATING-CARD
ENIG .020" PTH		ENIG .020" PTH		ENIG .020" PTH	
Note: HDR build number: HDR-187371-01		Note: HDR build number: HDR-187371-01		Note: HDR build number: HDR-187371-01	
Step	Description	Step	Description	Step	Description
1.	DWV Breakdown ⁽²⁾	1.	DWV Breakdown ⁽²⁾	1.	IR ⁽⁴⁾
				2.	DWV at Test Voltage ⁽¹⁾
				3.	Thermal Shock ⁽⁵⁾
				4.	IR ⁽⁴⁾
				5.	DWV at Test Voltage ⁽¹⁾
				6.	Humidity ⁽³⁾
				7.	IR ⁽⁴⁾
				8.	DWV at Test Voltage ⁽¹⁾

LS Row-to-LS Row

Group 4		Group 5		Group 6	
FQSFP-01-02.36-L-PF-BC	MATING-CARD	FQSFP-01-02.36-L-PF-BC	2 Assemblies	FQSFP-01-02.36-L-PF-BC	MATING-CARD
ENIG .020" PTH		ENIG .020" PTH		ENIG .020" PTH	
Note: HDR build number: HDR-187372-01		Note: HDR build number: HDR-187372-01		Note: HDR build number: HDR-187372-01	
Step	Description	Step	Description	Step	Description
1.	DWV Breakdown ⁽²⁾	1.	DWV Breakdown ⁽²⁾	1.	IR ⁽⁴⁾
				2.	DWV at Test Voltage ⁽¹⁾
				3.	Thermal Shock ⁽⁵⁾
				4.	IR ⁽⁴⁾
				5.	DWV at Test Voltage ⁽¹⁾
				6.	Humidity ⁽³⁾
				7.	IR ⁽⁴⁾
				8.	DWV at Test Voltage ⁽¹⁾

LS Pin-to-Ground

Group 7		Group 8		Group 9	
FQSFP-01-02.36-L-PF-BC	MATING-CARD	FQSFP-01-02.36-L-PF-BC	2 Assemblies	FQSFP-01-02.36-L-PF-BC	MATING-CARD
ENIG .020" PTH		ENIG .020" PTH		ENIG .020" PTH	
Note: HDR build number: HDR-187790-01		Note: HDR build number: HDR-187790-01		Note: HDR build number: HDR-187790-01	
Step	Description	Step	Description	Step	Description
1.	DWV Breakdown ⁽²⁾	1.	DWV Breakdown ⁽²⁾	1.	IR ⁽⁴⁾
				2.	DWV at Test Voltage ⁽¹⁾
				3.	Thermal Shock ⁽⁵⁾
				4.	IR ⁽⁴⁾
				5.	DWV at Test Voltage ⁽¹⁾
				6.	Humidity ⁽³⁾
				7.	IR ⁽⁴⁾
				8.	DWV at Test Voltage ⁽¹⁾

FLOWCHARTS Continued

HS Pin-to-HS Pin

Group 10
 FQSFP-01-02.36-L-PF-BC
 MATING-CARD
 2 Assemblies
 ENIG .020" PTH

Note: HDR build number: HDR-187371-01

Step	Description
1.	DWV Breakdown ⁽²⁾

Group 11
 FQSFP-01-02.36-L-PF-BC
 2 Assemblies
 ENIG .020" PTH

Note: HDR build number: HDR-187371-01

Step	Description
1.	DWV Breakdown ⁽²⁾

Group 12
 FQSFP-01-02.36-L-PF-BC
 MATING-CARD
 2 Assemblies
 ENIG .020" PTH

Note: HDR build number: HDR-187371-01

Step	Description
1.	IR ⁽⁴⁾
2.	DWV at Test Voltage ⁽¹⁾
3.	Thermal Shock ⁽⁵⁾
4.	IR ⁽⁴⁾
5.	DWV at Test Voltage ⁽¹⁾
6.	Humidity ⁽³⁾
7.	IR ⁽⁴⁾
8.	DWV at Test Voltage ⁽¹⁾

HS Row-to-HS Row

Group 13
 FQSFP-01-02.36-L-PF-BC
 MATING-CARD
 2 Assemblies
 ENIG .020" PTH

Note: HDR build number: HDR-187372-01

Step	Description
1.	DWV Breakdown ⁽²⁾

Group 14
 FQSFP-01-02.36-L-PF-BC
 2 Assemblies
 ENIG .020" PTH

Note: HDR build number: HDR-187372-01

Step	Description
1.	DWV Breakdown ⁽²⁾

Group 15
 FQSFP-01-02.36-L-PF-BC
 MATING-CARD
 2 Assemblies
 ENIG .020" PTH

Note: HDR build number: HDR-187372-01

Step	Description
1.	IR ⁽⁴⁾
2.	DWV at Test Voltage ⁽¹⁾
3.	Thermal Shock ⁽⁵⁾
4.	IR ⁽⁴⁾
5.	DWV at Test Voltage ⁽¹⁾
6.	Humidity ⁽³⁾
7.	IR ⁽⁴⁾
8.	DWV at Test Voltage ⁽¹⁾

FLOWCHARTS Continued

HS Pin-to-Ground

Group 16

FQSFP-01-02.36-L-PF-BC
MATING-CARD
2 Assemblies
ENIG .020" PTH

Note: HDR build number: HDR-187371-01

Step

Description

1. DWV Breakdown⁽²⁾

Group 17

FQSFP-01-02.36-L-PF-BC
2 Assemblies
ENIG .020" PTH

Note: HDR build number: HDR-187371-01

Step

Description

1. DWV Breakdown⁽²⁾

Group 18

FQSFP-01-02.36-L-PF-BC
MATING-CARD
2 Assemblies
ENIG .020" PTH

Note: HDR build number: HDR-187371-01

Step

Description

1. IR⁽⁴⁾
2. DWV at Test Voltage⁽¹⁾
3. Thermal Shock⁽⁵⁾ - Non Standard
4. IR⁽⁴⁾
5. DWV at Test Voltage⁽¹⁾
6. Humidity⁽³⁾
7. IR⁽⁴⁾
8. DWV at Test Voltage⁽¹⁾

(1) DWV at Test Voltage = EIA-364-20

Test Condition = 1 (Sea Level)

DWV test voltage is equal to 75% of the lowest breakdown voltage

Test voltage applied for 60 seconds

(2) DWV Breakdown = EIA-364-20

Test Condition = 1 (Sea Level)

DWV test voltage is equal to 75% of the lowest breakdown voltage

Test voltage applied for 60 seconds

(3) Humidity = EIA-364-31

Test Condition = B (240 Hours)

Test Method = III (+25°C to +65°C @ 90% RH to 98% RH)

Test Exceptions: ambient pre-condition and delete steps 7a and 7b

(4) IR = EIA-364-21

Test Condition = 500 Vdc, 2 Minutes Max

(5) Thermal Shock = Other

Exposure Time at Temperature Extremes = 1/2 Hour

Method A, Test Condition = I (-25°C to +85°C)

Test Duration = A-3 (100 Cycles)

FLOWCHARTS Continued

Current Carrying Capacity

<u>Group 1</u>		<u>Group 2</u>		<u>Group 3</u>		<u>Group 4</u>	
FQSFP-01-02.36-L-PF-BC	MATING-CARD	FQSFP-01-02.36-L-PF-BC	MATING-CARD	FQSFP-01-02.36-L-PF-BC	MATING-CARD	FQSFP-01-02.36-L-PF-BC	MATING-CARD
2 Pins Powered		4 Pins Powered		6 Pins Powered		8 Pins Powered	
Signal - ENIG .020" PTH		Signal - ENIG .020" PTH		Signal - ENIG .020" PTH		Signal - ENIG .020" PTH	
<i>Note: HDR build number: HDR-187791-01</i>		<i>Note: HDR build number: HDR-187791-01</i>		<i>Note: HDR build number: HDR-187791-01</i>		<i>Note: HDR build number: HDR-187791-01</i>	
Step	Description	Step	Description	Step	Description	Step	Description
1.	CCC (1) Rows = 2 Number of Positions = 1	1.	CCC (1) Number of Positions = 2 Rows = 2	1.	CCC (1) Rows = 2 Number of Positions = 3	1.	CCC (1) Number of Positions = 4 Rows = 2
<u>Group 5</u>							
FQSFP-01-02.36-L-PF-BC							
MATING-CARD							
10 Pins Powered							
Signal - ENIG .020" PTH							
<i>Note: HDR build number: HDR-187791-01</i>							
Step	Description	Step	Description	Step	Description	Step	Description
1.	CCC (1) Rows = 2 Number of Positions = 5						

(1) CCC = EIA-364-70

Method 2, Temperature Rise Versus Current Curve

(TIN PLATING) - Tabulate calculated current at RT, 65°C, 75°C and 95°C after derating 20% and based on 105°C

(GOLD PLATING) - Tabulate calculated current at RT, 85°C, 95°C and 115°C after derating 20% and based on 125°C

Tracking Code: 788439_Report_Rev_2	Part #: FQSFP-01-02.36-L-PF-BC/ MATING-CARD
Part description: FQSFP/CARD	

FLOWCHARTS Continued

Mechanical Shock/Random Vibration/LLCR

Group 1

FQSFP-01-02.36-L-PF-BC

MATING-CARD

8 Assemblies

ENIG .020" PTH

Note: HDR build number: HDR-187792-01

Step Description

1. LLCR⁽¹⁾
2. Mechanical Shock⁽²⁾
3. Random Vibration⁽³⁾
4. LLCR⁽¹⁾
Max Delta = 15 mOhm

⁽¹⁾ LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max

Test Current = 100 mA Max

⁽²⁾ Mechanical Shock = EIA-364-27

Test Condition = C (100 G Peak, 6 milliseconds, Half Sine)

Number of Shocks = 3 Per Direction, Per Axis, 18 Total

⁽³⁾ Random Vibration = EIA-364-28

Condition = VB (7.56 gRMS Average, 2 Hours/Axis)

Mechanical Shock/Random Vibration/Event Detection

Group 1

FQSFP-01-12.00-L-PF-BC

MATING-CARD

60 Points

ENIG 0.020" PTH

Note: HDR build number: HDR-187793-01

Step Description

1. Nanosecond Event Detection
(Mechanical Shock)⁽¹⁾
2. Nanosecond Event Detection
(Random Vibration)⁽²⁾

⁽¹⁾ Nanosecond Event Detection (Mechanical Shock)

Use EIA-364-87 for Nanosecond Event Detection:

Test Condition = F (50 nanoseconds at 10 ohms)

Use EIA-364-27 for Mechanical Shock:

Test Condition = C (100 G Peak, 6 milliseconds, Half Sine)

Number of Shocks = 3 Per Direction, Per Axis, 18 Total

⁽²⁾ Nanosecond Event Detection (Random Vibration)

Use EIA-364-87 for Nanosecond Event Detection:

Test Condition = F (50 nanoseconds at 10 ohms)

Use EIA-364-28 for Random Vibration:

Condition = VB (7.56 gRMS Average, 2 Hours/Axis)

FLOWCHARTS Continued

Cable Pull

<u>Group 1</u>		<u>Group 2</u>	
FQSFP-01-12.00-L-PF-DE		FQSFP-01-12.00-L-PF-DE	
MATING-CARD		MATING-CARD	
5 Assemblies		5 Assemblies	
0 Degrees		90 Degrees	
<i>Note: HDR build number: HDR-187794-01</i>		<i>Note: HDR build number: HDR-187794-01</i>	
Step	Description	Step	Description
1.	Cable Pull (1)	1.	Cable Pull (1)

(1) Cable Pull = EIA-364-38
 Measure and Record Force Required to Failure
 Failure = Discontinuity >1 microsecond at 10 ohms

Cable Flex

<u>Group 1</u>	
FQSFP-01-02.36-L-PF-BC	
MATING-CARD	
8 Assemblies	
Flat Cable	
Step	Description
1.	IR (3)
2.	DWV at Test Voltage (2)
3.	Cable Flex (1)
4.	Visual Inspection
5.	IR (3)
6.	DWV at Test Voltage (2)

(1) Cable Flex = EIA-364-41
 Circular Jacket Cable - to be tested 90° each direction (180° total)
 Flat Cable - to be tested 70° each direction (140° total)
 Monitor continuity during flex testing
 Failure = Discontinuity >1 microsecond at 10 ohms

(2) DWV at Test Voltage = EIA-364-20
 Test Condition = 1 (Sea Level)
 DWV test voltage is equal to 75% of the lowest breakdown voltage
 Test voltage applied for 60 seconds

(3) IR = EIA-364-21
 Test Condition = 500 Vdc, 2 Minutes Max

FLOWCHARTS Continued

Insertion/Retention/Hole Conditioning

SIGNAL

Group 1		Group 2		Group 3	
FQSFP-01-02.36-L-PF-BC		FQSFP-01-02.36-L-PF-BC		FQSFP-01-02.36-L-PF-BC	
32 Contacts Minimum HASL 0.016" PTH (SIG)		32 Contacts Minimum HASL 0.020" PTH (SIG)		32 Contacts Minimum ENIG 0.020" PTH (SIG)	
Note: All contacts and lead styles to be tested.		Note: All contacts and lead styles to be tested.		Note: All contacts and lead styles to be tested.	
Step	Description	Step	Description	Step	Description
1.	Insertion Force Rate = 2.54 mm/min Note: Pin 1	1.	Insertion Force Rate = 2.54 mm/min Note: Pin 1	1.	Insertion Force Rate = 2.54 mm/min Note: Pin 1
2.	Retention Force Rate = 2.54 mm/min Note: EIA 364-29 Note: Pin 1	2.	Retention Force Rate = 2.54 mm/min Note: EIA 364-29 Note: Pin 1	2.	Retention Force Rate = 2.54 mm/min Note: EIA 364-29 Note: Pin 1
3.	Cycles Quantity = 1 Cycles Note: Pin 2	3.	Cycles Quantity = 1 Cycles Note: Pin 2	3.	Cycles Quantity = 1 Cycles Note: Pin 2
4.	Insertion Force Rate = 2.54 mm/min Note: Pin 3	4.	Insertion Force Rate = 2.54 mm/min Note: Pin 3	4.	Insertion Force Rate = 2.54 mm/min Note: Pin 3
5.	Retention Force Rate = 2.54 mm/min Note: EIA 364-29 Note: Pin 3	5.	Retention Force Rate = 2.54 mm/min Note: EIA 364-29 Note: Pin 3	5.	Retention Force Rate = 2.54 mm/min Note: EIA 364-29 Note: Pin 3
6.	Hole Integrity Note: check for distortion of the PTH according to EIA 364-96	6.	Hole Integrity Note: check for distortion of the PTH according to EIA 364-96	6.	Hole Integrity Note: check for distortion of the PTH according to EIA 364-96

FLOWCHARTS Continued Continued

GROUND

Group 4		Group 5		Group 6	
FQSFP-01-02.36-L-PF-BC		FQSFP-01-02.36-L-PF-BC		FQSFP-01-02.36-L-PF-BC	
30 Contacts Minimum HASL 0.016" PTH (GND)		30 Contacts Minimum HASL 0.020" PTH (GND)		30 Contacts Minimum ENIG 0.020" PTH (GND)	
Step	Description	Step	Description	Step	Description
1.	Insertion Force Rate = 2.54 mm/min Note: Pin 1	1.	Insertion Force Rate = 2.54 mm/min Note: Pin 1	1.	Insertion Force Rate = 2.54 mm/min Note: Pin 1
2.	Retention Force Rate = 2.54 mm/min Note: EIA 364-29 Note: Pin 1	2.	Retention Force Rate = 2.54 mm/min Note: EIA 364-29 Note: Pin 1	2.	Retention Force Rate = 2.54 mm/min Note: EIA 364-29 Note: Pin 1
3.	Cycles Quantity = 1 Cycles Note: Pin 2	3.	Cycles Quantity = 1 Cycles Note: Pin 2	3.	Cycles Quantity = 1 Cycles Note: Pin 2
4.	Insertion Force Rate = 2.54 mm/min Note: Pin 3	4.	Insertion Force Rate = 2.54 mm/min Note: Pin 3	4.	Insertion Force Rate = 2.54 mm/min Note: Pin 3
5.	Retention Force Rate = 2.54 mm/min Note: EIA 364-29 Note: Pin 3	5.	Retention Force Rate = 2.54 mm/min Note: EIA 364-29 Note: Pin 3	5.	Retention Force Rate = 2.54 mm/min Note: EIA 364-29 Note: Pin 3
6.	Hole Integrity Note: check for distortion of the PTH according to EIA 364-96	6.	Hole Integrity Note: check for distortion of the PTH according to EIA 364-96	6.	Hole Integrity Note: check for distortion of the PTH according to EIA 364-96

SIGNAL & GROUND

Group 7		Group 8		Group 9	
FQSFP-01-02.36-L-PF-BC		FQSFP-01-02.36-L-PF-BC		FQSFP-01-02.36-L-PF-BC	
15 Assemblies HASL 0.016" PTH (SIG + GND)		15 Assemblies HASL 0.020" PTH (SIG + GND)		15 Assemblies ENIG 0.020" PTH (SIG + GND)	
Step	Description	Step	Description	Step	Description
1.	LLCR ₍₁₎ Note: Part 1	1.	LLCR ₍₁₎ Note: Part 1	1.	LLCR ₍₁₎ Note: Part 1
2.	Cycles Quantity = 1 Cycles Note: Part 2	2.	Cycles Quantity = 1 Cycles Note: Part 2	2.	Cycles Quantity = 1 Cycles Note: Part 2
3.	LLCR ₍₁₎ Max Delta = 1 mOhm Note: Part 3	3.	LLCR ₍₁₎ Max Delta = 1 mOhm Note: Part 3	3.	LLCR ₍₁₎ Max Delta = 1 mOhm Note: Part 3

(1) LLCR = EIA-364-23

Open Circuit Voltage = 20 mV Max
Test Current = 100 mA Max

Tracking Code: 788439_Report_Rev_2	Part #: FQSFP-01-02.36-L-PF-BC/ MATING-CARD
	Part description: FQSFP/CARD

ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

THERMAL SHOCK:

- 1) EIA-364-32, *Thermal Shock (Temperature Cycling) Test Procedure for Electrical Connectors.*
- 2) Test Condition : -25°C to +85°C
- 3) Test Time: ½ hour dwell at each temperature extreme
- 4) Number of Cycles: 100
- 5) All test samples are pre-conditioned at ambient.
- 6) All test samples are exposed to environmental stressing in the mated condition.

THERMAL:

- 1) EIA-364-17, *Temperature Life with or without Electrical Load Test Procedure for Electrical Connectors.*
- 2) Test Condition : 105° C.
- 3) Test Time Condition B for 250 hours.
- 4) All test samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

HUMIDITY:

- 1) Reference document: EIA-364-31, *Humidity Test Procedure for Electrical Connectors.*
- 2) Test Condition B, 240 Hours.
- 3) Method III, +25° C to + 65° C, 90% to 98% Relative Humidity excluding sub-cycles 7a and 7b.
- 4) All samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

MECHANICAL SHOCK (Specified Pulse):

- 1) Reference document: EIA-364-27, *Mechanical Shock Test Procedure for Electrical Connectors*
- 2) Test Condition C
- 3) Peak Value: 100 G
- 4) Duration: 6 Milliseconds
- 5) Wave Form: Half Sine
- 6) Velocity: 12.3 ft/s
- 7) Number of Shocks: 3 Shocks / Direction, 3 Axis (18 Total)

VIBRATION:

- 1) Reference document: EIA-364-28, *Vibration Test Procedure for Electrical Connectors*
- 2) Test Condition V, Letter B
- 3) Power Spectral Density: 0.04 G² / Hz
- 4) G 'RMS': 7.56
- 5) Frequency: 50 to 2000 Hz
- 6) Duration: 2.0 Hours per axis (3 axis total)

NANOSECOND-EVENT DETECTION:

- 1) Reference document: EIA-364-87, *Nanosecond-Event Detection for Electrical Connectors*
- 2) Prior to test, the samples were characterized to assure the low nanosecond event being monitored will trigger the detector.
- 3) After characterization it was determined the test samples could be monitored for 50 nanosecond events

MATING/UNMATING:

- 1) Reference document: EIA-364-13, *Mating and Unmating Forces Test Procedure for Electrical Connectors.*
- 2) The full insertion position was to within 0.003" to 0.004" of the plug bottoming out in the receptacle to prevent damage to the system under test.
- 3) One of the mating parts is secured to a floating X-Y table to prevent damage during cycling.

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

NORMAL FORCE (FOR CONTACTS TESTED IN THE HOUSING):

- 1) Reference document: EIA-364-04, *Normal Force Test Procedure for Electrical Connectors*.
- 2) The contacts shall be tested in the connector housing.
- 3) If necessary, a “window” shall be made in the connector body to allow a probe to engage and deflect the contact at the same attitude and distance (plus 0.05 mm [0.002”]) as would occur in actual use.
- 4) The connector housing shall be placed in a holding fixture that does not interfere with or otherwise influence the contact force or deflection.
- 5) Said holding fixture shall be mounted on a floating, adjustable, X-Y table on the base of the Dillon TC², computer controlled test stand with a deflection measurement system accuracy of 5.0 μ m (0.0002”).
- 6) The nominal deflection rate shall be 5 mm (0.2”)/minute.
- 7) Unless otherwise noted a minimum of five contacts shall be tested.
- 8) The force/deflection characteristic to load and unload each contact shall be repeated five times.
- 9) The system shall utilize the TC² software in order to acquire and record the test data.
- 10) The permanent set of each contact shall be measured within the TC² software.
- 11) The acquired data shall be graphed with the deflection data on the X-axis and the force data on the Y-axis and a print out will be stored with the Tracking Code paperwork.

INSULATION RESISTANCE (IR):

To determine the resistance of insulation materials to leakage of current through or on the surface of these materials when a DC potential is applied.

- 1) PROCEDURE:
 - a. Reference document: EIA-364-21, *Insulation Resistance Test Procedure for Electrical Connectors*.
 - b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Electrification Time 2.0 minutes
 - iii. Test Voltage (500 VDC) corresponds to calibration settings for measuring resistances.
- 2) MEASUREMENTS:
- 3) When the specified test voltage is applied (VDC), the insulation resistance shall not be less than 1000 megohms.

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

To determine if the sockets can operate at its rated voltage and withstand momentary over potentials due to switching, surges, and other similar phenomenon. Separate samples are used to evaluate the effect of environmental stresses so not to influence the readings from arcing that occurs during the measurement process.

- 1) PROCEDURE:
 - a. Reference document: EIA-364-20, *Withstanding Voltage Test Procedure for Electrical Connectors*.
 - b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Rate of Application 500 V/Sec
 - iii. Test Voltage (VAC) until breakdown occurs
- 2) MEASUREMENTS/CALCULATIONS
 - a. The breakdown voltage shall be measured and recorded.
 - b. The dielectric withstand voltage shall be recorded as 75% of the minimum breakdown voltage.
 - c. The working voltage shall be recorded as one-third (1/3) of the dielectric withstand voltage (one-fourth of the breakdown voltage).

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

TEMPERATURE RISE (Current Carrying Capacity, CCC):

- 1) EIA-364-70, *Temperature Rise versus Current Test Procedure for Electrical Connectors and Sockets*.
- 2) When current passes through a contact, the temperature of the contact increases as a result of I^2R (resistive) heating.
- 3) The number of contacts being investigated plays a significant part in power dissipation and therefore temperature rise.
- 4) The size of the temperature probe can affect the measured temperature.
- 5) Copper traces on PC boards will contribute to temperature rise:
 - a. Self heating (resistive)
 - b. Reduction in heat sink capacity affecting the heated contacts
- 6) A de-rating curve, usually 20%, is calculated.
- 7) Calculated de-rated currents at four temperature points are reported:
 - c. Ambient
 - d. 65° C
 - e. 75° C
 - f. 95° C
- 8) Typically, neighboring contacts (in close proximity to maximize heat build up) are energized.
- 9) The thermocouple (or temperature measuring probe) will be positioned at a location to sense the maximum temperature in the vicinity of the heat generation area.
- 10) A computer program, *TR 803.exe*, ensures accurate stability for data acquisition.
- 11) Hook-up wire cross section is larger than the cross section of any connector leads/PC board traces, jumpers, etc.
- 12) Hook-up wire length is longer than the minimum specified in the referencing standard.

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

LLCR:

- 1) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
 - a. $\leq +5.0$ mOhms: ----- Stable
 - b. $+5.1$ to $+10.0$ mOhms: ----- Minor
 - c. $+10.1$ to $+15.0$ mOhms: ----- Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: ----- Marginal
 - e. $+50.1$ to $+2000$ mOhms: ----- Unstable
 - f. $>+2000$ mOhms: ----- Open Failure
- 4) The following guidelines are used to categorize the changes in LLCR for compliant pin only
 - a. $\leq +1.0$ mOhms: ----- Stable
 - b. $> +1.0$ mOhms: ----- Unstable

GAS TIGHT:

To provide method for evaluating the ability of the contacting surfaces in preventing penetration of harsh vapors which might lead to oxide formation that may degrade the electrical performance of the contact system.

- 1) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
 - a. $\leq +5.0$ mOhms: ----- Stable
 - b. $+5.1$ to $+10.0$ mOhms: ----- Minor
 - c. $+10.1$ to $+15.0$ mOhms: ----- Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: ----- Marginal
 - e. $+50.1$ to $+2000$ mOhms: ----- Unstable
 - f. $>+2000$ mOhms: ----- Open Failure
- 4) Procedure:
 - g. Reference document: EIA-364-36, *Test Procedure for Determination of Gas-Tight Characteristics for Electrical Connectors, Sockets and/or Contact Systems*.
 - h. Test Conditions:
 - i. Class II--- Mated pairs of contacts assembled to their plastic housings.
 - ii. Reagent grade Nitric Acid shall be used of sufficient volume to saturate the test chamber
 - iii. The ratio of the volume of the test chamber to the surface area of the acid shall be 10:1.
 - iv. The chamber shall be saturated with the vapor for at least 15 minutes before samples are added.
 - v. Exposure time, 55 to 65 minutes.
 - vi. The samples shall be no closer to the chamber walls than 1 inches and no closer to the surface of the acid than 3 inches.
 - vii. The samples shall be dried after exposure for a minimum of 1 hour.
 - viii. Drying temperature 50° C
 - ix. The final LLCR shall be conducted within 1 hour after drying.
- 5) The following guidelines are used to categorize the changes in LLCR for compliant pin only
 - a. $\leq +1.0$ mOhms: ----- Stable
 - b. $> +1.0$ mOhms: ----- Unstable

ATTRIBUTE DEFINITIONS Continued

The following is a brief, simplified description of attributes.

CABLE PULL:

- 1) Secure cable near center and pull on connector
 - a. At 90°, right angle to cable
 - b. At 0°, in-line with cable

Fig. 1
0° Connector pull, notice the electrical continuity hook-up wires.

CABLE DURABILITY:

- 1) Oscillate and monitor electrical continuity for open circuit indication.
 - a. $\pm 70^\circ$ Flex Mode, bend up to 500 cycles. load on cable end.

Fig. 2
(Setup picture)

RESULTS

Temperature Rise, CCC at a 20% de-rating

- CCC for a 30°C Temperature Rise-----2.1 A per contact with 2 contacts (2x1) powered
- CCC for a 30°C Temperature Rise-----1.4 A per contact with 4 contacts (2x2) powered
- CCC for a 30°C Temperature Rise-----1.3 A per contact with 6 contacts (2x3) powered
- CCC for a 30°C Temperature Rise-----1.1 A per contact with 8 contacts (2x4) powered
- CCC for a 30°C Temperature Rise-----1.1 A per contact with 10 contacts (2x5) powered

Mating – Unmating Forces

Thermal aging Group

- Initial
 - Mating
 - Min ----- 4.11 lbs
 - Max----- 6.10 lbs
 - Unmating
 - Min ----- 1.42 lbs
 - Max----- 2.36 lbs
- After Thermal
 - Mating
 - Min ----- 2.42 lbs
 - Max----- 4.41 lbs
 - Unmating
 - Min ----- 0.75 lbs
 - Max----- 1.33 lbs

RESULTS Continued

Mating – Unmating Forces

Mating/Unmating Durability Group

- Initial
 - Mating
 - Min ----- 3.84 lbs
 - Max ----- 5.49 lbs
 - Unmating
 - Min ----- 0.95 lbs
 - Max ----- 2.53 lbs
- After 25 Cycles
 - Mating
 - Min ----- 4.12 lbs
 - Max ----- 6.03 lbs
 - Unmating
 - Min ----- 1.29 lbs
 - Max ----- 2.71 lbs
- After 50 Cycles
 - Mating
 - Min ----- 4.18 lbs
 - Max ----- 6.10 lbs
 - Unmating
 - Min ----- 1.54 lbs
 - Max ----- 2.73 lbs
- After 75 Cycles
 - Mating
 - Min ----- 4.31 lbs
 - Max ----- 6.25 lbs
 - Unmating
 - Min ----- 1.67 lbs
 - Max ----- 2.83 lbs
- After 100 Cycles
 - Mating
 - Min ----- 4.42 lbs
 - Max ----- 6.30 lbs
 - Unmating
 - Min ----- 1.82 lbs
 - Max ----- 2.91 lbs
- Humidity
 - Mating
 - Min ----- 2.68 lbs
 - Max ----- 4.04 lbs
 - Unmating
 - Min ----- 0.91 lbs
 - Max ----- 1.23 lbs

RESULTS Continued

Normal Force at 0.015 inch deflection

C-416

- Initial
 - Min ----- 86.20 gf Set ----- 0.0011 inch
 - Max ----- 96.00 gf Set ----- 0.0015 inch
- Thermal
 - Min ----- 49.70 gf Set ----- 0.0029 inch
 - Max ----- 76.10 gf Set ----- 0.0049 inch

Normal Force at 0.015 inch deflection

C-417

- Initial
 - Min ----- 72.00 gf Set ----- 0.0008 inch
 - Max ----- 85.00 gf Set ----- 0.0011 inch
- Thermal
 - Min ----- 62.30 gf Set ----- 0.0024 inch
 - Max ----- 68.90 gf Set ----- 0.0038 inch

Normal Force at 0.016 inch deflection

C-418 Signal

- Initial
 - Min ----- 41.60 gf Set ----- 0.0004 inch
 - Max ----- 45.90 gf Set ----- 0.0016 inch
- Thermal
 - Min ----- 28.30 gf Set ----- 0.0012 inch
 - Max ----- 36.80 gf Set ----- 0.0034 inch

C-418 Ground

- Initial
 - Min ----- 34.10 gf Set ----- 0.0003 inch
 - Max ----- 39.90 gf Set ----- 0.0020 inch
- Thermal
 - Min ----- 19.70 gf Set ----- 0.0016 inch
 - Max ----- 31.00 gf Set ----- 0.0046 inch

Cable Pull force

- 0° Pull
 - Min ----- 43.50 lbs
 - Max ----- 62.00 lbs
- 90° Pull
 - Min ----- 7.50 lbs
 - Max ----- 11.00 lbs

RESULTS Continued

Cable Flex:

Insulation Resistance minimums, IR

Pin to Pin

- Initial
 - Mated-----36000 Meg Ω ----- Passed
- After 500 flex cycles
 - Mated-----45000 Meg Ω ----- Passed

Pin to Ground(LS)

- Initial
 - Mated-----45000 Meg Ω ----- Passed
- After 500 flex cycles
 - Mated-----45000 Meg Ω ----- Passed

Pin to Ground(HS)

- Initial
 - Mated-----45000 Meg Ω ----- Passed
- After 500 flex cycles
 - Mated-----45000 Meg Ω ----- Passed

Dielectric Withstanding Voltage minimums, DWV

- Test Voltage -----613 VAC

Pin to Pin

- Initial DWV -----Passed
- After 100 Flex cycles DWV -----Passed

Pin to Ground(LS)

- Initial DWV -----Passed
- After 100 Flex cycles DWV -----Passed

Pin to Ground(HS)

- Initial DWV -----Passed
- After 100 Flex cycles DWV -----Passed

RESULTS Continued

Compliant pin Insertion/Retention Forces

Signal Pin- HASL-0.016"

- Initial
 - Mating
 - Min ----- 4.06 lbs
 - Max ----- 5.18 lbs
 - Unmating
 - Min ----- 1.31 lbs
 - Max ----- 2.12 lbs
- After 3 Cycles
 - Mating
 - Min ----- 3.23 lbs
 - Max ----- 4.07 lbs
 - Unmating
 - Min ----- 1.51 lbs
 - Max ----- 2.39 lbs

Signal Pin- HASL-0.020"

- Initial
 - Mating
 - Min ----- 1.26 lbs
 - Max ----- 2.28 lbs
 - Unmating
 - Min ----- 0.94 lbs
 - Max ----- 1.44 lbs
- After 3 Cycles
 - Mating
 - Min ----- 1.05 lbs
 - Max ----- 1.82 lbs
 - Unmating
 - Min ----- 0.96 lbs
 - Max ----- 1.52 lbs

Signal Pin- ENIG-0.020"

- Initial
 - Mating
 - Min ----- 1.95 lbs
 - Max ----- 2.42 lbs
 - Unmating
 - Min ----- 1.06 lbs
 - Max ----- 1.58 lbs
- After 3 Cycles
 - Mating
 - Min ----- 1.19 lbs
 - Max ----- 1.88 lbs
 - Unmating
 - Min ----- 0.84 lbs
 - Max ----- 1.43 lbs

RESULTS Continued

Compliant pin Insertion/Retention Forces

Ground Pin- HASL-0.016"

- Initial
 - Mating
 - Min ----- 5.17 lbs
 - Max ----- 5.80 lbs
 - Unmating
 - Min ----- 1.27 lbs
 - Max ----- 2.11 lbs
- After 3 Cycles
 - Mating
 - Min ----- 3.83 lbs
 - Max ----- 4.31 lbs
 - Unmating
 - Min ----- 1.19 lbs
 - Max ----- 2.10 lbs

Ground Pin- HASL-0.020"

- Initial
 - Mating
 - Min ----- 2.34 lbs
 - Max ----- 3.61 lbs
 - Unmating
 - Min ----- 1.32 lbs
 - Max ----- 1.61 lbs
- After 3 Cycles
 - Mating
 - Min ----- 2.25 lbs
 - Max ----- 3.27 lbs
 - Unmating
 - Min ----- 1.37 lbs
 - Max ----- 1.83 lbs

Ground Pin- ENIG-0.020"

- Initial
 - Mating
 - Min ----- 2.49 lbs
 - Max ----- 3.17 lbs
 - Unmating
 - Min ----- 1.25 lbs
 - Max ----- 1.58 lbs
- After 3 Cycles
 - Mating
 - Min ----- 1.44 lbs
 - Max ----- 2.32 lbs
 - Unmating
 - Min ----- 0.81 lbs
 - Max ----- 1.70 lbs

RESULTS Continued

LLCR Durability (128 signal, 16 ground, 24 row1 and 24 row2 LLCR test points)

Signal pin:

- Initial ----- 116.60 mOhms Max
- After 100 cycles
 - <= +5.0 mOhms ----- 128 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure
- After thermal shock
 - <= +5.0 mOhms ----- 127 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 1 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure
- After humidity
 - <= +5.0 mOhms ----- 127 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 1 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure
 - >+2000 mOhms ----- 0 Points ----- Open Failure

Ground pin:

- Initial ----- 18.88 mOhms Max
- After 100 cycles
 - <= +5.0 mOhms ----- 15 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 1 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure
- After thermal shock
 - <= +5.0 mOhms ----- 15 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 1 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure
- After humidity
 - <= +5.0 mOhms ----- 11 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 5 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure
 - >+2000 mOhms ----- 0 Points ----- Open Failure

RESULTS Continued

Row 1:

- Initial ----- **29.75 mOhms Max**
- After 100 cycles
 - <= +5.0 mOhms ----- 24 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure
- After thermal shock
 - <= +5.0 mOhms ----- 24 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure
- After humidity
 - <= +5.0 mOhms ----- 24 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure
 - >+2000 mOhms ----- 0 Points ----- Open Failure

Row 2:

- Initial ----- **34.45 mOhms Max**
- After 100 cycles
 - <= +5.0 mOhms ----- 24 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure
- After thermal shock
 - <= +5.0 mOhms ----- 24 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure
- After humidity
 - <= +5.0 mOhms ----- 24 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure
 - >+2000 mOhms ----- 0 Points ----- Open Failure

RESULTS Continued

LLCR Thermal Aging (127 signal, 16 ground, 24 row1 and 24 row2 LLCR test points)

Signal pin:

- Initial ----- 115.99 mOhms Max
- Thermal Aging
 - <= +5.0 mOhms ----- 126 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 1 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

Note: Broken solder joint on cable of the signal group.

Ground Pin:

- Initial ----- 25.49 mOhms Max
- Thermal Aging
 - <= +5.0 mOhms ----- 13 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 2 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 1 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

Row 1:

- Initial ----- 30.04 mOhms Max
- Thermal Aging
 - <= +5.0 mOhms ----- 24 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

Row 2:

- Initial ----- 34.07 mOhms Max
- Thermal Aging
 - <= +5.0 mOhms ----- 24 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

RESULTS Continued

LLCR Gas Tight (128 cable, 16 ground, 48 signal LLCR test points)

Cable:

- Initial ----- 37.44 mOhms Max
- Gas-Tight
 - <= +5.0 mOhms ----- 128 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

Ground Pin:

- Initial ----- 15.10 mOhms Max
- Gas-Tight
 - <= +5.0 mOhms ----- 16 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

Signal Pin:

- Initial ----- 33.92 mOhms Max
- Gas-Tight
 - <= +5.0 mOhms ----- 48 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

RESULTS Continued

LLCR Shock Vib (128 cable, 16 ground, 48 signal LLCR test points)

Cable:

- Initial ----- 123.42 mOhms Max
- S&V
 - <= +5.0 mOhms ----- 128 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

Ground Pin:

- Initial ----- 35.46 mOhms Max
- S&V
 - <= +5.0 mOhms ----- 9 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 3 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 3 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 1 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

Signal pin:

- Initial ----- 43.67 mOhms Max
- S&V
 - <= +5.0 mOhms ----- 48 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

Mechanical Shock & Random Vibration:

- Shock
 - No Damage----- Passed
 - 50 Nanoseconds----- Passed
- Vibration
 - No Damage----- Passed
 - 50 Nanoseconds----- Passed

RESULTS Continued

LLCR Insertion and Retention Force (32 signal and 30 compliant pin LLCR test points)

Signal Pin- HASL 0.016"

- Initial ----- 0.07 mOhms Max
- After 3 cycles
 - <= +1.0 mOhms ----- 32 Points ----- Stable
 - >+1.0 mOhms ----- 0 Points ----- Unstable

Ground Pin- HASL 0.016"

- Initial ----- 0.04 mOhms Max
- After 3 cycle
 - <= +1.0 mOhms ----- 30 Points ----- Stable
 - >+1.0 mOhms ----- 0 Points ----- Unstable

Signal Pin- HASL 0.020"

- Initial ----- 0.07 mOhms Max
- After 3 cycles
 - <= +1.0 mOhms ----- 32 Points ----- Stable
 - >+1.0 mOhms ----- 0 Points ----- Unstable

Ground Pin- HASL 0.020"

- Initial ----- 0.14 mOhms Max
- After 3 cycle
 - <= +1.0 mOhms ----- 30 Points ----- Stable
 - >+1.0 mOhms ----- 0 Points ----- Unstable

Signal Pin- ENIG 0.020"

- Initial ----- 0.25 mOhms Max
- After 3 cycles
 - <= +1.0 mOhms ----- 32 Points ----- Stable
 - >+1.0 mOhms ----- 0 Points ----- Unstable

Ground Pin- ENIG 0.020"

- Initial ----- 0.19 mOhms Max
- After 3 cycle
 - <= +1.0 mOhms ----- 30 Points ----- Stable
 - >+1.0 mOhms ----- 0 Points ----- Unstable

RESULTS Continued

Insulation Resistance minimums, IR

LS Pin to LS Pin

- Initial
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed
- Thermal Shock
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed
- Humidity
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed

LS Row to LS Row

- Initial
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed
- Thermal Shock
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed
- Humidity
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed

LS Pin to Ground

- Initial
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed
- Thermal Shock
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed
- Humidity
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed

RESULTS Continued

Insulation Resistance minimums, IR

HS Pin to HS Pin

- Initial
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed
- Thermal Shock
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed
- Humidity
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed

HS Row to HS Row

- Initial
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed
- Thermal Shock
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed
- Humidity
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed

HS Pin to Ground

- Initial
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed
- Thermal Shock
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed
- Humidity
 - Mated ----- 45000 Meg Ω ----- Passed
 - Unmated ----- 45000 Meg Ω ----- Passed

RESULTS Continued

Dielectric Withstanding Voltage minimums, DWV

- **Minumums**

- Breakdown Voltage ----- 817 VAC
- Test Voltage ----- 613 VAC
- Working Voltage ----- 200 VAC

LS Pin to LS Pin

- Initial DWV ----- Passed
- Thermal DWV ----- Passed
- Humidity DWV ----- Passed

LS Row to LS Row

- Initial DWV ----- Passed
- Thermal DWV ----- Passed
- Humidity DWV ----- Passed

LS Pin to Ground

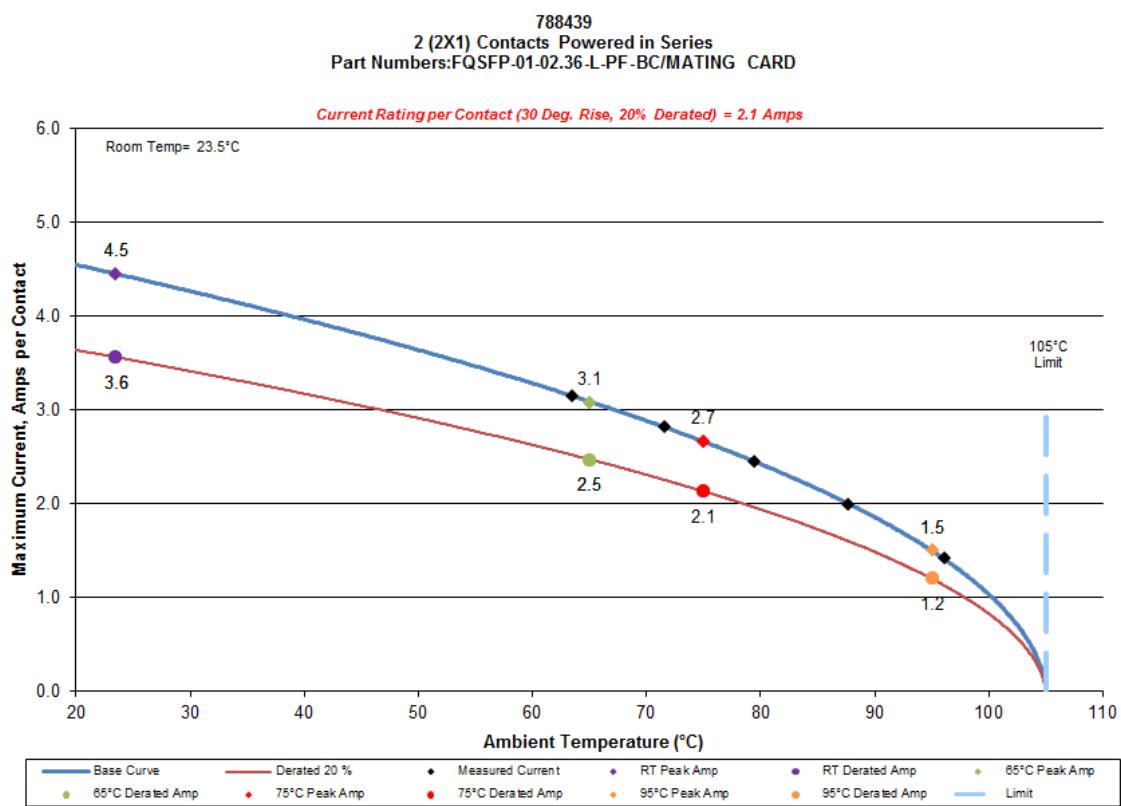
- Initial DWV ----- Passed
- Thermal DWV ----- Passed
- Humidity DWV ----- Passed

HS Pin to HS Pin

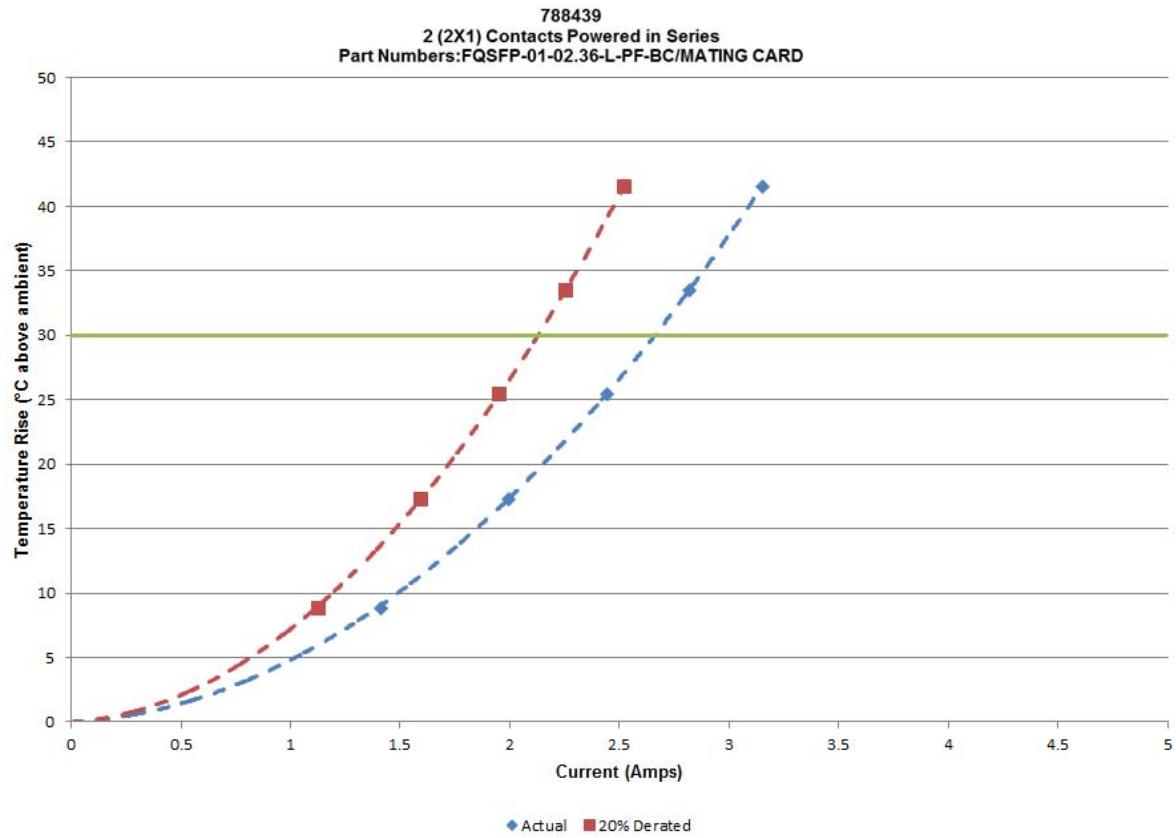
- Initial DWV ----- Passed
- Thermal DWV ----- Passed
- Humidity DWV ----- Passed

HS Row to HS Row

- Initial DWV ----- Passed
- Thermal DWV ----- Passed
- Humidity DWV ----- Passed

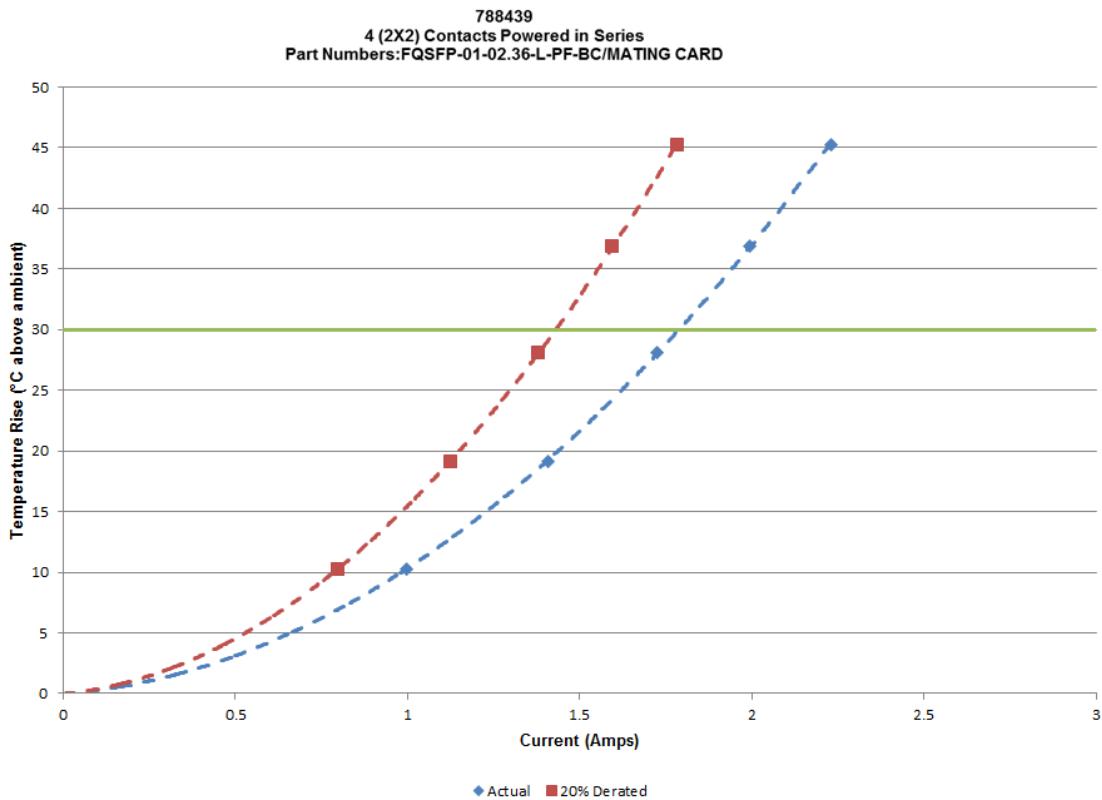
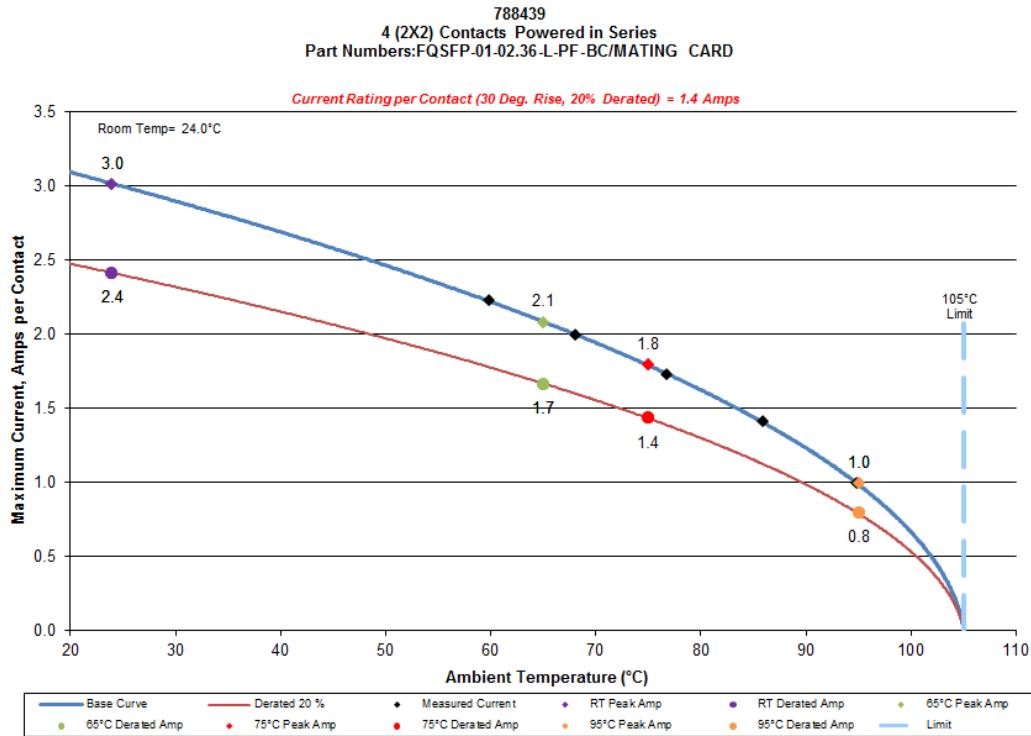

HS Pin to Ground

- Initial DWV ----- Passed
- Thermal DWV ----- Passed
- Humidity DWV ----- Passed


DATA SUMMARIES

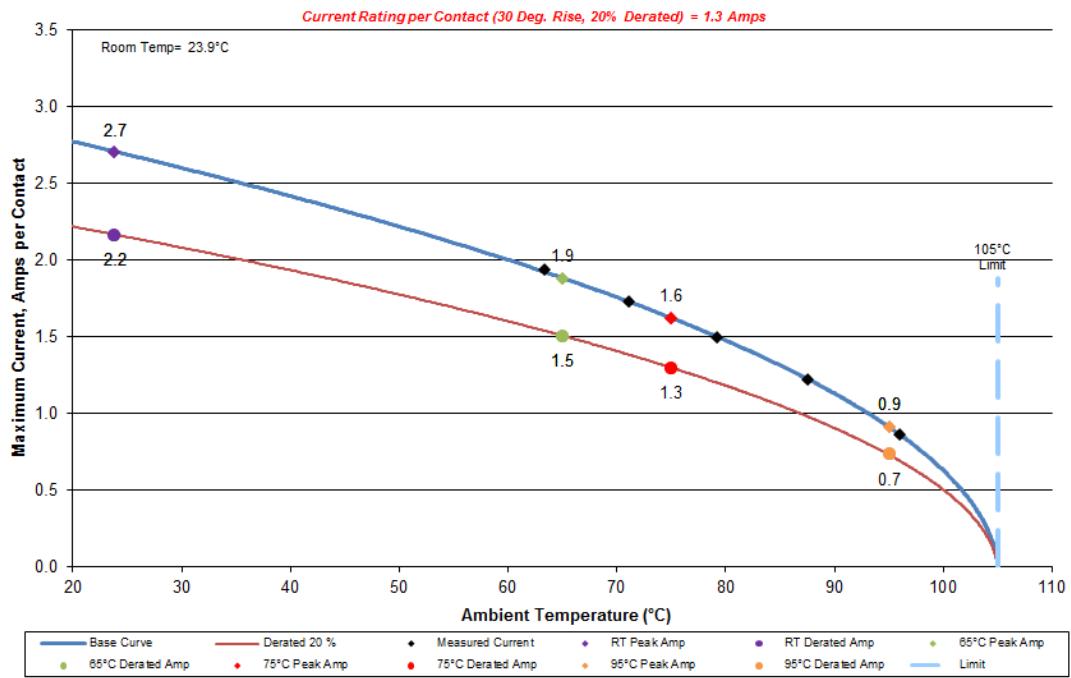
TEMPERATURE RISE (Current Carrying Capacity, CCC):

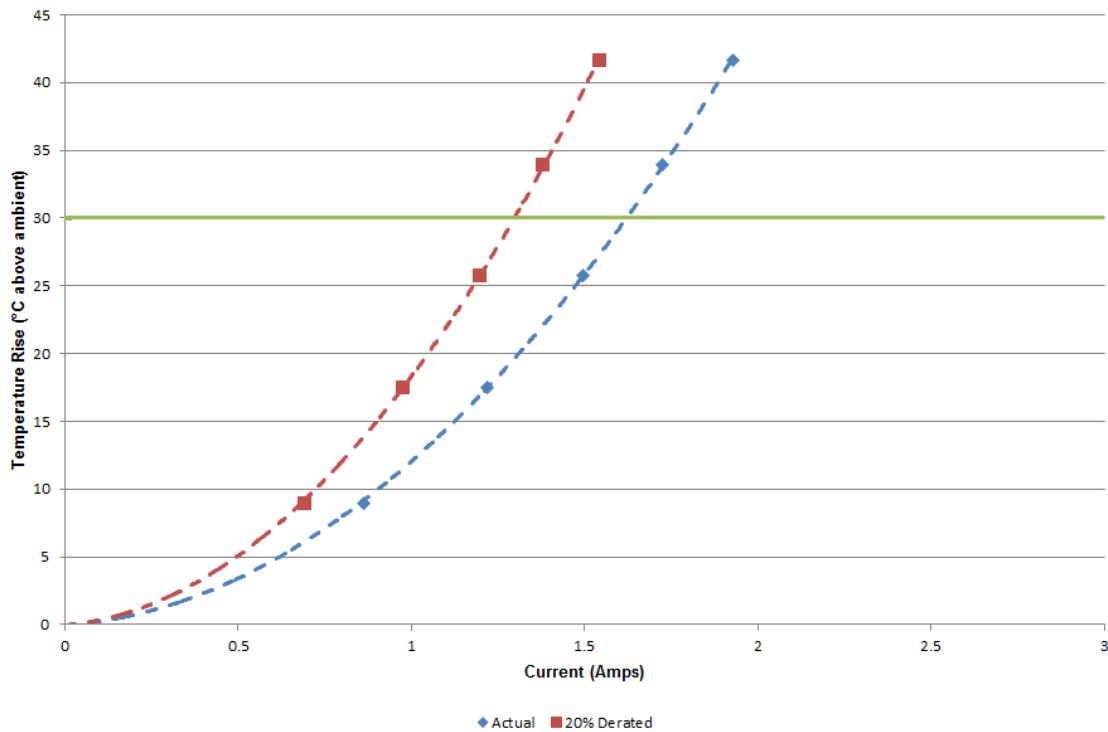
- 1) High quality thermocouples whose temperature slopes track one another were used for temperature monitoring.
- 2) The thermocouples were placed at a location to sense the maximum temperature generated during testing.
- 3) Temperature readings recorded are those for which three successive readings, 15 minutes apart, differ less than 1° C (computer controlled data acquisition).
- 4) Adjacent contacts were powered:
 - a. Linear configuration with 2 adjacent power conductors/contacts powered

DATA SUMMARIES

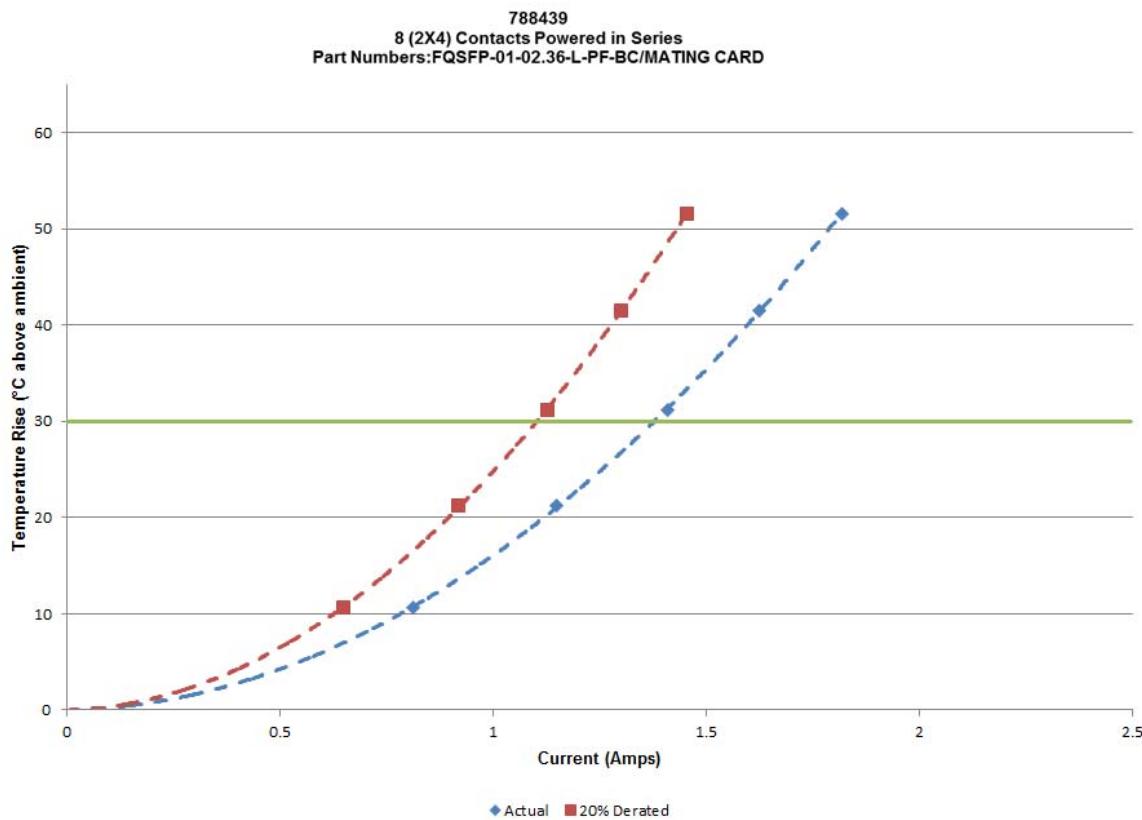
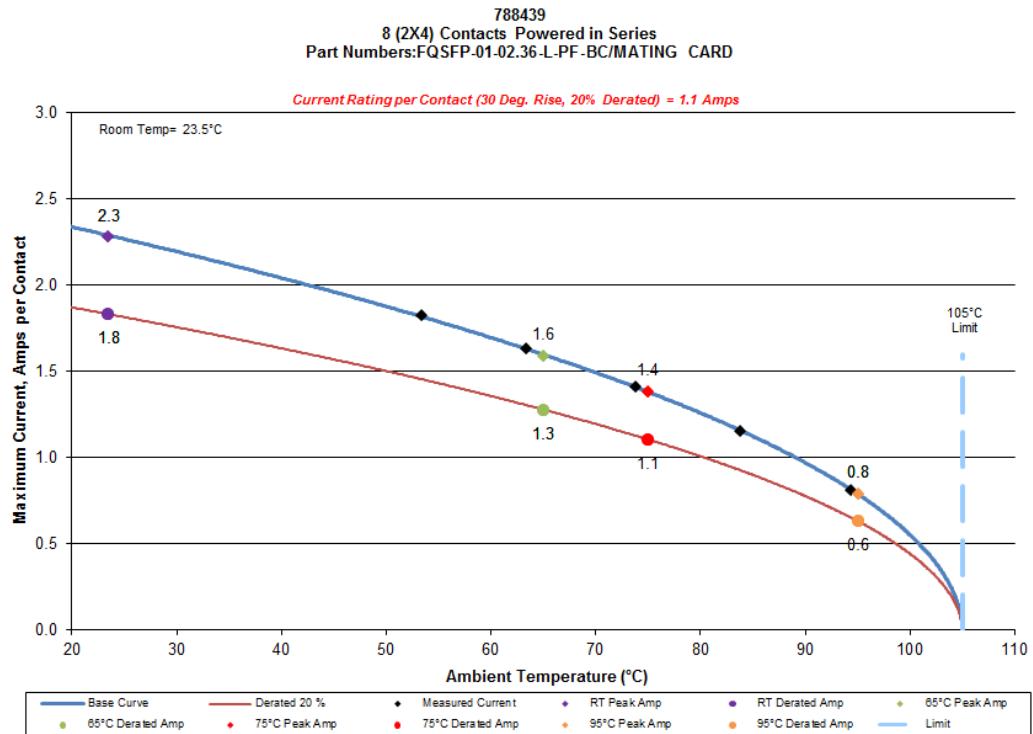
DATA SUMMARIES


b. Linear configuration with 4 adjacent power conductors/contacts powered

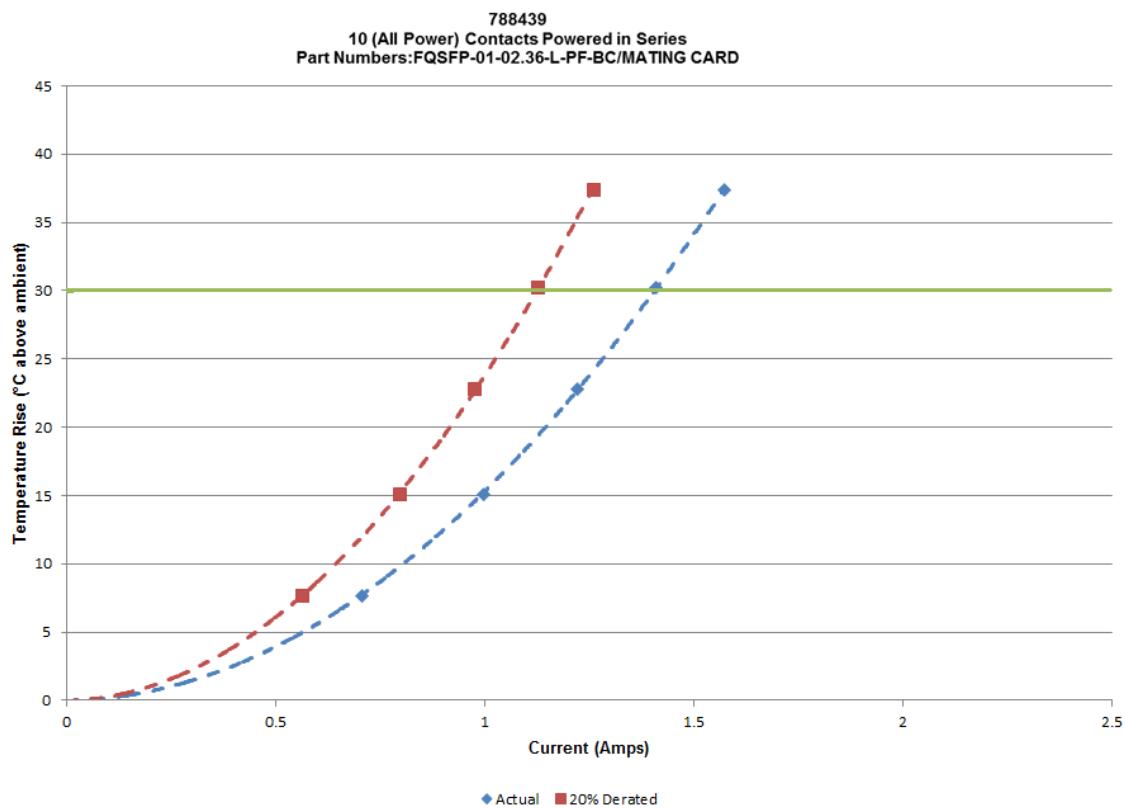
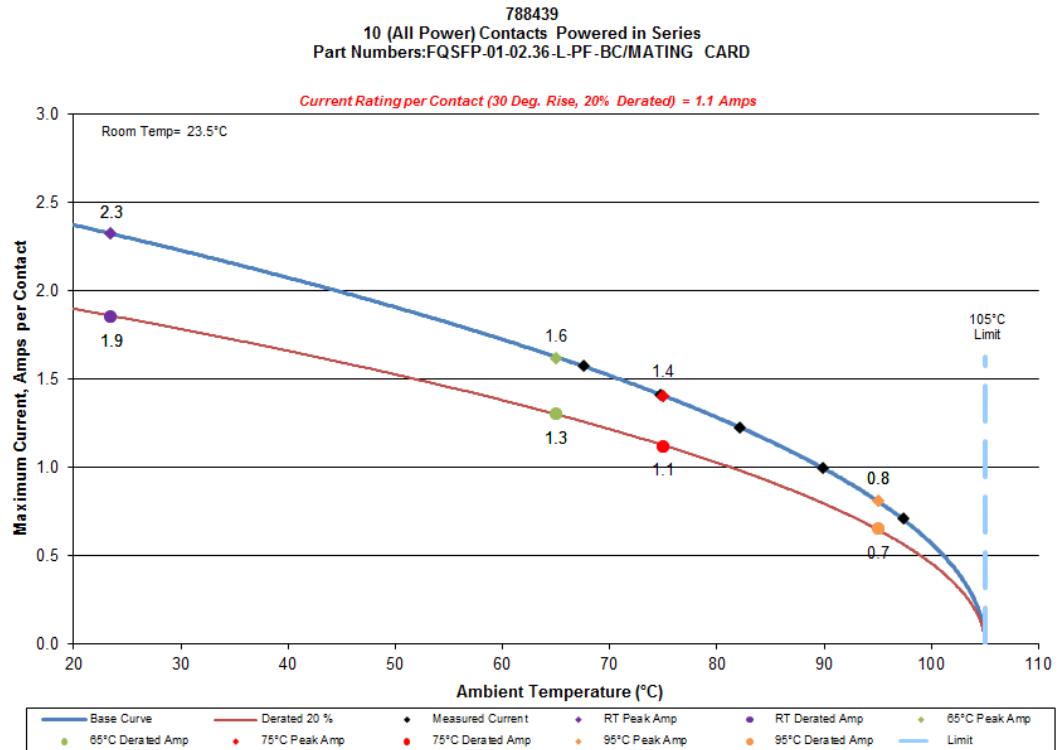

DATA SUMMARIES

c. Linear configuration with 6 adjacent power conductors/contacts powered

788439
6 (2X3) Contacts Powered in Series
Part Numbers: FQSFP-01-02.36-L-PF-BC/MATING CARD

788439
6 (2X3) Contacts Powered in Series
Part Numbers: FQSFP-01-02.36-L-PF-BC/MATING CARD



DATA SUMMARIES

d. Linear configuration with 8 adjacent power conductors/contacts powered

DATA SUMMARIES

e. Linear configuration with 10 adjacent power conductors/contacts powered

DATA SUMMARIES

MATING/UNMATING:

Thermal Aging Group

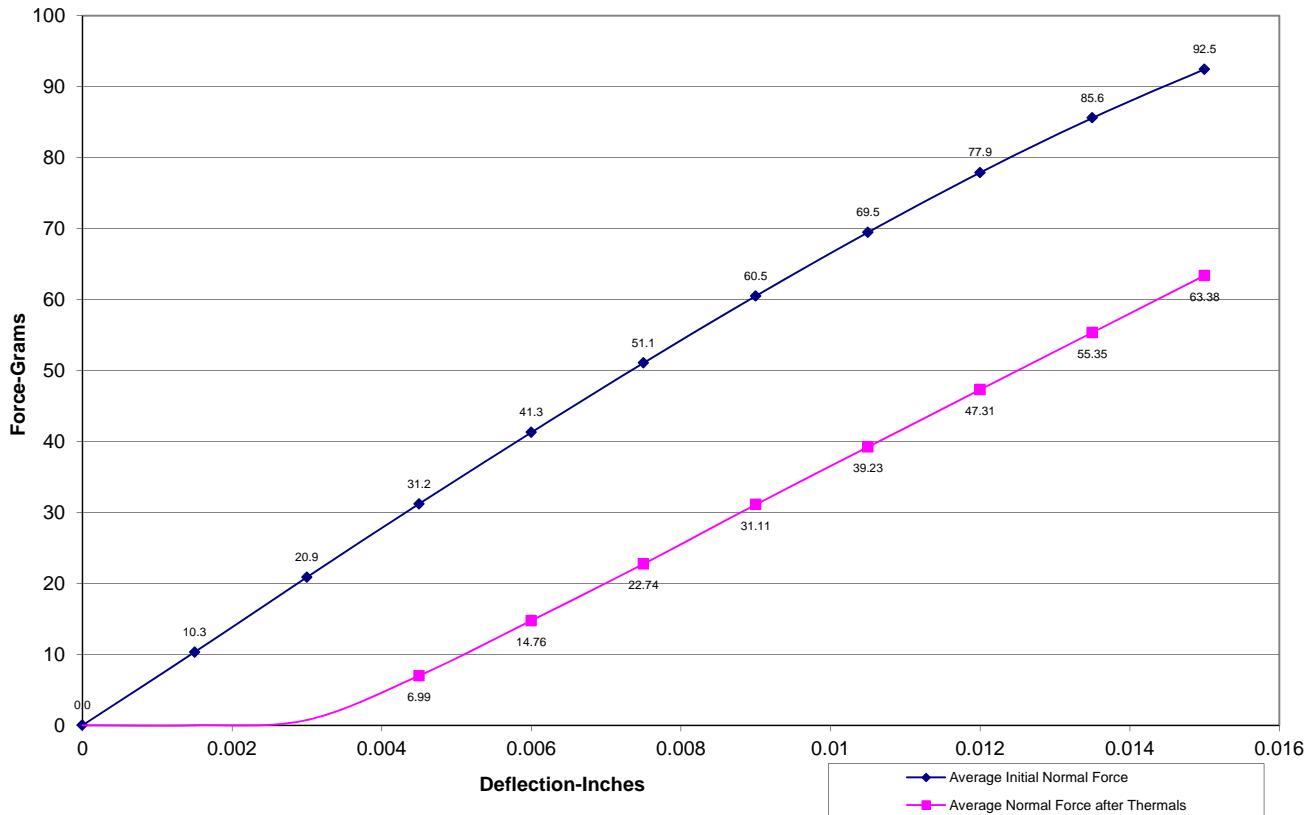
	Initial				After Thermals			
	Mating		Unmating		Mating		Unmating	
	Newton	Force (Lbs)	Newton	Force (Lbs)	Newton	Force (Lbs)	Newton	Force (Lbs)
Minimum	18.26	4.11	6.30	1.42	10.77	2.42	3.34	0.75
Maximum	27.13	6.10	10.52	2.36	19.63	4.41	5.90	1.33
Average	22.85	5.14	8.18	1.84	15.70	3.53	4.67	1.05
St Dev	3.05	0.69	1.69	0.38	3.16	0.71	1.00	0.23
Count	8	8	8	8	8	8	8	8

Mating/Unmating Durability Group

	Initial				After 25 Cycles			
	Mating		Unmating		Mating		Unmating	
	Newton	Force (Lbs)	Newton	Force (Lbs)	Newton	Force (Lbs)	Newton	Force (Lbs)
Minimum	17.07	3.84	4.22	0.95	18.32	4.12	5.75	1.29
Maximum	24.42	5.49	11.24	2.53	26.83	6.03	12.04	2.71
Average	20.77	4.67	6.77	1.52	22.12	4.97	8.80	1.98
St Dev	2.87	0.64	2.24	0.50	2.95	0.66	2.03	0.46
Count	8	8	8	8	8	8	8	8
	After 50 Cycles				After 75 Cycles			
	Mating		Unmating		Mating		Unmating	
	Newton	Force (Lbs)	Newton	Force (Lbs)	Newton	Force (Lbs)	Newton	Force (Lbs)
	18.58	4.18	6.84	1.54	19.16	4.31	7.42	1.67
	27.15	6.10	12.15	2.73	27.81	6.25	12.61	2.83
Average	22.74	5.11	9.20	2.07	23.52	5.29	9.75	2.19
St Dev	2.90	0.65	1.68	0.38	3.04	0.68	1.61	0.36
Count	8	8	8	8	8	8	8	8
	After 100 Cycles				After Humidity			
	Mating		Unmating		Mating		Unmating	
	Newton	Force (Lbs)	Newton	Force (Lbs)	Newton	Force (Lbs)	Newton	Force (Lbs)
	19.67	4.42	8.08	1.82	11.90	2.68	4.03	0.91
	28.01	6.30	12.94	2.91	17.98	4.04	5.47	1.23
Average	23.73	5.33	10.11	2.27	14.97	3.37	4.64	1.04
St Dev	2.98	0.67	1.55	0.35	2.23	0.50	0.52	0.12
Count	8	8	8	8	8	8	8	8

DATA SUMMARIES Continued

NORMAL FORCE (FOR CONTACTS TESTED IN THE HOUSING):


- 1) Calibrated force gauges are used along with computer controlled positioning equipment.
- 2) For Normal force 8-10 measurements are taken and the averages reported.

C-416

Initial	Deflections in inches Forces in Grams										
	0.0015	0.0030	0.0045	0.0060	0.0075	0.0090	0.0105	0.0120	0.0135	0.0150	SET
Averages	10.31	20.87	31.21	41.27	51.07	60.49	69.47	77.89	85.60	92.46	0.0014
Min	9.30	18.60	27.60	35.90	44.30	53.00	61.80	70.60	78.80	86.20	0.0011
Max	11.20	22.20	32.70	43.50	53.50	63.40	72.70	81.40	89.10	96.00	0.0015
St. Dev	0.584	0.931	1.367	2.068	2.637	2.954	3.171	3.118	3.101	3.020	0.0001
Count	10	10	10	10	10	10	10	10	10	10	10

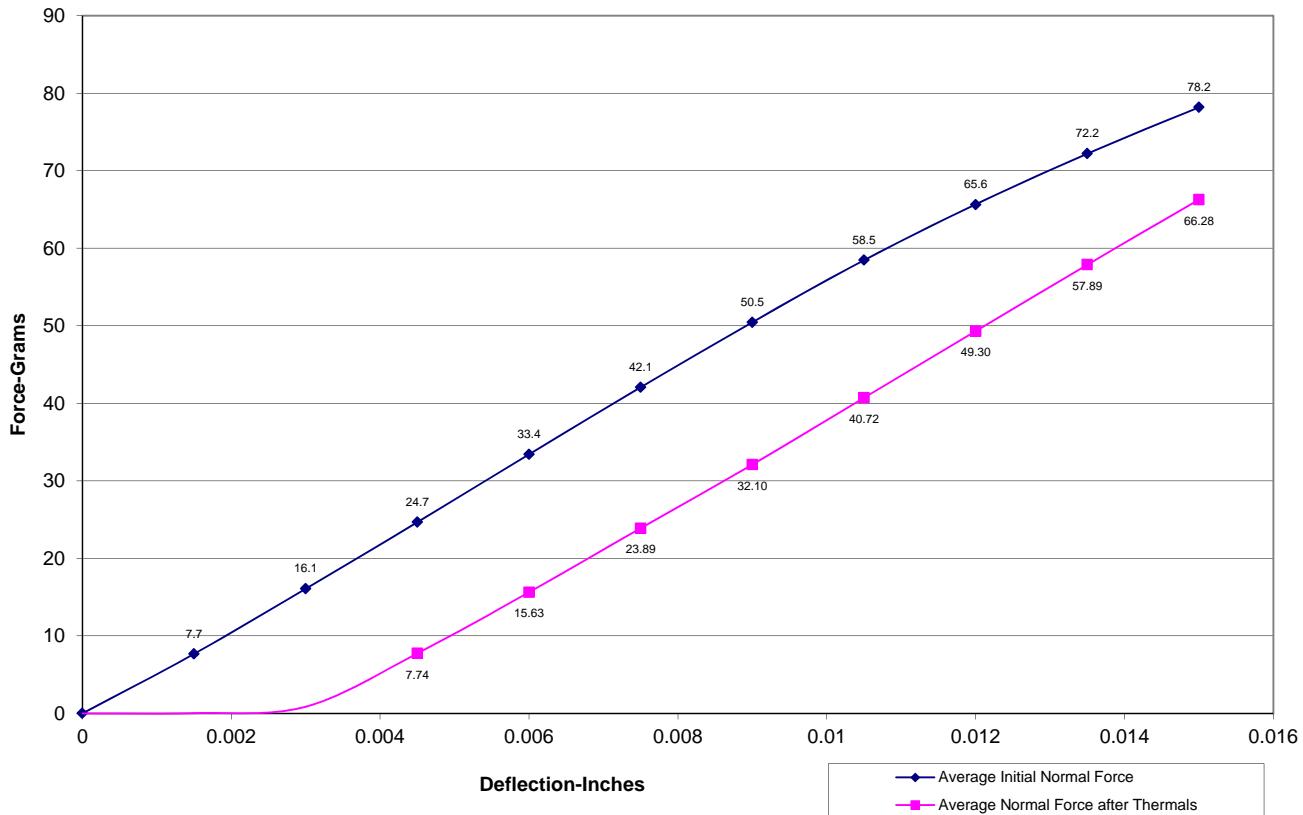
After Thermal	Deflections in inches Forces in Grams										
	0.0015	0.0030	0.0045	0.0060	0.0075	0.0090	0.0105	0.0120	0.0135	0.0150	SET
Averages	0.00	0.75	6.99	14.76	22.74	31.11	39.23	47.31	55.35	63.38	0.0039
Min	0.00	0.00	1.50	6.40	12.30	19.40	26.90	34.70	42.00	49.70	0.0029
Max	0.00	2.90	9.90	19.90	29.30	38.90	48.80	58.10	67.10	76.10	0.0049
St. Dev	0.000	1.174	2.690	4.544	5.963	7.118	7.770	8.159	8.647	9.187	0.0008
Count	10	10	10	10	10	10	10	10	10	10	10

Normal Force - C-416-XX
Average Initial vs Average Thermal

DATA SUMMARIES Continued

NORMAL FORCE (FOR CONTACTS TESTED IN THE HOUSING):

- 1) Calibrated force gauges are used along with computer controlled positioning equipment.
- 2) For Normal force 8-10 measurements are taken and the averages reported.


C-417

Initial	Deflections in inches Forces in Grams										
	0.0015	0.0030	0.0045	0.0060	0.0075	0.0090	0.0105	0.0120	0.0135	0.0150	SET
Averages	7.67	16.08	24.66	33.43	42.07	50.45	58.49	65.64	72.22	78.19	0.0010
Min	6.10	13.50	21.60	29.70	37.90	46.00	54.30	60.20	66.40	72.00	0.0008
Max	9.20	18.90	28.60	37.90	46.90	55.60	63.70	71.50	78.70	85.00	0.0011
St. Dev	0.984	1.812	2.461	3.010	3.360	3.650	3.548	3.783	4.028	4.133	0.0001
Count	10	10	10	10	10	10	10	10	10	10	10

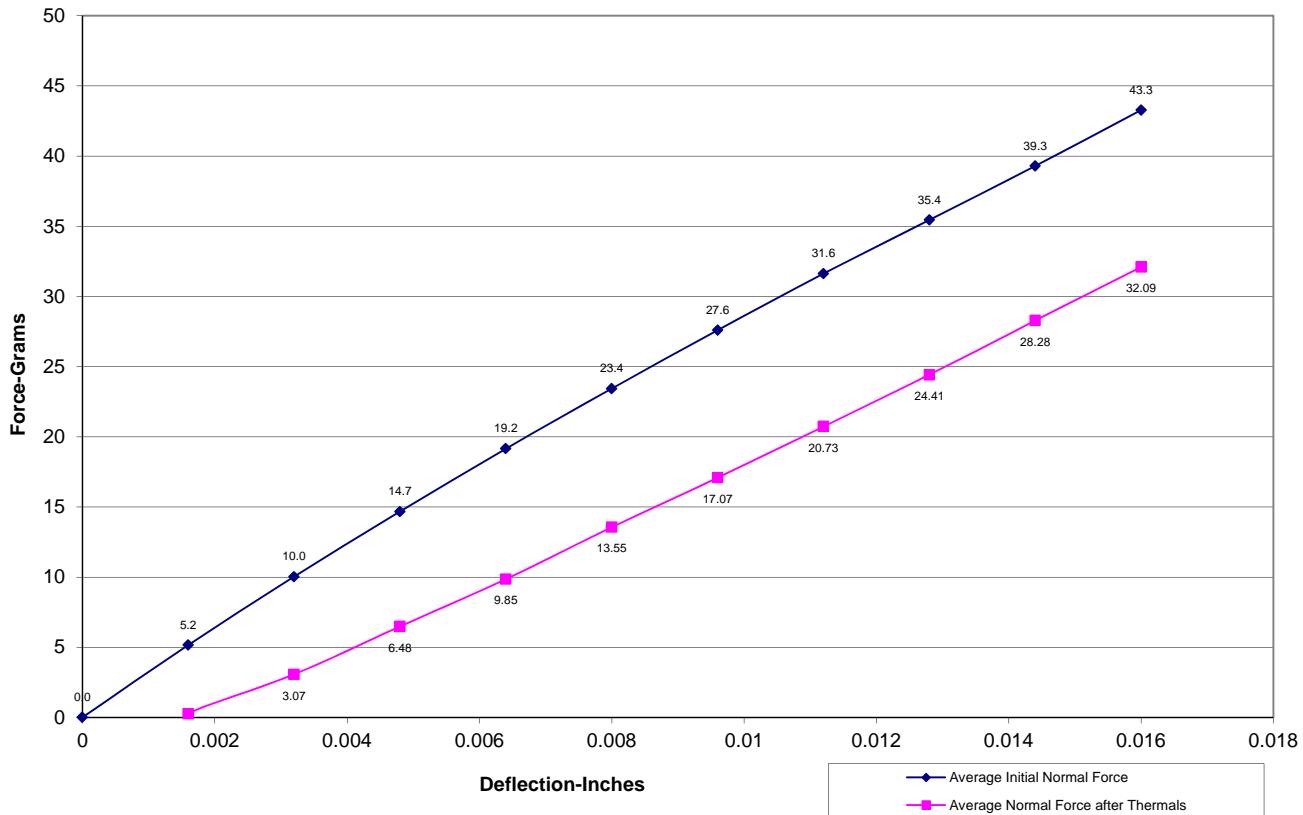
After Thermal	Deflections in inches Forces in Grams										
	0.0015	0.0030	0.0045	0.0060	0.0075	0.0090	0.0105	0.0120	0.0135	0.0150	SET
Averages	0.03	0.87	7.74	15.63	23.89	32.10	40.72	49.30	57.89	66.28	0.0030
Min	0.00	0.00	4.10	12.00	21.40	29.70	38.20	46.30	54.20	62.30	0.0024
Max	0.30	2.80	10.80	18.50	26.20	34.00	42.40	51.00	59.70	68.90	0.0038
St. Dev	0.100	1.217	2.324	2.185	1.693	1.587	1.452	1.462	1.686	1.867	0.0005
Count	9	9	9	9	9	9	9	9	9	9	9

Normal Force - C-417-XX
Average Initial vs Average Thermal

DATA SUMMARIES Continued

NORMAL FORCE (FOR CONTACTS TESTED IN THE HOUSING):

- 1) Calibrated force gauges are used along with computer controlled positioning equipment.
- 2) For Normal force 8-10 measurements are taken and the averages reported.


C-418 Signal

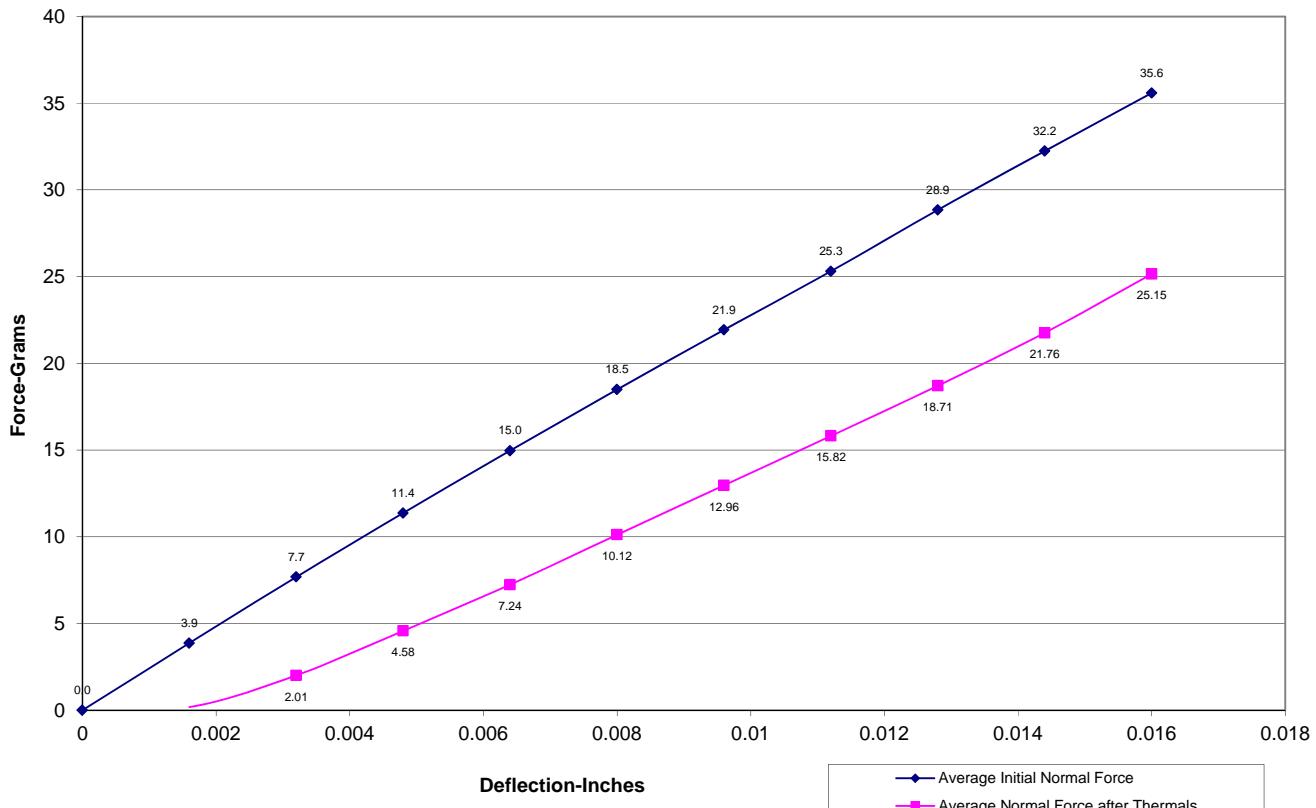
Initial	Deflections in inches Forces in Grams										
	0.0016	0.0032	0.0048	0.0064	0.0080	0.0096	0.0112	0.0128	0.0144	0.0160	SET
Averages	5.16	10.02	14.67	19.15	23.43	27.59	31.62	35.44	39.29	43.27	0.0011
Min	4.40	9.00	13.50	17.60	21.80	26.00	29.60	33.50	37.60	41.60	0.0004
Max	7.20	12.30	17.40	22.00	26.40	30.60	34.50	38.40	42.40	45.90	0.0016
St. Dev	0.958	1.116	1.306	1.450	1.498	1.557	1.613	1.626	1.656	1.489	0.0003
Count	10	10	10	10	10	10	10	10	10	10	10

After Thermal	Deflections in inches Forces in Grams										
	0.0016	0.0032	0.0048	0.0064	0.0080	0.0096	0.0112	0.0128	0.0144	0.0160	SET
Averages	0.25	3.07	6.48	9.85	13.55	17.07	20.73	24.41	28.28	32.09	0.0027
Min	0.00	0.30	4.50	7.40	10.80	14.20	17.70	21.40	25.00	28.30	0.0012
Max	1.70	5.70	9.60	13.40	17.70	21.70	25.60	29.40	33.00	36.80	0.0034
St. Dev	0.538	1.462	1.685	2.033	2.367	2.654	2.788	2.919	2.916	2.954	0.0006
Count	10	10	10	10	10	10	10	10	10	10	10

Normal Force - Average - C-418-SIG
Initial vs Average Thermal

DATA SUMMARIES Continued

NORMAL FORCE (FOR CONTACTS TESTED IN THE HOUSING):


- 1) Calibrated force gauges are used along with computer controlled positioning equipment.
- 2) For Normal force 8-10 measurements are taken and the averages reported.

C-418 Ground

Initial	Deflections in inches Forces in Grams										
	0.0016	0.0032	0.0048	0.0064	0.0080	0.0096	0.0112	0.0128	0.0144	0.0160	SET
Averages	3.86	7.69	11.37	14.96	18.50	21.93	25.31	28.85	32.24	35.59	0.0010
Min	3.70	7.20	10.60	13.70	16.80	19.80	22.80	27.00	30.90	34.10	0.0003
Max	4.10	8.00	11.90	15.70	19.30	23.00	27.50	31.70	35.70	39.90	0.0020
St. Dev	0.135	0.251	0.450	0.665	0.856	1.072	1.344	1.322	1.349	1.659	0.0005
Count	10	10	10	10	10	10	10	10	10	10	10

After Thermal	Deflections in inches Forces in Grams										
	0.0016	0.0032	0.0048	0.0064	0.0080	0.0096	0.0112	0.0128	0.0144	0.0160	SET
Averages	0.18	2.01	4.58	7.24	10.12	12.96	15.82	18.71	21.76	25.15	0.0030
Min	0.00	0.00	2.40	3.90	6.30	8.70	11.30	13.80	16.70	19.70	0.0016
Max	0.90	4.50	8.00	11.50	15.00	18.30	21.50	24.60	27.80	31.00	0.0046
St. Dev	0.322	1.306	1.640	2.016	2.371	2.633	2.811	3.032	3.229	3.446	0.0010
Count	10	10	10	10	10	10	10	10	10	10	10

Normal Force - Average - C-418-GND
Initial vs Average Thermal

DATA SUMMARIES Continued**Cable Pull Force:****0° Pull**

	Force (lbs)
Minimum	43.50
Maximum	62.00
Average	55.80

90° Pull

	Force (lbs)
Minimum	7.50
Maximum	11.00
Average	9.00

DATA SUMMARIES Continued

Cable Flex:

Insulation Resistance minimums, IR

Pin to Pin	
Mated	
Minimum	
Initial	36000
After 500 Flex Cycles	45000
Pin to Ground#1 (S1)	
Mated	
Minimum	
Initial	45000
After 500 Flex Cycles	45000
Pin to Ground#2 (S2)	
Mated	
Minimum	
Initial	45000
After 500 Flex Cycles	45000

Dielectric Withstanding Voltage minimums, DWV

Voltage Rating Summary	
Minimum	
Break Down Voltage	817
Test Voltage	613
Working Voltage	204
Pin to Pin	
Initial Test Voltage	Passed
After 500 Flex Cycles Test Voltage	Passed
Pin to Ground#1 (S1)	
Initial Test Voltage	Passed
After 500 Flex Cycles Test Voltage	Passed
Pin to Ground#2 (S2)	
Initial Test Voltage	Passed
After 500 Flex Cycles Test Voltage	Passed

DATA SUMMARIES Continued

INSULATION RESISTANCE (IR):

LS Pin to LS Pin			
	Mated	Unmated	Unmated
Minimum	FQSFP/CARD	FQSFP	CARD
Initial	45000	45000	Not Tested
Thermal	45000	45000	Not Tested
Humidity	45000	45000	Not Tested
LS Row to LS Row			
	Mated	Unmated	Unmated
Minimum	FQSFP/CARD	FQSFP	CARD
Initial	45000	45000	Not Tested
Thermal	45000	45000	Not Tested
Humidity	45000	45000	Not Tested
LS Pin to Ground			
	Mated	Unmated	Unmated
Minimum	FQSFP/CARD	FQSFP	CARD
Initial	45000	45000	Not Tested
Thermal	45000	45000	Not Tested
Humidity	45000	45000	Not Tested
HS Pin to HS Pin			
	Mated	Unmated	Unmated
Minimum	FQSFP/CARD	FQSFP	CARD
Initial	45000	45000	Not Tested
Thermal	45000	45000	Not Tested
Humidity	45000	45000	Not Tested
HS Row to HS Row			
	Mated	Unmated	Unmated
Minimum	FQSFP/CARD	FQSFP	CARD
Initial	45000	45000	Not Tested
Thermal	45000	45000	Not Tested
Humidity	45000	45000	Not Tested
HS Pin to Ground			
	Mated	Unmated	Unmated
Minimum	FQSFP/CARD	FQSFP	CARD
Initial	45000	45000	Not Tested
Thermal	45000	45000	Not Tested
Humidity	45000	45000	Not Tested

DATA SUMMARIES Continued

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

Voltage Rating Summary	
Minimum	FQSFP/CARD
Break Down Voltage	817
Test Voltage	610
Working Voltage	200

LS Pin to LS Pin	
Initial Test Voltage	Passed
After Thermal Test Voltage	Passed
After Humidity Test Voltage	Passed

LS Row to LS Row	
Initial Test Voltage	Passed
After Thermal Test Voltage	Passed
After Humidity Test Voltage	Passed

LS Pin to Ground	
Initial Test Voltage	Passed
After Thermal Test Voltage	Passed
After Humidity Test Voltage	Passed

HS Pin to HS Pin	
Initial Test Voltage	Passed
After Thermal Test Voltage	Passed
After Humidity Test Voltage	Passed

HS Row to HS Row	
Initial Test Voltage	Passed
After Thermal Test Voltage	Passed
After Humidity Test Voltage	Passed

HS Pin to Ground	
Initial Test Voltage	Passed
After Thermal Test Voltage	Passed
After Humidity Test Voltage	Passed

DATA SUMMARIES Continued**Compliant pin Insertion/Retention force:****FQSFP-01-02.36-L-PF-BC--HASL 0.016" PTH (SIG)**

.016 Signal PTH (HASL)				
1st CYCLE		3rd CYCLE		
	Insertion Force (lbs.)	Withdrawal Force (lbs.)	Insertion Force (lbs.)	Withdrawal Force (lbs.)
Min. (lbs.)	4.06	1.31	3.23	1.51
Max. (lbs.)	5.18	2.12	4.07	2.39
Ave. (lbs.)	4.35	1.72	3.71	1.88

FQSFP-01-02.36-L-PF-BC--HASL 0.016" PTH (GND)

.016 Ground PTH (HASL)				
1st CYCLE		3rd CYCLE		
	Insertion Force (lbs.)	Withdrawal Force (lbs.)	Insertion Force (lbs.)	Withdrawal Force (lbs.)
Min. (lbs.)	5.17	1.27	3.83	1.19
Max. (lbs.)	5.80	2.11	4.31	2.10
Ave. (lbs.)	5.41	1.55	4.07	1.62

FQSFP-01-02.36-L-PF-BC--HASL 0.020" PTH (SIG)

.020 Signal PTH (HASL)				
1st CYCLE		3rd CYCLE		
	Insertion Force (lbs.)	Withdrawal Force (lbs.)	Insertion Force (lbs.)	Withdrawal Force (lbs.)
Min. (lbs.)	1.26	0.94	1.05	0.96
Max. (lbs.)	2.28	1.44	1.82	1.52
Ave. (lbs.)	1.68	1.19	1.48	1.25

FQSFP-01-02.36-L-PF-BC--HASL 0.020" PTH (GND)

.020 Ground PTH (HASL)				
1st CYCLE		3rd CYCLE		
	Insertion Force (lbs.)	Withdrawal Force (lbs.)	Insertion Force (lbs.)	Withdrawal Force (lbs.)
Min. (lbs.)	2.34	1.32	2.25	1.37
Max. (lbs.)	3.61	1.61	3.27	1.83
Ave. (lbs.)	2.86	1.47	2.86	1.61

DATA SUMMARIES Continued

Compliant pin Insertion/Retention force:

FQSFP-01-02.36-L-PF-BC--ENIG 0.020" PTH (SIG)

.020 Signal PTH (ENIG)				
1st CYCLE		3rd CYCLE		
	Insertion Force (lbs.)	Withdrawal Force (lbs.)	Insertion Force (lbs.)	Withdrawal Force (lbs.)
Min. (lbs.)	1.95	1.06	1.19	0.84
Max. (lbs.)	2.42	1.58	1.88	1.43
Ave. (lbs.)	2.26	1.34	1.65	1.21

FQSFP-01-02.36-L-PF-BC--ENIG 0.020" PTH (GND)

.020 Ground PTH (ENIG)				
1st CYCLE		3rd CYCLE		
	Insertion Force (lbs.)	Withdrawal Force (lbs.)	Insertion Force (lbs.)	Withdrawal Force (lbs.)
Min. (lbs.)	2.49	1.25	1.44	0.81
Max. (lbs.)	3.17	1.58	2.32	1.70
Ave. (lbs.)	2.83	1.44	1.91	1.29

DATA SUMMARIES Continued

LLCR Durability:

- 1) A total of 192 points were measured.
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. $\leq +5.0$ mOhms: ----- Stable
 - b. $+5.1$ to $+10.0$ mOhms: ----- Minor
 - c. $+10.1$ to $+15.0$ mOhms: ----- Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: ----- Marginal
 - e. $+50.1$ to $+2000$ mOhms ----- Unstable
 - f. $>+2000$ mOhms: ----- Open Failure

LLCR Measurement Summaries by Pin Type						
mOhm values	Date	1/23/2017	1/26/2017	2/1/2017	2/14/2017	
	Room Temp (Deg C)	22	22	23	22	
	Rel Humidity (%)	36	35	35	35	
	Technician	Troy Cook	Troy Cook	Troy Cook	Troy Cook	
	Actual	Delta	Delta	Delta	Delta	
	Initial	100 Cycles	Therm Shck	Humidity		
Pin Type 1: Signal						
Average	109.50	0.98	1.08	1.58		
St. Dev.	3.15	0.88	1.13	1.59		
Min	105.24	0.01	0.02	0.00		
Max	116.60	4.05	6.28	10.25		
Summary Count	128	128	128	128		
Total Count	128	128	128	128		
Pin Type 2: Ground						
Average	13.64	1.52	3.61	3.03		
St. Dev.	3.59	1.52	4.46	1.86		
Min	8.86	0.03	0.00	0.41		
Max	18.88	5.77	19.68	9.39		
Summary Count	16	16	16	16		
Total Count	16	16	16	16		
Pin Type 3: Row 1						
Average	26.60	1.27	1.83	1.75		
St. Dev.	1.29	1.13	1.07	0.82		
Min	24.05	0.02	0.27	0.55		
Max	29.75	4.43	3.55	3.53		
Summary Count	24	24	24	24		
Total Count	24	24	24	24		
Pin Type 4: Row 2						
Average	32.08	0.96	1.56	1.78		
St. Dev.	0.99	0.77	1.10	1.10		
Min	30.02	0.03	0.28	0.33		
Max	34.45	2.67	3.95	4.50		
Summary Count	24	24	24	24		
Total Count	24	24	24	24		

LLCR Delta Count by Category						
mOhms	Stable	Minor	Acceptable	Marginal	Unstable	Open
	<=5	>5 & <=10	>10 & <=15	>15 & <=50	>50 & <=1000	>1000
100 Cycles	191	1	0	0	0	0
Therm Shck	190	1	0	1	0	0
Humidity	186	5	1	0	0	0

DATA SUMMARIES Continued

LLCR Thermal aging

- 1) A total of 192 points were measured
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. $\leq +5.0$ mOhms: ----- Stable
 - b. $+5.1$ to $+10.0$ mOhms: ----- Minor
 - c. $+10.1$ to $+15.0$ mOhms: ----- Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: ----- Marginal
 - e. $+50.1$ to $+2000$ mOhms ----- Unstable
 - f. $>+2000$ mOhms:----- Open Failure

LLCR Measurement Summaries by Pin Type						
mOhm values	Date	1/24/2017	2/10/2017			
	Room Temp (Deg C)	23	22			
	Rel Humidity (%)	35	32			
	Technician	Troy Cook	Troy Cook			
	Actual	Delta	Delta	Delta		
	Initial	Thermal				
	Pin Type 1: Signal					
	Average	109.51	1.19			
	St. Dev.	3.10	1.21			
	Min	104.85	0.03			
	Max	115.99	5.45			
	Summary Count	128	127			
	Total Count	128	127			
Pin Type 2: Ground						
Average	15.18	3.46				
St. Dev.	4.98	4.85				
Min	9.52	0.61				
Max	25.49	20.22				
Summary Count	16	16				
Total Count	16	16				
Pin Type 3: Row 1						
Average	26.14	1.25				
St. Dev.	1.77	1.24				
Min	23.42	0.02				
Max	30.04	3.45				
Summary Count	24	24				
Total Count	24	24				
Pin Type 4: Row 2						
Average	31.44	1.41				
St. Dev.	1.56	1.42				
Min	29.24	0.04				
Max	34.07	4.22				
Summary Count	24	24				
Total Count	24	24				

Note: Broken solder joint on cable of the signal group.

LLCR Delta Count by Category						
mOhms	Stable	Minor	Acceptable	Marginal	Unstable	Open
	<=5	>5 & <=10	>10 & <=15	>15 & <=50	>50 & <=1000	>1000
Thermal	187	3	0	1	0	0

DATA SUMMARIES Continued

LLCR GAS TIGHT:

- 1) A total of 192 points were measured
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. $\leq +5.0$ mOhms: ----- Stable
 - b. $+5.1$ to $+10.0$ mOhms: ----- Minor
 - c. $+10.1$ to $+15.0$ mOhms: ----- Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: ----- Marginal
 - e. $+50.1$ to $+2000$ mOhms: ----- Unstable
 - f. $>+2000$ mOhms: ----- Open Failure

LLCR Measurement Summaries by Pin Type						
mOhm values	Date	2/10/2016	2/11/2016	Delta	Delta	Delta
	Room Temp (Deg C)	23	23			
	Rel Humidity (%)	31	35			
	Technician	Aaron McKim	Aaron McKim			
	Actual Initial	Delta Acid Vapor		Delta	Delta	Delta
	Pin Type 1: Cable					
	Average	33.61	0.61			
	St. Dev.	2.39	0.56			
	Min	29.49	0.00			
	Max	37.44	2.66			
	Summary Count	128	128			
	Total Count	128	128			
Pin Type 2: Ground						
mOhm values	Average	11.87	0.07			
	St. Dev.	2.36	0.05			
	Min	9.00	0.00			
	Max	15.10	0.19			
	Summary Count	16	16			
	Total Count	16	16			
	Pin Type 3: Signal					
	Average	30.29	0.39			
	St. Dev.	2.63	0.26			
	Min	25.67	0.03			
	Max	33.92	1.12			
	Summary Count	48	48			
	Total Count	48	48			

LLCR Delta Count by Category						
mOhms	Stable	Minor	Acceptable	Marginal	Unstable	Open
	≤ 5	$>5 \text{ & } \leq 10$	$>10 \text{ & } \leq 15$	$>15 \text{ & } \leq 50$	$>50 \text{ & } \leq 1000$	>1000
Acid Vapor	192	0	0	0	0	0

DATA SUMMARIES Continued

LLCR Shock Vib:

- 1) A total of 192 points were measured
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. $\leq +5.0$ mOhms: ----- Stable
 - b. $+5.1$ to $+10.0$ mOhms: ----- Minor
 - c. $+10.1$ to $+15.0$ mOhms: ----- Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: ----- Marginal
 - e. $+50.1$ to $+2000$ mOhms: ----- Unstable
 - f. $>+2000$ mOhms: ----- Open Failure

LLCR Measurement Summaries by Pin Type						
mOhm values	Date		Technician			
	Actual	Delta	Initial	Shock-Vib	Delta	Delta
Pin Type 1: Cable						
Average	113.39	1.72				
St. Dev.	4.49	1.05				
Min	107.00	0.03				
Max	123.42	4.88				
Summary Count	128	128				
Total Count	128	128				
Pin Type 2: Ground						
Average	19.69	7.24				
St. Dev.	6.72	7.15				
Min	9.31	0.18				
Max	35.46	28.70				
Summary Count	16	16				
Total Count	16	16				
Pin Type 3: Signal						
Average	32.18	1.55				
St. Dev.	5.92	1.15				
Min	22.18	0.06				
Max	43.67	3.50				
Summary Count	48	48				
Total Count	48	48				

LLCR Delta Count by Category						
mOhms	Stable	Minor	Acceptable	Marginal	Unstable	Open
	≤ 5	$>5 \text{ & } \leq 10$	$>10 \text{ & } \leq 15$	$>15 \text{ & } \leq 50$	$>50 \text{ & } \leq 1000$	>1000
Shock-Vib	185	3	3	1	0	0

DATA SUMMARIES Continued**Shock Vibration Event Detection:**

Shock and Vibration Event Detection Summary	
Contacts tested	60
Test Condition	C, 100g's, 6ms, Half-Sine
Shock Events	0
Test Condition	V-B, 7.56 rms g
Vibration Events	0
Total Events	0

DATA SUMMARIES Continued

LLCR Insertion/Retention force:

1) The following guidelines are used to categorize the changes in LLCR for compliant pin only. Total 32 signal and 30 ground points were measured.

- $\leq +1.0$ mOhms: ----- Stable
- $> +1.0$ mOhms: ----- Unstable

HASL 0.016"

		LLCR Measurement Summaries by Pin Type			
		2/10/2016	2/12/2016	Delta	Delta
Room Temp (Deg C)		23	23		
Rel Humidity (%)		33	31		
Technician		Aaron McKim	Aaron McKim		
mOhm values		Actual	Delta	Delta	Delta
		Initial	3 Cycles		
HASL .016					
Average		0.04	0.03		
St. Dev.		0.01	0.02		
Min		0.03	0.00		
Max		0.07	0.08		
Summary Count		32	32		
Total Count		32	32		
Pin Type 1: Signal					
Average		0.04	0.03		
St. Dev.		0.01	0.02		
Min		0.03	0.00		
Max		0.07	0.08		
Summary Count		32	32		
Total Count		32	32		
Pin Type 2: Ground					
Average		0.03	0.12		
St. Dev.		0.01	0.05		
Min		0.02	0.01		
Max		0.04	0.18		
Summary Count		30	30		
Total Count		30	30		

LLCR Delta Count by Category						
mOhms	Stable	Minor	Acceptable	Marginal	Unstable	Open
	$\leq .33$	$> .34 \text{ & } \leq .66$	$.67 \text{ & } \leq 1$	$> 15 \text{ & } \leq 50$	$> 50 \text{ & } \leq 1000$	> 1000
3 Cycles	62	0	0	0	0	0

DATA SUMMARIES Continued

HASL 0.020"

LLCR Measurement Summaries by Pin Type			
Date	2/10/2016	2/12/2016	
Room Temp (Deg C)	23	23	
Rel Humidity (%)	34	31	
Technician	Aaron McKim	Aaron McKim	
mOhm values	Actual Initial	Delta 3 Cycles	Delta
Pin Type 1: Signal			
Average	0.04	0.03	
St. Dev.	0.01	0.02	
Min	0.02	0.00	
Max	0.07	0.09	
Summary Count	32	32	
Total Count	32	32	
Pin Type 2: Ground			
Average	0.07	0.03	
St. Dev.	0.03	0.02	
Min	0.04	0.00	
Max	0.14	0.09	
Summary Count	30	30	
Total Count	30	30	

LLCR Delta Count by Category

	Stable	Minor	Acceptable	Marginal	Unstable	Open
mOhms	<=.33	>.34 & <=.66	.67 & <=1	>15 & <=50	>50 & <=1000	>1000
3 Cycles	62	0	0	0	0	0

DATA SUMMARIES Continued

ENIG 0.020"

LLCR Measurement Summaries by Pin Type			
Date	2/10/2016	2/12/2016	
Room Temp (Deg C)	23	23	
Rel Humidity (%)	32	33	
Technician	Aaron McKim	Aaron McKim	
mOhm values	Actual Initial	Delta 3 Cycles	Delta
ENIG .020		Pin Type 1: Signal	
Average	0.17	0.03	
St. Dev.	0.04	0.03	
Min	0.11	0.00	
Max	0.25	0.12	
Summary Count	32	32	
Total Count	32	32	
Pin Type 2: Ground			
Average	0.09	0.04	
St. Dev.	0.03	0.03	
Min	0.03	0.00	
Max	0.19	0.14	
Summary Count	30	30	
Total Count	30	30	

LLCR Delta Count by Category

mOhms	Stable	Minor	Acceptable	Marginal	Unstable	Open
	<=.33	>.34 & <=.66	>.67 & <=1	>15 & <=50	>50 & <=1000	>1000
3 Cycles	62	0	0	0	0	0

Tracking Code: 788439_Report_Rev_2	Part #: FQSFP-01-02.36-L-PF-BC/ MATING-CARD
	Part description: FQSFP/CARD

EQUIPMENT AND CALIBRATION SCHEDULES

Equipment #: HPM-01

Description: Hipot Megommeter

Manufacturer: Hipotronics

Model: H306B-A

Serial #: M9905004

Accuracy: 2 % Full Scale Accuracy

... Last Cal: 05/24/2016, Next Cal: 08/24/2017

Equipment #: TCT-06

Description: Test Resources test stand

Manufacturer: Test Resources

Model: 100R250-12

Serial #: 0710016-01

Accuracy: Speed Accuracy: +/- 5% of indicated speed; Displacement: +/- 5 micrometers.

... Last Cal: 05/03/2016, Next Cal: 05/03/2017

Equipment #: MO-04

Description: Multimeter /Data Acquisition System

Manufacturer: Keithley

Model: 2700

Serial #: 0798688

Accuracy: See Manual

... Last Cal: 04/30/2016, Next Cal: 04/30/2017

Equipment #: OV-05

Description: Forced Air Oven, 5 Cu. Ft., 120 V (Chamber Room)

Manufacturer: Sheldon Mfg.

Model: CE5F

Serial #: 02008008

Accuracy: +/- 5 deg. C

... Last Cal: 02/18/2016, Next Cal: 02/18/2017

Equipment #: THC-01

Description: Temperature/Humidity Chamber (Chamber Room)

Manufacturer: Thermotron

Model: SM-8-7800

Serial #: 30676

Accuracy: See Manual

... Last Cal: 10/24/2016, Next Cal: 10/24/2017

Equipment #: TSC-01

Description: Vertical Thermal Shock Chamber

Manufacturer: Cincinnati Sub Zero

Model: VTS-3-6-6-SC/AC

Serial #: 10-VT14993

Accuracy: See Manual

... Last Cal: 06/30/2016, Next Cal: 06/30/2017

Tracking Code: 788439_Report_Rev_2	Part #: FQSFP-01-02.36-L-PF-BC/ MATING-CARD
	Part description: FQSFP/CARD

EQUIPMENT AND CALIBRATION SCHEDULES

Equipment #: MO-02

Description: Multimeter /Data Acquisition System

Manufacturer: Keithley

Model: 2700

Serial #: 0780546

Accuracy: Last Cal: 6/16/2016, Next Cal: 6/16/2017

Equipment #: PS-01

Description: Power Supply

Manufacturer: Hewlett Packard

Model: 6033A

Serial #: 3329A-07330

Accuracy: Last Cal: 6/12/2016, Next Cal: 6/12/2017

Equipment #: PS-02

Description: Power Supply

Manufacturer: Hewlett Packard

Model: 6033A

Serial #: 2847A-04167

Accuracy: Last Cal: 6/12/2016, Next Cal: 6/12/2017

Equipment #: SVC-01

Description: Shock & Vibration Table

Manufacturer: Data Physics

Model: LE-DSA-10-20K

Serial #: 10037

Accuracy: See Manual

... Last Cal: 11/30/2016, Next Cal: 11/30/2017

Equipment #: ACLM-01

Description: Accelerometer

Manufacturer: PCB Piezotronics

Model: 352C03

Serial #: 115819

Accuracy: See Manual

... Last Cal: 7/9/2016, Next Cal: 7/9/2017

Equipment #: ED-03

Description: Event Detector

Manufacturer: Analysis Tech

Model: 32EHD

Serial #: 1100604

Accuracy: See Manual

... Last Cal: 6/4/2016, Next Cal: 6/4/2017