

Project Number: NA	Tracking Code: TC043--0347		
Requested by: John Reid	Date: 1/13/2004	Product Rev: 4	
Part #: HQCD-030-06.00-STR-TEU-1	Lot #: 1/13/2004	Tech: T. Receveur	Eng: J. Tozier
Part description: Micro Co-ax High Speed Cable Assy, 0.5 mm Pitch			Qty to test: 55
Test Start: 3/29/2004	Test Completed: 3/29/2004		

DVT

PART DESCRIPTION

HQCD-030-06.00-STR-TEU-1

CERTIFICATION

All instruments and measuring equipment were calibrated to National Institute for Standards and Technology (NIST) traceable standards according to ISO 10012-1 and ANSI/NCSL 2540-1, as applicable.

All contents contained herein are the property of Samtec. No portion of this report, in part or in full shall be reproduced without prior written approval of Samtec.

SCOPE

To perform the following tests: DVT

APPLICABLE DOCUMENTS

Standards: EIA Publication 364

TEST SAMPLES AND PREPARATION

- 1) All materials were manufactured in accordance with the applicable product specification.
- 2) All test samples were identified and encoded to maintain traceability throughout the test sequences.
- 3) After soldering, the parts to be used for LLCR testing were cleaned according to TLWI-0001
- 4) Either an automated cleaning procedure or an ultrasonic cleaning procedure may be used
- 5) The automated procedure is used with aqueous compatible soldering materials
- 6) The ultrasonic procedure can be used with either aqueous or non-aqueous soldering components and follows:
 - a) Sample test boards are to be ultrasonically cleaned after test lead attachment, preparation and/or soldering using the following process.
 - i) Temperature: -----55° C +/- 5° C
 - ii) Frequency:-----40 KHz
 - iii) Immersion Time: -----5 to 10 Minutes
 - b) Sample test boards are immersed into Branson 3510 cleaner containing Kyzen Ionox HC1 (or equivalent) with the following conditions:
 - i) Temperature: -----55° C +/- 5° C
 - ii) Frequency:-----40 KHz
 - iii) Immersion Time: -----5 to 10 Minutes
 - c) Sample test boards are removed and placed into the Branson 3510 cleaner containing deionized water with the following conditions:
 - i) Temperature: -----55° C +/- 5° C
 - ii) Frequency:-----40 KHz
 - iii) Immersion Time: -----5 to 10 Minutes
 - d) Sample test boards are removed and placed in a beaker positioned on a hot plate with a magnetic stirrer containing deionized water warmed to 55° C +/- 5° C for 1/2 to 1 minute
 - e) Upon removal, the sample test boards are rinsed for 1/2 to 1 minute in room temperature free flowing deionized water.
 - f) After the final rinse, the sample test boards are dried in an air-circulating oven for 10 to 15 minutes at 50° C +/- 5° C
 - g) Sample test boards are then allowed to set and recover to room ambient condition prior to testing.
- 7) Parts not intended for testing LLCR and DWV/IR are visually inspected and cleaned if necessary.
- 8) Any additional preparation will be noted in the individual test procedures.

FLOWCHARTS

TEST STEP	GROUP A 1 board min 6 Contacts in series, clustered if possible
01	CCC

Tabulate calculated current at RT, 65° C, 75° C and 95° C

after derating 20% and based on 105 ° C

CCC, Temp rise = EIA-364-70

TEST STEP	DV and EM END			
	2 Mating Parts	2 Mating Parts	2 Mating Parts	2 Mating Parts
	GROUP 1 2 Boards Ambient	GROUP 2A 2 Boards Ambient	GROUP 2b 2 Boards Thermal	GROUP 2c 2 Boards Humidity
01	IR	DWV/Working Voltage	Thermal Aging	Humidity
02	Data Review		DWV/Working Voltage	DWV/Working Voltage
03	Thermal Aging			
04	IR			
05	Data Review			
06	Humidity			
07	IR			

Thermal Aging = EIA-364-17, Test Condition 4, 105 deg C;

Time Condition 'B' (250 hours)

Humidity =EIA-364-31, Test Condition B (240 Hours)

and Method III (+25 ° C to +65 ° C @ 90%RH to 98% RH)

delete steps 7a and 7b

TEST STEP	DV and END	
	5 Mating Parts	5 Mating Parts
	GROUP A, -DV End 5 boards min MOTHER BOARDS Cable Pull, SIG	GROUP A, -DV End 5 boards min MOTHER BOARDS Cable Pull, GND
01	Pull test, Cable Break	Pull test, Cable Break

Secure one cable for SIG test and ALL cables for GND

Monitor both Signal and GND Continuity

record forces when SIG and GND continuity fails

FLOWCHARTS Continued

<u>TEST STEP</u>	GROUP 1 2 Boards
-	
01	Cable Resistance
02	Data Review
03	Thermal Aging
04	Cable Resistance
05	Data Review
06	Humidity
07	Cable Resistance

Thermal Aging = EIA-364-17, Test Condition 4, 105 deg C;

Time Condition 'B' (250 hours)

Humidity =EIA-364-31, Test Condition B (240 Hours)

**and Method III (+25 ° C to +65 ° C @ 90%RH to 98%
RH)**

delete steps 7a and 7b

ATTRIBUTE DEFINITIONS

Following is a brief, simplified description of attributes.

THERMAL AGING:

- 1) EIA-364-17, *Temperature Life with or without Electrical Load Test Procedure for Electrical Connectors.*
 - a) Test Condition 4 at 105° C.
 - b) Test Time Condition B for 250 hours.
- 2) Connectors are mated.

CYCLIC HUMIDITY:

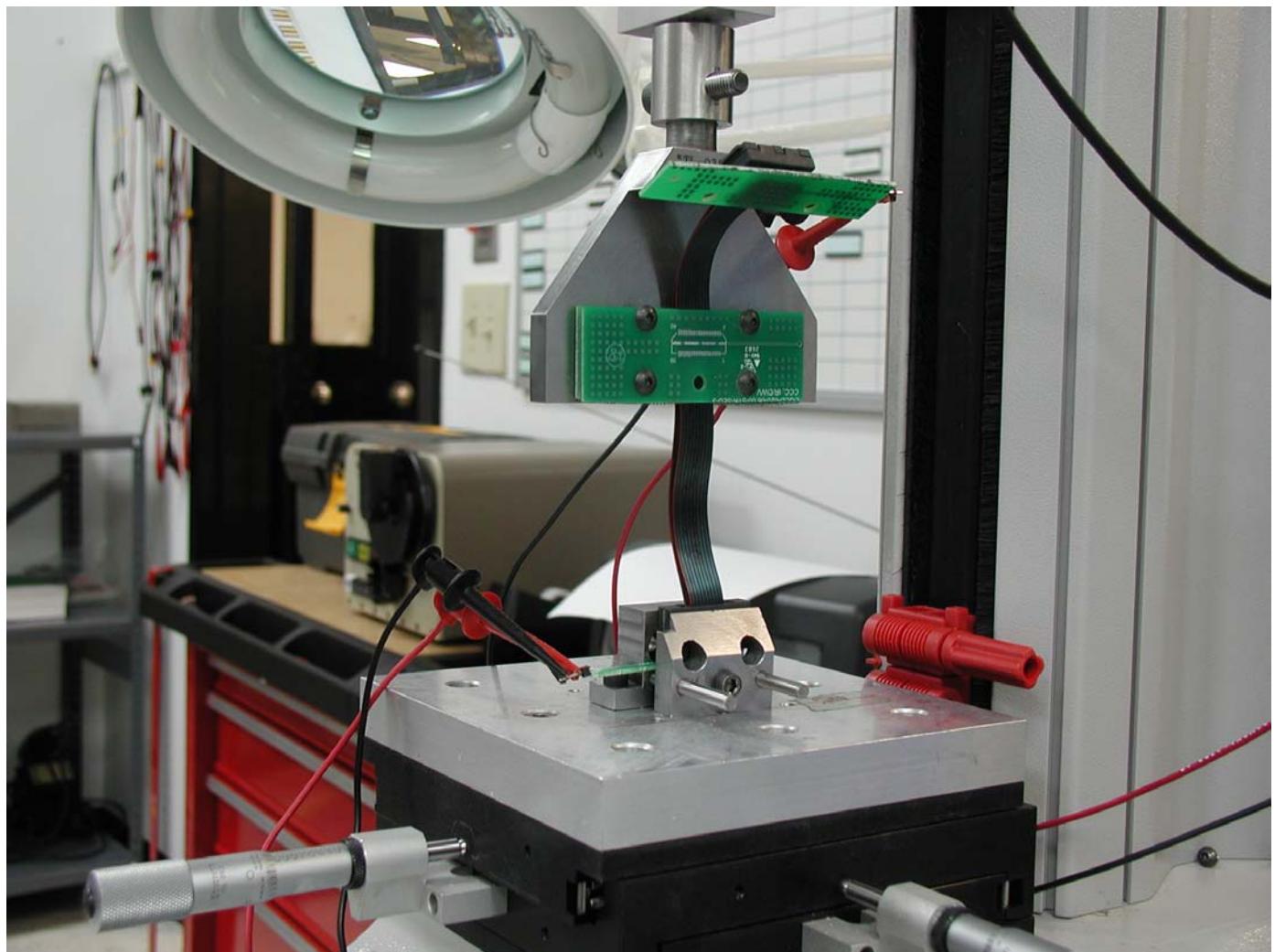
- 1) Reference document: EIA-364-31, *Humidity Test Procedure for Electrical Connectors.*
 - a) Test Condition B, 240 Hours.
 - b) Method III, +25° C to +65° C, 90% to 98% Relative Humidity excluding sub-cycles 7a and 7b.
- 2) Connectors are mated.

TEMPERATURE RISE (Current Carrying Capacity, CCC):

- 1) EIA-364-70, *Temperature Rise versus Current Test Procedure for Electrical Connectors and Sockets.*
- 2) When current passes through a contact, the temperature of the contact increases as a result of I^2R (resistive) heating.
- 3) The number of contacts being investigated plays a significant part in power dissipation and therefore temperature rise.
- 4) The size of the temperature probe can affect the measured temperature.
- 5) Copper traces on PC boards will contribute to temperature rise:
 - a) Self heating (resistive)
 - b) Reduction in heat sink capacity affecting the heated contacts
- 6) A de-rating curve, usually 20%, is calculated.
- 7) Calculated de-rated currents at three temperature points are reported:
 - a) Ambient
 - b) 65° C
 - c) 75° C
 - d) 95° C
- 8) Typically, neighboring contacts (in close proximity to maximize heat build up) are energized.
- 9) The thermocouple (or temperature measuring probe) will be positioned at a location to sense the maximum temperature in the vicinity of the heat generation area.
- 10) A computer program, *TR 803.exe*, ensures accurate stability for data acquisition.
- 11) Hook-up wire cross section is larger than the cross section of any connector leads/PC board traces, jumpers, etc.
- 12) Hook-up wire length is longer than the minimum specified in the referencing standard.

ATTRIBUTE DEFINITIONS Continued

DIELECTRIC WITHSTANDING VOLTAGE (DWV):


To determine if the sockets can operate at its rated voltage and withstand momentary over potentials due to switching, surges, and other similar phenomenon. Separate samples are used to evaluate the effect of environmental stresses so not to influence the readings from arcing that occurs during the measurement process.

- 1) PROCEDURE:
 - a) Reference document: EIA-364-20, *Withstanding Voltage Test Procedure for Electrical Connectors*.
 - b) Test Conditions:
 - i) Between Adjacent Contacts
 - ii) Mated
 - iii) Mounted
 - iv) Rate of Application 500 V/Sec
 - v) Test Voltage (VAC) until breakdown occurs
- 2) MEASUREMENTS/CALCULATIONS
 - a) The breakdown voltage shall be measured and recorded.
 - b) The dielectric withstand voltage shall be recorded as 75% of the minimum breakdown voltage.
 - c) The working voltage shall be recorded as one-third (1/3) of the dielectric withstand voltage (one-fourth of the breakdown voltage).

INSULATION RESISTANCE (IR):

To determine the resistance of insulation materials to leakage of current through or on the surface of these materials when a DC potential is applied.

- 1) PROCEDURE:
 - a) Reference document: EIA-364-21, *Insulation Resistance Test Procedure for Electrical Connectors*.
 - b) Test Conditions:
 - i) Between Adjacent Contacts
 - ii) Mated
 - iii) Mounted
 - iv) Electrification Time 2.0 minutes
 - v) Test Voltage (VDC) corresponding to calibration settings for measuring resistances
- 2) MEASUREMENTS:
 - a) When the specified test voltage is applied (VDC), the insulation resistance shall not be less than 1000 megohms.

SUPPLEMENTAL TESTS:**1. Connector Pull ... Secure cable near cable center and pull on connector****a. At 0°, in-line with cable**

Fig 1
0° connector pull. Notice the electrical continuity hook-up wires

RESULTS

Temperature Rise, CCC At 95°C, relative to 105°C and 20% de-rated

- At Center of Cable
 - 6 Adjacent Conductors Powered-----0.42 A

Dielectric Withstanding Voltage minimums, DWV

- Initial
 - Breakdown
 - Mated
 - Top Cable -----700 VAC
 - Bottom Cable -----900 VAC
 - Unmated
 - Top Cable -----1000 VAC
 - Bottom Cable -----600 VAC
 - DWV
 - Mated
 - Top Cable -----525 VAC
 - Bottom Cable -----675 VAC
 - Unmated
 - Top Cable -----750 VAC
 - Bottom Cable -----450 VAC
 - Working voltage
 - Mated
 - Top Cable -----175 VAC
 - Bottom Cable -----225 VAC
 - Unmated
 - Top Cable -----250 VAC
 - Bottom Cable -----150 VAC
- Thermal
 - Breakdown
 - Mated
 - Top Cable -----1000 VAC
 - Bottom Cable -----1200 VAC
 - Unmated
 - Top Cable -----1000 VAC
 - Bottom Cable -----1100 VAC
 - DWV
 - Mated
 - Top Cable -----750 VAC
 - Bottom Cable -----900 VAC
 - Unmated
 - Top Cable -----750 VAC
 - Bottom Cable -----825 VAC
 - Working voltage
 - Mated
 - Top Cable -----250 VAC
 - Bottom Cable -----300 VAC
 - Unmated
 - Top Cable -----250 VAC
 - Bottom Cable -----275 VAC
- Humidity
 - Breakdown
 - Mated
 - Top Cable -----700 VAC
 - Bottom Cable -----900 VAC

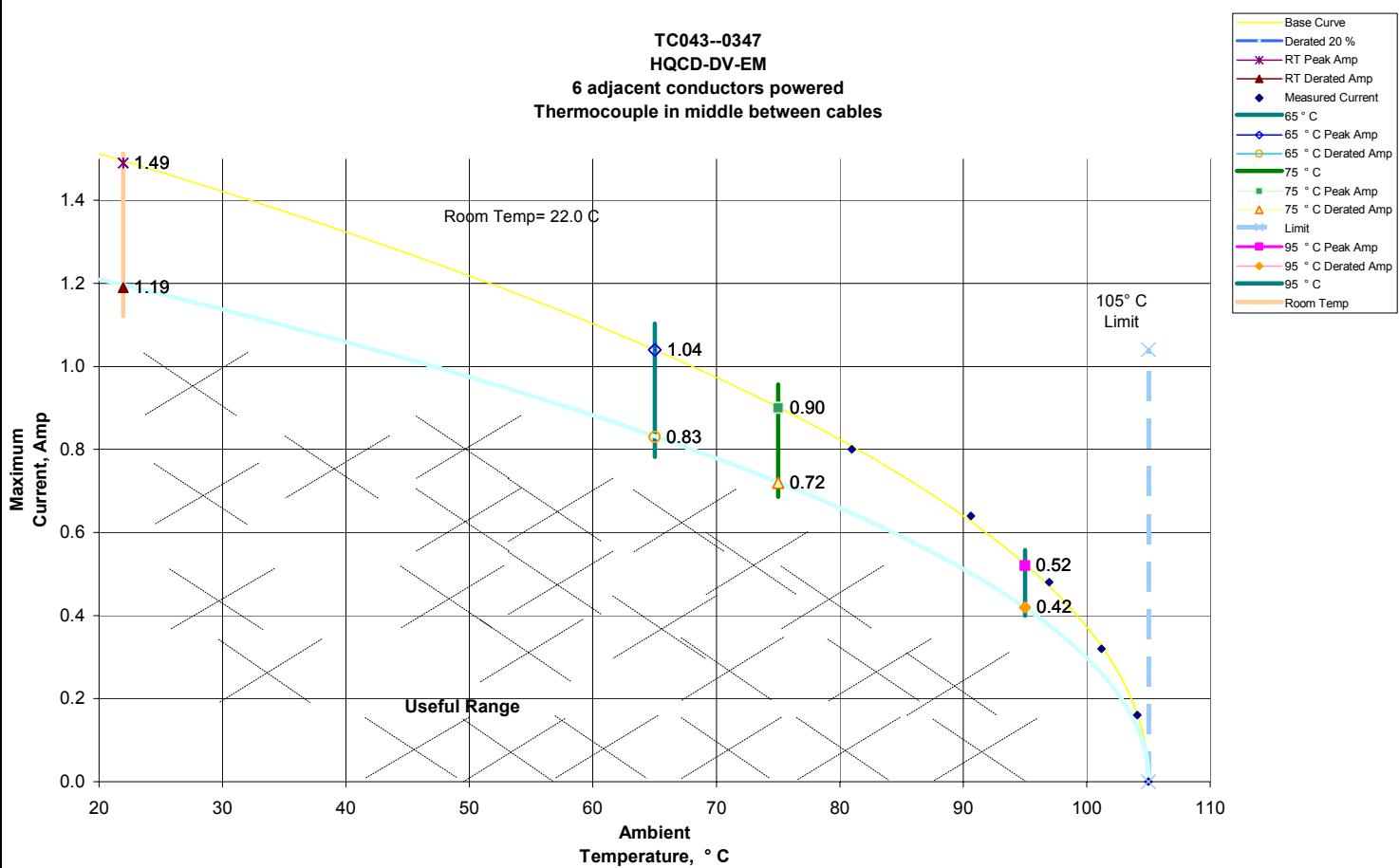
- **Unmated**
 - Top Cable ----- 1000 VAC
 - Bottom Cable ----- 1100 VAC
- **DWV**
 - **Mated**
 - Top Cable ----- 525 VAC
 - Bottom Cable ----- 675 VAC
 - **Unmated**
 - Top Cable ----- 750 VAC
 - Bottom Cable ----- 825 VAC
- **Working voltage**
 - **Mated**
 - Top Cable ----- 175 VAC
 - Bottom Cable ----- 225 VAC
 - **Unmated**
 - Top Cable ----- 250 VAC
 - Bottom Cable ----- 275 VAC

Insulation Resistance minimums, IR

- **Initial**
 - **Mated**
 - Top Row ----- 7,000 Meg Ω ----- Pass
 - Bottom Row ----- 25,000 Meg Ω ----- Pass
 - **Unmated**
 - Top Row ----- 8,000 Meg Ω ----- Pass
 - Bottom Row ----- 25,000 Meg Ω ----- Pass
- **Thermal**
 - **Mated**
 - Top Row ----- 35,000 Meg Ω
 - Bottom Row ----- 35,000 Meg Ω
 - **Unmated**
 - Top Row ----- 25,000 Meg Ω
 - Bottom Row ----- 35,000 Meg Ω
- **Humidity**
 - **Mated**
 - Top Row ----- 75,000 Meg Ω
 - Bottom Row ----- 100,000 Meg Ω
 - **Unmated**
 - Top Row ----- 100,000 Meg Ω
 - Bottom Row ----- 100,000 Meg Ω

Supplemental – Connector/Cable Pull

- **Sig**
 - DV ----- 21.0 lbs min
 - EM ----- 25.0 lbs min
- **GND**
 - DV ----- 140.0 lbs min
 - EM ----- 120.0 lbs min


Supplemental – Conductor Resistances, Snaked Signal Maxima

- **Initial** ----- 197.9 mΩ
- **Thermal** ----- 197.9 mΩ
- **Humidity** ----- 206.2 mΩ

DATA SUMMARIES

TEMPERATURE RISE (Current Carrying Capacity, CCC):

- 1) High quality thermocouples whose temperature slopes track one another were used for temperature monitoring.
- 2) The thermocouples were placed at a location to sense the maximum temperature generated during testing.
- 3) Temperature readings recorded are those for which three successive readings, 15 minutes apart, differ less than 1° C (computer controlled data acquisition).
- 4) Two configurations were tested and temperatures were monitored at the PCB near cable termination and at a point near the center of the cable, remote from the PBC:
 - a) SIX adjacent signal wires powered
 - b) Ground Plane Powered

DATA SUMMARIES Continued**DIELECTRIC WITHSTANDING VOLTAGE (DWV):**

Initial, VAC					
Voltage Rate 500 VAC Per Sec.					
Test Voltage Until Breakdown Occurs					
TOP					
Mated			Un Mated		
<u>Breakdown Voltage</u>	<u>DWV</u>	<u>Working Voltage</u>	<u>Breakdown Voltage</u>	<u>DWV</u>	<u>Working Voltage</u>
Average	700	525	175	1000	750
Min	700	525	175	1000	750
Max	700	525	175	1000	750
BOTTOM					
Mated			Un Mated		
<u>Breakdown Voltage</u>	<u>DWV</u>	<u>Working Voltage</u>	<u>Breakdown Voltage</u>	<u>DWV</u>	<u>Working Voltage</u>
Average	900	675	225	600	450
Min	900	675	225	600	450
Max	900	675	225	600	450

Thermal, VAC					
Voltage Rate 500 VAC Per Sec.					
Test Voltage Until Breakdown Occurs					
TOP					
Mated			Un Mated		
<u>Breakdown Voltage</u>	<u>DWV</u>	<u>Working Voltage</u>	<u>Breakdown Voltage</u>	<u>DWV</u>	<u>Working Voltage</u>
Average	1000	750	250	1000	750
Min	1000	750	250	1000	750
Max	1000	750	250	1000	750
BOTTOM					
Mated			Un Mated		
<u>Breakdown Voltage</u>	<u>DWV</u>	<u>Working Voltage</u>	<u>Breakdown Voltage</u>	<u>DWV</u>	<u>Working Voltage</u>
Average	1200	900	300	1100	825
Min	1200	900	300	1100	825
Max	1200	900	300	1100	825

DATA SUMMARIES Continued**DIELECTRIC WITHSTANDING VOLTAGE (DWV):**

Humidity, VAC					
Voltage Rate 500 VAC Per Sec.					
Test Voltage Until Breakdown Occurs					
TOP					
Mated			Un Mated		
Breakdown Voltage	DWV	Working Voltage	Breakdown Voltage	DWV	Working Voltage
Average	700	525	175	1000	750
Min	700	525	175	1000	750
Max	700	525	175	1000	750
BOTTOM					
Mated			Un Mated		
Breakdown Voltage	DWV	Working Voltage	Breakdown Voltage	DWV	Working Voltage
Average	900	675	225	1100	825
Min	900	675	225	1100	825
Max	900	675	225	1100	825

DATA SUMMARIES Continued**INSULATION RESISTANCE (IR):**

Electrification Time <i>Two (2) minutes</i>			
Initial, Meg Ohms			
	Top Row	Bottom Row	Top Row
	Mated	Mated	Unmated
	<u>Insulation Resistance</u>	<u>Insulation Resistance</u>	<u>Insulation Resistance</u>
Average	16000	25000	14000
Min	7000	25000	8000
Max	25000	25000	20000
			27500
			25000
			30000

Electrification Time <i>Two (2) minutes</i>			
Thermal, Meg Ohms			
	Top Row	Bottom Row	Top Row
	Mated	Mated	Unmated
	<u>Insulation Resistance</u>	<u>Insulation Resistance</u>	<u>Insulation Resistance</u>
Average	35000	35000	25000
Min	35000	35000	25000
Max	35000	35000	25000
			35000
			35000
			35000

Electrification Time <i>Two (2) minutes</i>			
Humidity, Meg Ohms			
	Top Row	Bottom Row	Top Row
	Mated	Mated	Unmated
	<u>Insulation Resistance</u>	<u>Insulation Resistance</u>	<u>Insulation Resistance</u>
Average	75000	100000	100000
Min	75000	100000	100000
Max	75000	100000	100000
			100000
			100000
			100000

DATA SUMMARIES Continued**SUPPLEMENTAL TESTS:****Connector Pull SIG, DV**

SIG Pull DV	Force (Lbs)
Minimum	21.0
Maximum	70.0
Average	46.8

Connector Pull SIG, EM

SIG Pull EM	Force (Lbs)
Minimum	25.0
Maximum	87.0
Average	56.4

Connector Pull GND, DV

GND Pull DV	Force (Lbs)
Minimum	140.0
Maximum	190.0
Average	166.0

Connector Pull GND, EM

GND Pull EM	Force (Lbs)
Minimum	120.0
Maximum	180.0
Average	166.0

Conductor Resistance

Resistance, milli-Ohms/Cable		
	Initial	Thermal
Avg	182.9	186.2
Min	147.9	164.5
Max	197.9	197.9
St. Dev.	19.9	13.9
		16.7

Tracking Code: TC043--0347

Part #: HQCD-030-06.00-STR-TEU-1

Part description: Micro Co-ax High Speed Cable Assy, 0.5 mm Pitch

DATA

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

Test Date:	3/3/2004
Operator:	TR
Temperature (C):	23
Humidity (RH):	38%
Equipment ID:	HPM-01

Initial, VAC						
Voltage Rate 500 VAC Per Sec.						
Test Voltage Until Breakdown Occurs						
TOP						
Mated			Un Mated			
Sample #	Breakdown Voltage	DWV	Working Voltage	Breakdown Voltage	DWV	Working Voltage
1	700	525	175	1000	750	250
BOTTOM						
Mated			Un Mated			
Sample #	Breakdown Voltage	DWV	Working Voltage	Breakdown Voltage	DWV	Working Voltage
1	900	675	225	600	450	150

Test Date:	3/24/2004
Operator:	
Temperature (C):	23
Humidity (RH):	30%
Equipment ID:	HPM-01

Thermal, VAC						
Voltage Rate 500 VAC Per Sec.						
Test Voltage Until Breakdown Occurs						
TOP						
Mated			Un Mated			
Sample #	Breakdown Voltage	DWV	Working Voltage	Breakdown Voltage	DWV	Working Voltage
1	1000	750	250	1000	750	250
BOTTOM						
Mated			Un Mated			
Sample #	Breakdown Voltage	DWV	Working Voltage	Breakdown Voltage	DWV	Working Voltage
1	1200	900	300	1100	825	275

DATA Continued**DIELECTRIC WITHSTANDING VOLTAGE (DWV):**

Test Date:	3/24/2004
Operator:	TR
Temperature (C):	23
Humidity (RH):	30%
Equipment ID:	HPM-01

Humidity, VAC						
Voltage Rate 500 VAC Per Sec.						
Test Voltage Until Breakdown Occurs						
TOP						
				Mated		Un Mated
Sample #	Breakdown Voltage	DWV	Working Voltage	Breakdown Voltage	DWV	Working Voltage
1	700	525	175	1000	750	250
BOTTOM						
				Mated		
Sample #	Breakdown Voltage	DWV	Working Voltage	Breakdown Voltage	DWV	Working Voltage
1	900	675	225	1100	825	275

Tracking Code: TC043--0347

Part #: HQCD-030-06.00-STR-TEU-1

Part description: Micro Co-ax High Speed Cable Assy, 0.5 mm Pitch

DATA Continued**INSULATION RESISTANCE (IR):**

Test Date:	2/20/2004
Operator:	Troy Cook
Temperature (C):	22
Humidity (RH):	35%
Equipment ID:	HPM-01

Sample #	Electrification Time <i>Two (2) minutes</i>			
	Initial, Meg Ohms			
	Top Row	Bottom Row	Top Row	Bottom Row
	Mated	Mated	Unmated	Unmated
	Insulation Resistance	Insulation Resistance	Insulation Resistance	Insulation Resistance
	1	7000	25000	8000
	2	25000	25000	20000
				25000

Test Date:	3/3/2004
Operator:	TR
Temperature (C):	21
Humidity (RH):	38%
Equipment ID:	HPM-01

Sample #	Electrification Time <i>Two (2) minutes</i>			
	Thermal, Meg Ohms			
	Top Row	Bottom Row	Top Row	Bottom Row
	Mated	Mated	Unmated	Unmated
	Insulation Resistance	Insulation Resistance	Insulation Resistance	Insulation Resistance
	1	35000	35000	25000
				35000

Tracking Code: TC043--0347

Part #: HQCD-030-06.00-STR-TEU-1

Part description: Micro Co-ax High Speed Cable Assy, 0.5 mm Pitch

DATA Continued**INSULATION RESISTANCE (IR):**

Test Date:	3/24/2004
Operator:	TR
Temperature (C):	23
Humidity (RH):	30%
Equipment ID:	HPM-01

Sample #	Electrification Time <i>Two (2) minutes</i>			
	Humidity, Meg Ohms			
	Top Row	Bottom Row	Top Row	Bottom Row
	<u>Mated</u>	<u>Mated</u>	<u>Unmated</u>	<u>Unmated</u>
	<u>Insulation Resistance</u>	<u>Insulation Resistance</u>	<u>Insulation Resistance</u>	<u>Insulation Resistance</u>
1	75000	100000	100000	100000

DATA Continued**SUPPLEMENTAL: SIG Connector Pull 0°**

Test Date:	3/3/2004
Operator:	TR
Temperature (C):	24
Humidity (RH):	38%
Equipment ID:	TCT-03
Load Cell:	LC-2500N(icell)

Used In: EQCD-DV-EM

SIG Pull DV Sample#	SIG ... Secure ONE Cable, DV end pulled, cable secured	
	<u>Maximum Force</u> (Lbs)	failure mode
1	58.7	<i>loss of continuity</i>
2	60.0	<i>loss of continuity</i>
3	25.0	<i>loss of continuity</i>
4	32.0	<i>loss of continuity</i>
5	21.0	<i>loss of continuity</i>
6	40.0	<i>loss of continuity</i>
7	70.0	<i>loss of continuity</i>
8	56.0	<i>loss of continuity</i>
9	60.0	<i>loss of continuity</i>
10	45.0	<i>loss of continuity</i>

SIG Pull EM Sample#	SIG ... Secure ONE Cable, EM end pulled, cable secured	
	<u>Maximum Force</u> (Lbs)	failure mode
1	68.0	<i>loss of continuity</i>
2	37.0	<i>loss of continuity</i>
3	87.0	<i>loss of continuity</i>
4	25.0	<i>loss of continuity</i>
5	40.0	<i>loss of continuity</i>
6	78.0	<i>loss of continuity</i>
7	60.0	<i>loss of continuity</i>

DATA Continued**SUPPLEMENTAL: GND Connector Pull 0°**

Test Date:	3/26/2004
Operator:	TR
Temperature (C):	23
Humidity (RH):	33%
Equipment ID:	TCT-03
Load Cell:	LC-2500N(icell)

Used In: EQCD-DV-EM

GND Pull DV	GND ... Secure ONE Cable, DV End Pulled, Cable Secured	
	<u>Maximum Force</u> (Lbs)	<u>Failure Mode</u>
1	150.0	<i>loss of continuity</i>
2	160.0	<i>loss of continuity</i>
3	140.0	<i>loss of continuity</i>
4	190.0	<i>loss of continuity</i>
5	190.0	<i>loss of continuity</i>

GND Pull EM	GND ... Secure ONE Cable, EM End Pulled, Cable Secured	
	<u>Maximum Force</u> (Lbs)	<u>Failure Mode</u>
1	120.0	<i>loss of continuity</i>
2	180.0	<i>loss of continuity</i>
3	175.0	<i>loss of continuity</i>
4	180.0	<i>loss of continuity</i>
5	175.0	<i>loss of continuity</i>

Tracking Code: TC043--0347

Part #: HQCD-030-06.00-STR-TEU-1

Part description: Micro Co-ax High Speed Cable Assy, 0.5 mm Pitch

DATA Continued**SUPPLEMENTAL TESTS: Signal resistance**

	Initial	Thermal	Humidity
Test Date:	2/20/2004	3/3/2004	3/22/2004
Operator:	Troy Cook	Tim Receveur	Tim Receveur
Temperature (C):	21	23	23
Humidity (RH):	33%	38%	24%
Pressure (In. Hg):	29.53	na	na
Equipment ID1:	MO-01	MO-01	MO-01

Cable/Signal	Resistance, milli-Ohms/Cable		
	Initial	Thermal	Humidity
1	197.9	197.9	197.9
2	147.9	164.5	164.5
3	189.5	189.5	197.9
4	189.5	197.9	206.2
5	189.5	181.2	181.2

EQUIPMENT AND CALIBRATION SCHEDULES

Equipment #: MO-02**Description:** Multimeter /Data Acquisition System**Manufacturer:** Keithley**Model:** 2700**Serial #:** 0780546**Accuracy:** See Manual

... Last Cal: 6/12/03, Next Cal: 6/12/04

Equipment #: PS-01**Description:** System Power Supply**Manufacturer:** Hewlett Packard**Model:** HP 6033A**Serial #:** (HP) 3329A-07330**Accuracy:** See Manual

... Last Cal: 6/12/03, Next Cal: 6/12/04

Equipment #: TC090601-103/105**Description:** IC Thermocouple-103/105**Manufacturer:** Samtec**Serial #:** TC090601-103/105**Accuracy:** +/- 1 degree C**Equipment #:** MO-03**Description:** Multimeter /Data Acquisition System**Manufacturer:** Keithley**Model:** 2700**Serial #:** 0791975**Accuracy:** See Manual

... Last Cal: 6/12/03, Next Cal: 6/12/04

Equipment #: HPM-01**Description:** Hipot Megommeter**Manufacturer:** Hipotronics**Model:** H306B-A**Serial #:** M9905004**Accuracy:** 2 % Full Scale Accuracy

... Last Cal: 6/12/03, Next Cal: 6/12/04

Equipment #: OV-03**Description:** Cascade Tek Forced Air Oven**Manufacturer:** Cascade Tek**Model:** TFO-5**Serial #:** 0500100**Accuracy:** Temp. Stability: +/- .1C/C change in ambient

... Last Cal: 6/20/03, Next Cal: 6/30/04

Tracking Code: TC043--0347	Part #: HQCD-030-06.00-STR-TEU-1
Part description: Micro Co-ax High Speed Cable Assy, 0.5 mm Pitch	

Equipment #: THL-01

Description: Temperature/Humidity Chart Recorder

Manufacturer: Dickson

Model: THDX

Serial #: 9316255

Accuracy: Temp: +/- 1C; Humidity: +/-2% RH (0 - 60%) Temp: +/- 1C; Humidity: +/-2% RH (0 - 60%)

... Last Cal: 7/03/03, Next Cal: 7/30/04

Equipment #: THC-01

Description: Temperature/Humidity Chamber

Manufacturer: Thermotron

Model: SM-8-7800

Serial #: 30676

Accuracy: See Manual

... Last Cal: 5/28/2003, Next Cal: 5/28/2004

Equipment #: LC-2500N(icell)

Description: 2500 N Load Cell for Dillon Quantrol

Manufacturer: Dillon Quantrol

Model: icell

Serial #: 01-0132-01

Accuracy: .10% of capacity

... Last Cal: 3/27/03, Next Cal: 3/27/04

Equipment #: TCT-03

Description: Dillon Quantrol TC2 Test Stand

Manufacturer: Dillon Quantrol

Model: TC2

Serial #: 02-1033-03

Accuracy: Speed Accuracy: +/- 5% of indicated speed; Displacement: +/- 5 micrometers.

... Last Cal: 6/12/03, Next Cal: 6/12/04

Equipment #: MO-01

Description: Micro-Ohmeter

Manufacturer: Keithley

Model: 580

Serial #: 0780546

Accuracy: See Manual

... Last Cal: 6/12/03, Next Cal: 6/12/04