

Project Number:	Tracking Code: TC0852-2145_ReportRev2		
Requested by: John Reid	Date: 3/30/2009		Product Rev: 1
Part #: MPSS-08-14-L-3.25-DR-NUS/MPT-08-6.30-01-L-V-LC	Lot #: 12/23/2008	Tech: Rodney Riley, Gary Lomax, & Troy Cook	Eng: Troy Cook
Part description: MPSS/MPT		Qty to test: 50	
Test Start: 12/23/2008	Test Completed: 3/5/2009		

DESIGN VERIFICATION TEST REPORT

PART DESCRIPTION

MPSS-08-14-L-3.25-DR-NUS

Mated with

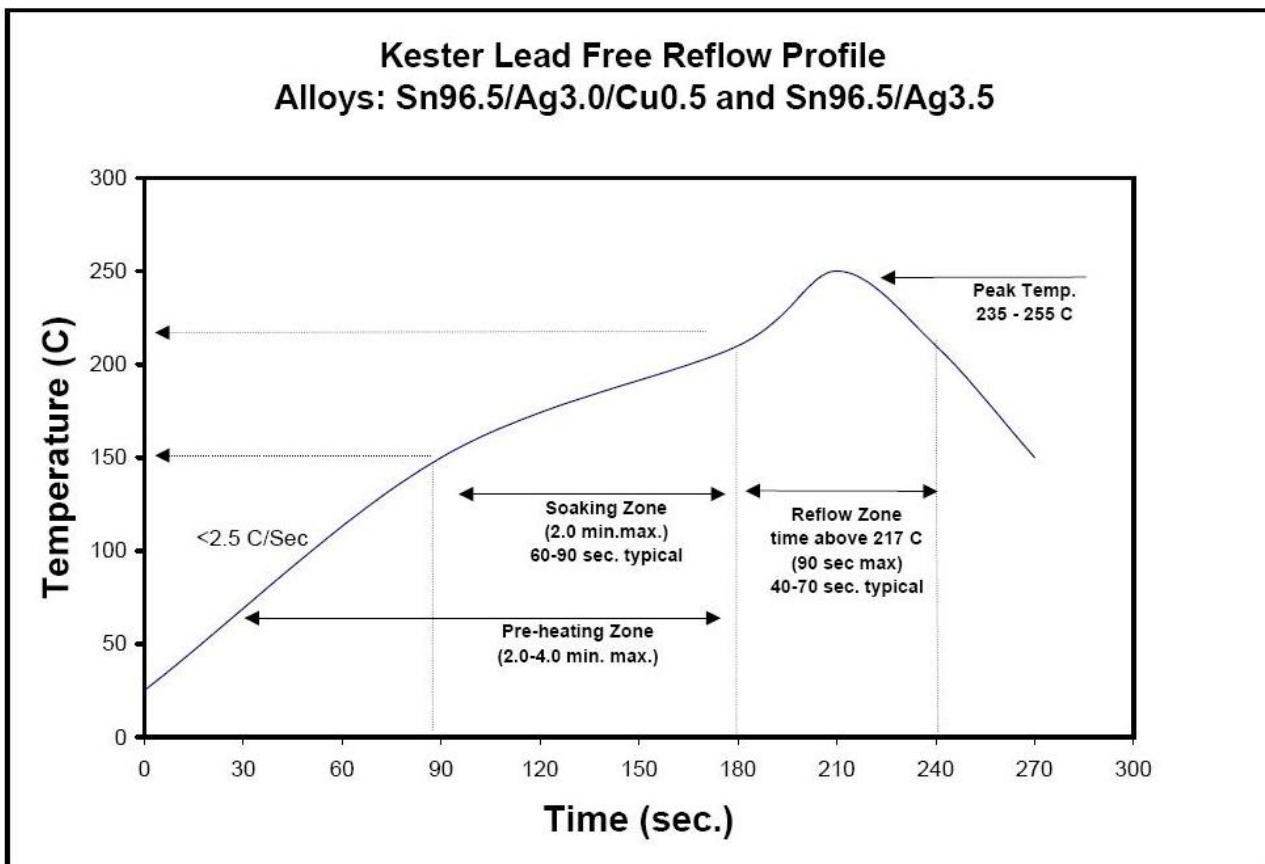
MPT-08-6.30-01-L-V-LC

CERTIFICATION

All instruments and measuring equipment were calibrated to National Institute for Standards and Technology (NIST) traceable standards according to ISO 10012-1 and ANSI/NCSL 2540-1, as applicable.

All contents contained herein are the property of Samtec. No portion of this report, in part or in full shall be reproduced without prior written approval of Samtec.

SCOPE


To perform the following tests: DVT per flow chart

APPLICABLE DOCUMENTS

Standards: EIA Publication 364

TEST SAMPLES AND PREPARATION

- 1) All materials were manufactured in accordance with the applicable product specification.
- 2) All test samples were identified and encoded to maintain traceability throughout the test sequences.
- 3) After soldering, the parts to be used for LLCR and DWV/IR testing were cleaned according to TLWI-0001.
- 4) Either an automated cleaning procedure or an ultrasonic cleaning procedure may be used.
- 5) The automated procedure is used with aqueous compatible soldering materials.
- 6) Parts not intended for testing LLCR and DWV/IR are visually inspected and cleaned if necessary.
- 7) Any additional preparation will be noted in the individual test sequences.
- 8) Solder Information: Lead Free
- 9) Re-Flow Time/Temp: See accompanying profile.
- 10) Samtec Test PCBs used: PCB-101625-TST-XX

TYPICAL OVEN PROFILE (Soldering Parts to Test Boards)

FLOWCHARTS

Current Carrying Capacity

14 & 16 GAGE WIRE

TEST STEP	GROUP A 3 Mated Assemblies	GROUP B 3 Mated Assemblies	GROUP C 3 Mated Assemblies	GROUP D 3 Mated Assemblies 4 CONTACTS POWERED (2x4 for a double row)	GROUP E 3 Mated Assemblies
01	CCC	CCC	CCC	CCC	CCC

(TIN PLATING) - Tabulate calculated current at RT, 65° C, 75° C and 95° C

after derating 20% and based on 105° C

(GOLD PLATING) - Tabulate calculated current at RT, 85° C, 95° C and 115° C

after derating 20% and based on 125° C

CCC, Temp rise = EIA-364-70

Mating/Unmating/Normal Force

10 Mated Assemblies	
TEST STEP	
	GROUP A
	10 Boards
	100 Cycles
01	Contact Gaps
02	Mating / Unmating
03	Data Review
04	100 Cycles
05	Mating / Unmating
06	Contact Gaps
07	Data Review
08	Thermal Aging (Mated)
09	Mating / Unmating
10	Contact Gaps
11	Data Review
12	Humidity (Mated)
13	Mating / Unmating
14	Contact Gaps

Thermal Aging = EIA-364-17, Test Condition 4, 105 deg C;

Time Condition 'B' (250 hours)

Humidity = EIA-364-31, Test Condition 'B' (240 Hours)

and Method III (+25 ° C to +65 ° C @ 90%RH to 98% RH)

ambient pre-condition and delete steps 7a and 7b

Mating/Un-Mating Forces = EIA-364-13

Normal Force = EIA-364-04

Contact Gaps/Height - No standard method. Usually measured optically

FLOWCHARTS Continued

IR / DWV

TEST STEP	2 Mated Assemblies	2 Mated Assemblies	2 Mated Assemblies	2 Mated Assemblies
	GROUP A 2 Boards Ambient	GROUP B1 2 Boards Ambient	GROUP B2 2 Boards Thermal	GROUP B3 2 Boards Humidity
01	IR	DWV/Working Voltage	Thermal Aging	Humidity
02	Data Review		DWV/Working Voltage	DWV/Working Voltage
03	Thermal Aging			
04	IR			
05	Data Review			
06	Humidity			
07	IR			

Thermal Aging = EIA-364-17, Test Condition 4, 105 deg C;

Time Condition 'B' (250 hours)

Humidity = EIA-364-31, Test Condition 'B' (240 Hours)

and Method III (+25 ° C to +65 ° C @ 90%RH to 98% RH)

ambient pre-condition and delete steps 7a and 7b

IR = EIA-364-21

DWV = EIA-364-20

Durability/Thermal Age/Cyclic Humidity

	10 Boards
TEST STEP	GROUP A 80 Points 100 Cycles
01	LLCR-1
02	Data Review
03	100 Cycles
04	LLCR-2
05	Data Review
06	Thermal Age
07	LLCR-3
08	Data Review
09	Cyclic Humidity
10	LLCR-4

Thermal Aging = EIA-364-17, Test Condition 4, 105 deg C;

Time Condition 'B' (250 hours)

Humidity = EIA-364-31, Test Condition 'B' (240 Hours)

and Method III (+25° C to +65° C @ 90%RH/98% RH)

ambient pre-condition and delete steps 7a and 7b

LLCR = EIA-364-23, LLCR

use Keithley 580 in the dry circuit mode, 10 mA Max

FLOWCHARTS Continued**Current Cycling**

	2 Mated Assemblies	2 Mated Assemblies
TEST STEP	GROUP A	GROUP B
	MPSS-08-14-L-3.25-DR-NUS	MPSS-08-16-L-3.25-DR-NUS
01	Current Cycle, 500 cycles at Operating current	Current Cycle, 500 cycles at Operating current

Current Cycle = EIA 364-55, Condition "B", Method #4

Test at Current Listed

Measure at 30 minutes into 45 minute cycle

ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

THERMAL:

- 1) EIA-364-17, *Temperature Life with or without Electrical Load Test Procedure for Electrical Connectors*.
- 2) Test Condition 4 at 105° C.
- 3) Test Time Condition B for 250 hours.
- 4) All test samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

HUMIDITY:

- 1) Reference document: EIA-364-31, *Humidity Test Procedure for Electrical Connectors*.
- 2) Test Condition B, 240 Hours.
- 3) Method III, +25° C to + 65° C, 90% to 98% Relative Humidity excluding sub-cycles 7a and 7b.
- 4) All samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

TEMPERATURE RISE (Current Carrying Capacity, CCC):

- 1) EIA-364-70, *Temperature Rise versus Current Test Procedure for Electrical Connectors and Sockets*.
- 2) When current passes through a contact, the temperature of the contact increases as a result of I^2R (resistive) heating.
- 3) The number of contacts being investigated plays a significant part in power dissipation and therefore temperature rise.
- 4) The size of the temperature probe can affect the measured temperature.
- 5) Copper traces on PC boards will contribute to temperature rise:
 - a. Self heating (resistive)
 - b. Reduction in heat sink capacity affecting the heated contacts
- 6) A de-rating curve, usually 20%, is calculated.
- 7) Calculated de-rated currents at three temperature points are reported:
 - a. Ambient
 - b. 80° C
 - c. 95° C
 - d. 115° C
- 8) Typically, neighboring contacts (in close proximity to maximize heat build up) are energized.
- 9) The thermocouple (or temperature measuring probe) will be positioned at a location to sense the maximum temperature in the vicinity of the heat generation area.
- 10) A computer program, *TR 803.exe*, ensures accurate stability for data acquisition.
- 11) Hook-up wire cross section is larger than the cross section of any connector leads/PC board traces, jumpers, etc.
- 12) Hook-up wire length is longer than the minimum specified in the referencing standard.

CONTACT GAPS:

- 1) Gaps above the surrounding plastic surface were measured before and after stressing the contacts (e.g. thermal aging, mechanical cycling, etc.).
- 2) Typically, all contacts on the connector are measured.

MATING/UNMATING:

- 1) Reference document: EIA-364-13, *Mating and Unmating Forces Test Procedure for Electrical Connectors*.
- 2) The full insertion position was to within 0.003" to 0.004" of the plug bottoming out in the receptacle to prevent damage to the system under test.
- 3) One of the mating parts is secured to a floating X-Y table to prevent damage during cycling.

NORMAL FORCE (FOR CONTACTS TESTED IN THE HOUSING):

- 1) Reference document: EIA-364-04, *Normal Force Test Procedure for Electrical Connectors*.
- 2) The contacts shall be tested in the connector housing.
- 3) If necessary, a "window" shall be made in the connector body to allow a probe to engage and deflect the contact at the same attitude and distance (plus 0.05 mm [0.002"]) as would occur in actual use.
- 4) The connector housing shall be placed in a holding fixture that does not interfere with or otherwise influence the contact force or deflection.
- 5) Said holding fixture shall be mounted on a floating, adjustable, X-Y table on the base of the Dillon TC², computer controlled test stand with a deflection measurement system accuracy of 5.0 μm (0.0002").
- 6) The nominal deflection rate shall be 5 mm (0.2")/minute.
- 7) Unless otherwise noted a minimum of five contacts shall be tested.
- 8) The force/deflection characteristic to load and unload each contact shall be repeated five times.
- 9) The system shall utilize the TC² software in order to acquire and record the test data.
- 10) The permanent set of each contact shall be measured within the TC² software.
- 11) The acquired data shall be graphed with the deflection data on the X-axis and the force data on the Y-axis and a print out will be stored with the Tracking Code paperwork.

LLCR:

- 1) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
 - a. $\leq +5.0$ mOhms: ----- Stable
 - b. $+5.1$ to $+10.0$ mOhms: ----- Minor
 - c. $+10.1$ to $+15.0$ mOhms: ----- Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: ----- Marginal
 - e. $+50.1$ to $+2000$ mOhms: ----- Unstable
 - f. $>+2000$ mOhms: ----- Open Failure

INSULATION RESISTANCE (IR):

To determine the resistance of insulation materials to leakage of current through or on the surface of these materials when a DC potential is applied.

- 1) PROCEDURE:
 - a. Reference document: EIA-364-21, *Insulation Resistance Test Procedure for Electrical Connectors*.
 - b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Electrification Time 2.0 minutes
 - iii. Test Voltage (500 VDC) corresponds to calibration settings for measuring resistances.
- 2) MEASUREMENTS:
- 3) When the specified test voltage is applied (VDC), the insulation resistance shall not be less than 5000 megohms.

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

To determine if the sockets can operate at its rated voltage and withstand momentary over potentials due to switching, surges, and other similar phenomenon. Separate samples are used to evaluate the effect of environmental stresses so not to influence the readings from arcing that occurs during the measurement process.

1) PROCEDURE:

- a. Reference document: EIA-364-20, *Withstanding Voltage Test Procedure for Electrical Connectors*.
- b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Barometric Test Condition 1
 - iii. Rate of Application 500 V/Sec
 - iv. Test Voltage (VAC) until breakdown occurs

2) MEASUREMENTS/CALCULATIONS

- a. The breakdown voltage shall be measured and recorded.
- b. The dielectric withstanding voltage shall be recorded as 75% of the minimum breakdown voltage.
- c. The working voltage shall be recorded as one-third (1/3) of the dielectric withstanding voltage (one-fourth of the breakdown voltage).

SUPPLEMENTAL TESTS**CURRENT CYCLING:**

- 1) Reference document: EIA-364-55, *Current Cycling Test Procedure for Electrical Connectors*.
- 2) Reference document: EIA-364-06, *Contact Resistance Test Procedure for Electrical Connectors*.
 - a. This is a four-wire measurement.
- 3) An uninterruptible Power Supply maintained power to appropriate equipment.
 - a. A microprocessor controlled cycling fixture maintained accurate duty-cycle timing for test duration.
 - b. A calibrated constant current source provided consistent DC power during ON cycles

RESULTS

Temperature Rise, CCC at a 20% de-rating

14 Gage Wire

- Thermocouple Placement
 - Cable
 - CCC for a 30°C Temperature Rise ----- 16.8A per contact with 8 contacts powered
 - Contact
 - CCC for a 30°C Temperature Rise ----- 14.5A per contact with 8 contacts powered
 - Crimp
 - CCC for a 30°C Temperature Rise ----- 14.4A per contact with 8 contacts powered

16 Gage Wire

- Thermocouple Placement
 - Cable
 - CCC for a 30°C Temperature Rise ----- 12.3A per contact with 8 contacts powered
 - Contact
 - CCC for a 30°C Temperature Rise ----- 12.0A per contact with 8 contacts powered
 - Crimp
 - CCC for a 30°C Temperature Rise ----- 11.7A per contact with 8 contacts powered

Current Cycling

- 14 Gage Wire
 - Operated at 125% of recommended level ----- Passed
- 16 Gage Wire
 - Operated at 125% of recommended level ----- Passed

Contact Gaps, MPSS

- Initial
 - Min ----- 1.341 mm
 - Max ----- 1.514 mm
- After 100 Cycles
 - Min ----- 1.362 mm
 - Max ----- 1.522 mm
- Thermal
 - Min ----- 1.366 mm
 - Max ----- 1.556 mm
- Humidity
 - Min ----- 1.367 mm
 - Max ----- 1.527 mm

Contact Gaps, MPT

- Initial
 - Min ----- 1.848 mm
 - Max ----- 1.974 mm
- After 100 Cycles
 - Min ----- 1.832 mm
 - Max ----- 1.944 mm
- Thermal
 - Min ----- 1.780 mm
 - Max ----- 1.884 mm
- Humidity
 - Min ----- 1.728 mm
 - Max ----- 1.842 mm

Mating – Unmating Forces

- **Initial**
 - **Mating**
 - Min ----- 4.1 lbs
 - Max----- 4.9 lbs
- **After 100 Cycles**
 - **Mating**
 - Min ----- 3.7 lbs
 - Max----- 5.4 lbs
- **Thermal**
 - **Mating**
 - Min ----- 3.4 lbs
 - Max----- 4.5 lbs
- **Humidity**
 - **Mating**
 - Min ----- 3.6 lbs
 - Max----- 4.4 lbs

Normal Force at .013" deflection

- **Initial**
 - Min----- 388.8 gm Set ----- .0007
 - Max----- 600.0 gm Set ----- .0017
- **Thermal**
 - Min----- 511.6 gm
 - Max----- 956.3 gm

Insulation Resistance minimums, IR

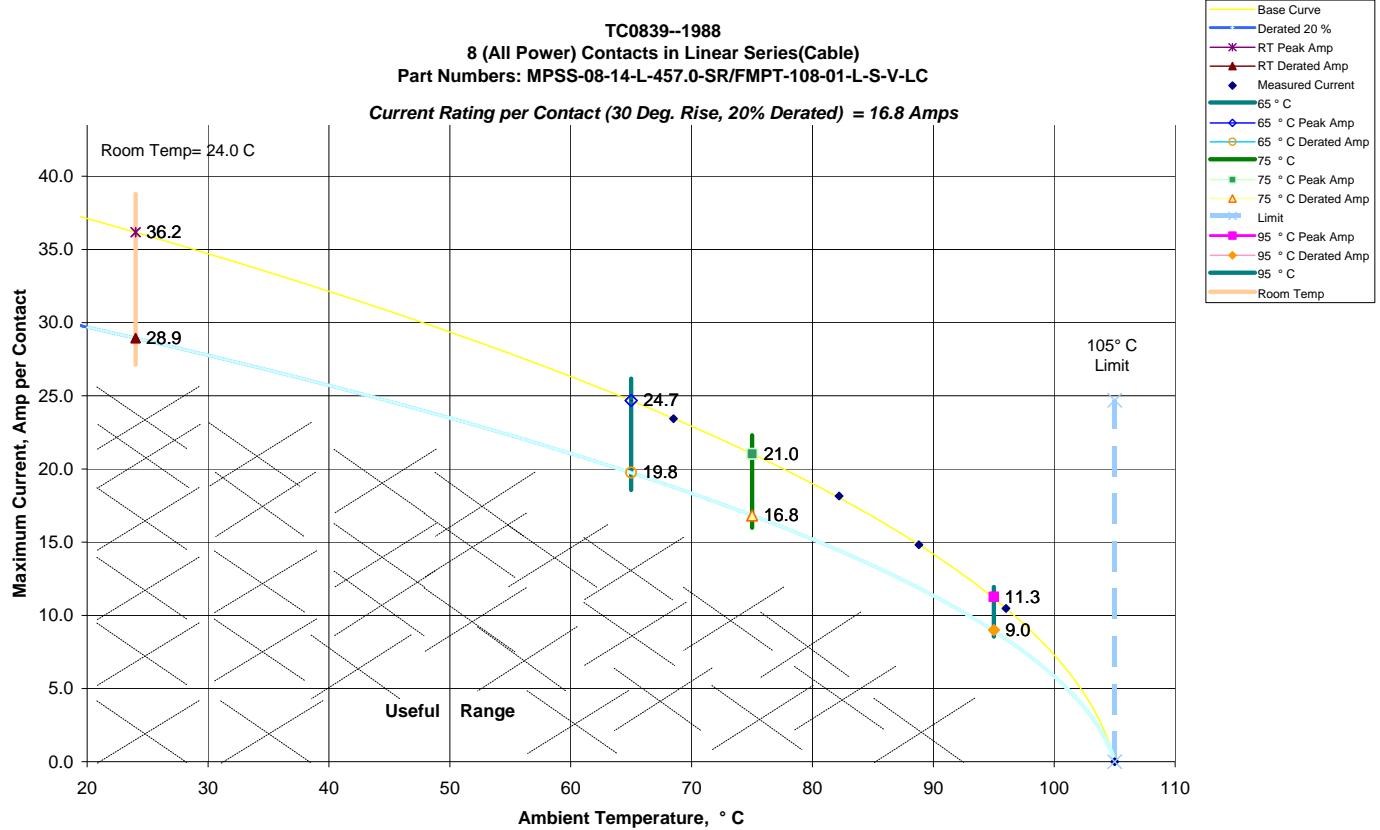
- **Initial**
 - Mated ----- 100,000 Meg Ω ----- Pass
 - Unmated----- 100,000 Meg Ω
- **Thermal**
 - Mated ----- 100,000 Meg Ω
 - Unmated----- 100,000 Meg Ω
- **Humidity**
 - Mated ----- 100,000 Meg Ω
 - Unmated----- 100,000 Meg Ω

Dielectric Withstanding Voltage minimums, DWV

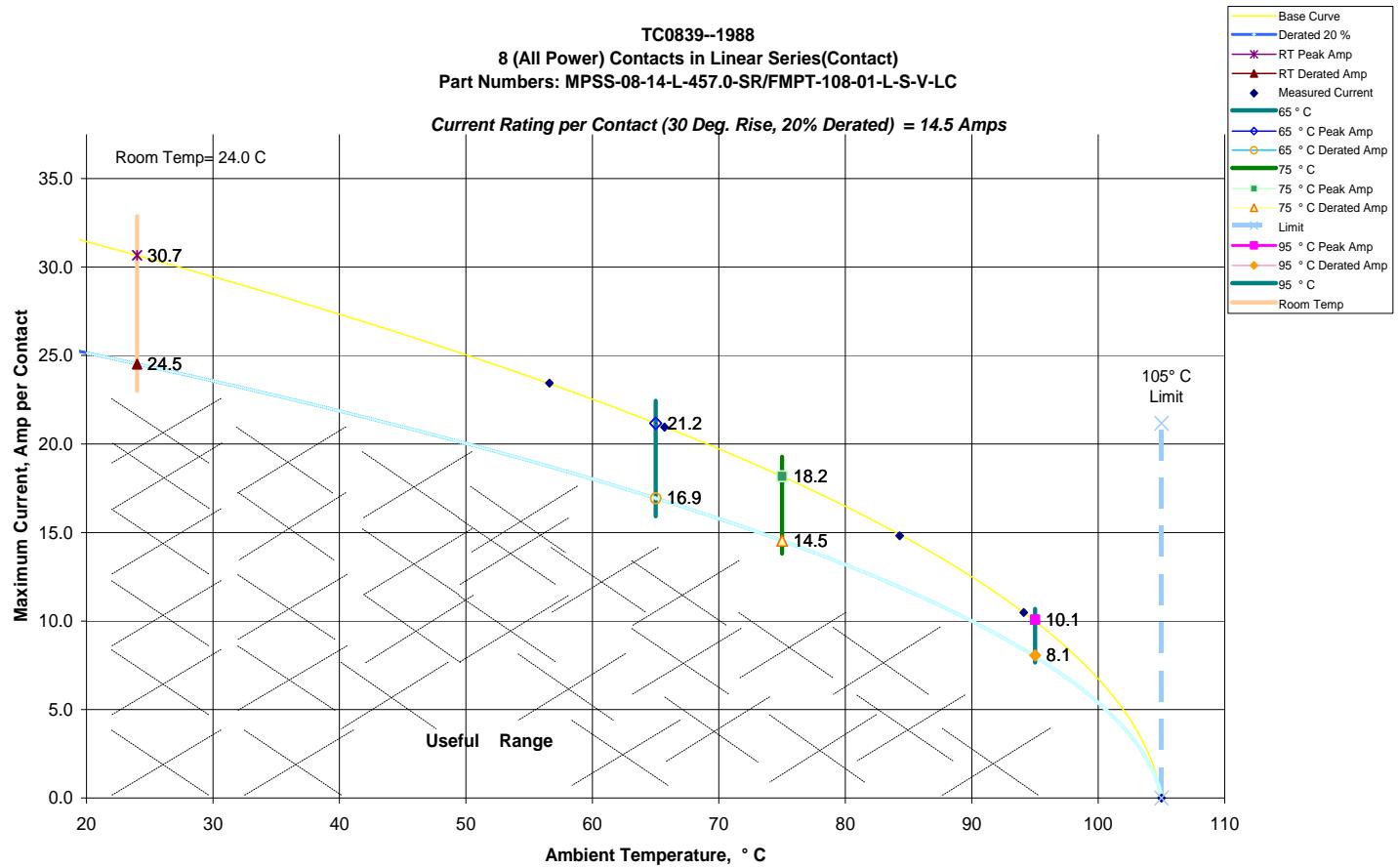
- **Initial**
 - **Breakdown**
 - Mated ----- 3,000 VAC
 - Unmated ----- 3,800VAC
 - **DWV**
 - Mated ----- 2,250 VAC
 - Unmated ----- 2,850 VAC
 - **Working voltage**
 - Mated ----- 750 VAC
 - Unmated ----- 950 VAC
- **Thermal**
 - **Breakdown**
 - Mated ----- 2,800 VAC
 - Unmated ----- 3,700 VAC
 - **DWV**
 - Mated ----- 2,100 VAC
 - Unmated ----- 2,775 VAC
 - **Working voltage**
 - Mated ----- 700 VAC
 - Unmated ----- 925 VAC
- **Humidity**
 - **Breakdown**
 - Mated ----- 2,400 VAC
 - Unmated ----- 3,800 VAC
 - **DWV**
 - Mated ----- 1,800 VAC
 - Unmated ----- 2,850 VAC
 - **Working voltage**
 - Mated ----- 600 VAC
 - Unmated ----- 950 VAC

LLCR Durability (80 LLCR test points)

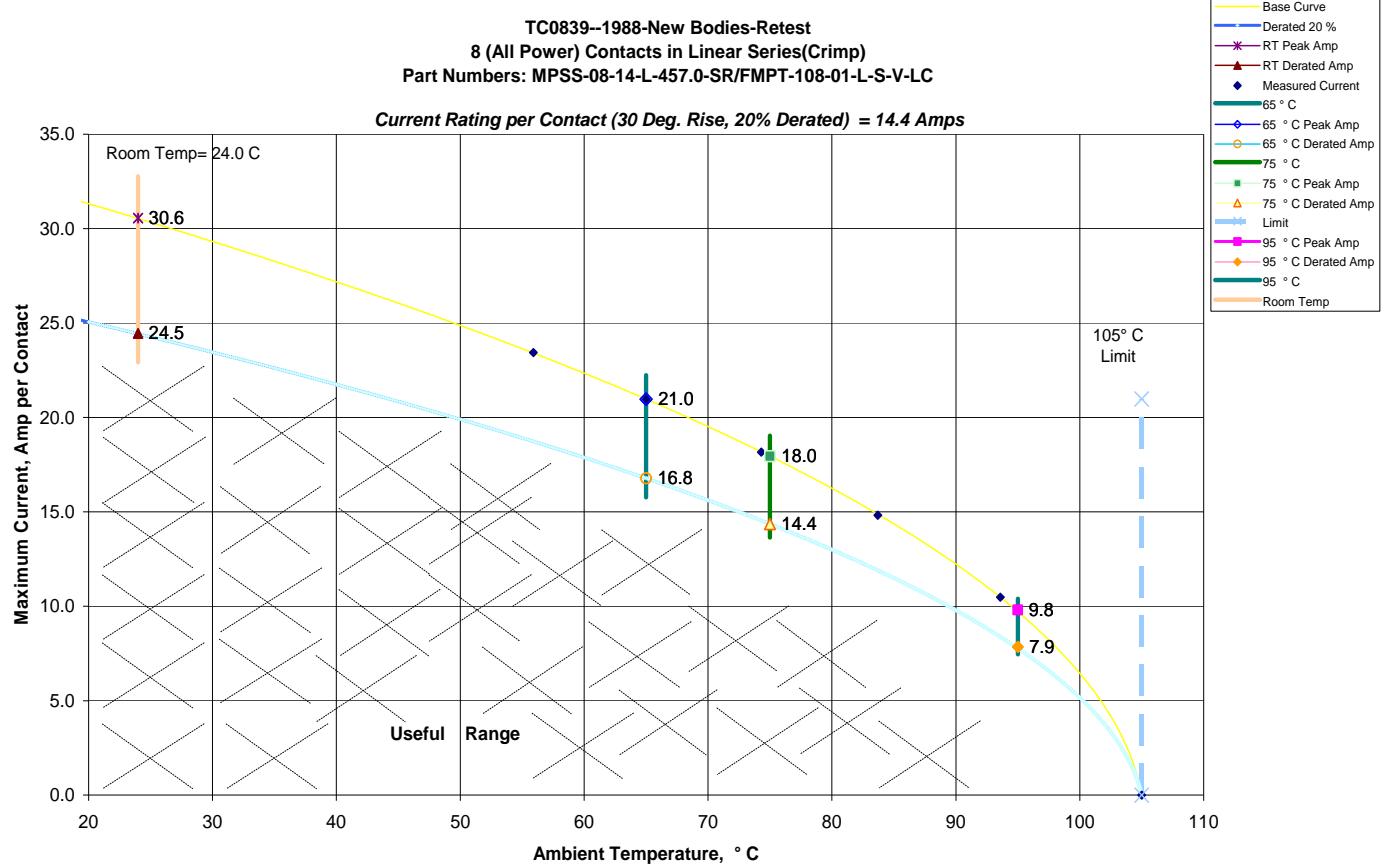
- **Initial ----- 1.5 mOhms Max**
- **Durability, 100 Cycles**
 - <= +5.0 mOhms ----- 80 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure
- **Thermal**
 - <= +5.0 mOhms ----- 80 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 0 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure
- **Humidity**
 - <= +5.0 mOhms ----- 79 Points ----- Stable
 - +5.1 to +10.0 mOhms ----- 1 Points ----- Minor
 - +10.1 to +15.0 mOhms ----- 0 Points ----- Acceptable
 - +15.1 to +50.0 mOhms ----- 0 Points ----- Marginal
 - +50.1 to +2000 mOhms ----- 0 Points ----- Unstable
 - >+2000 mOhms ----- 0 Points ----- Open Failure

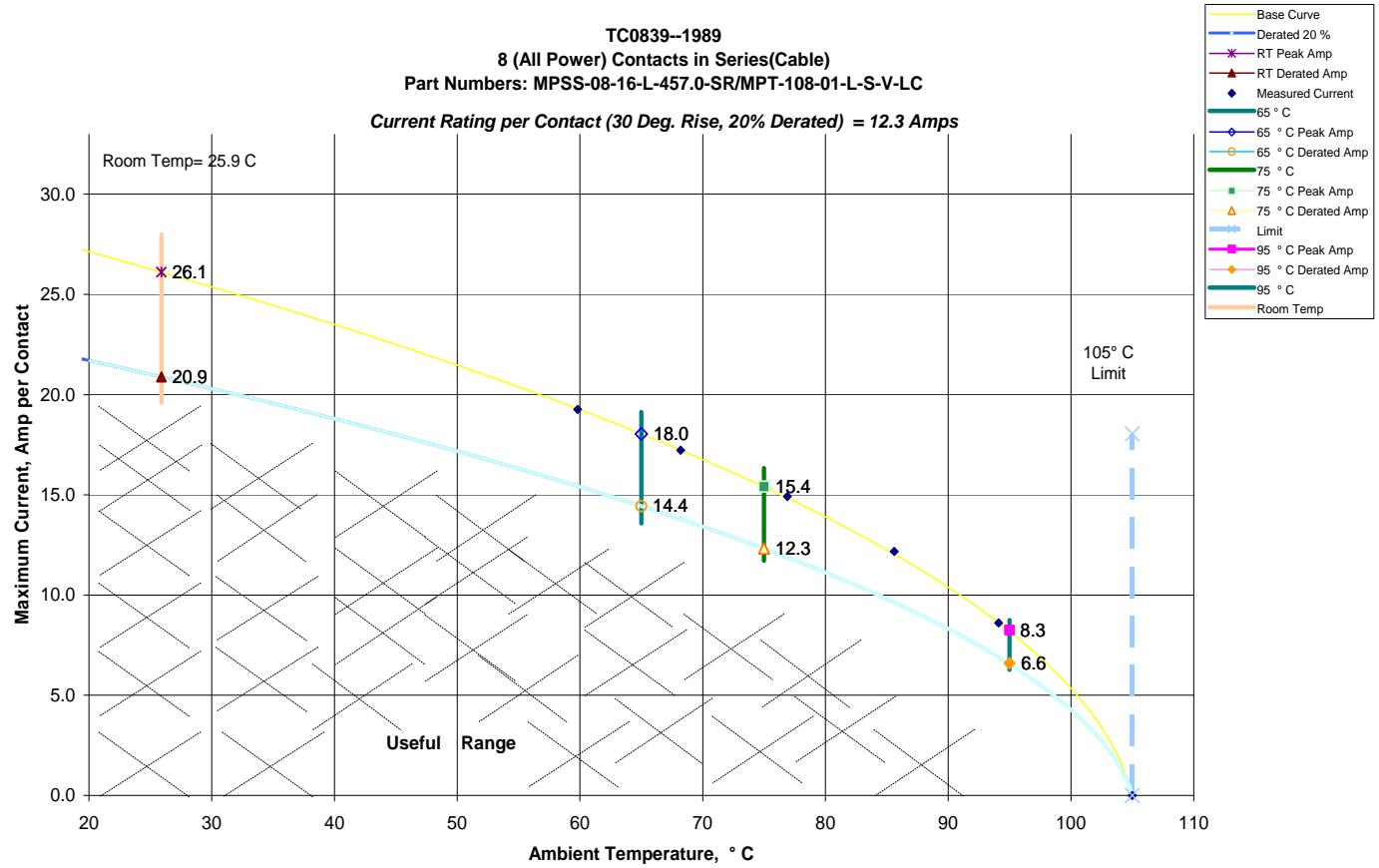

DATA SUMMARIES

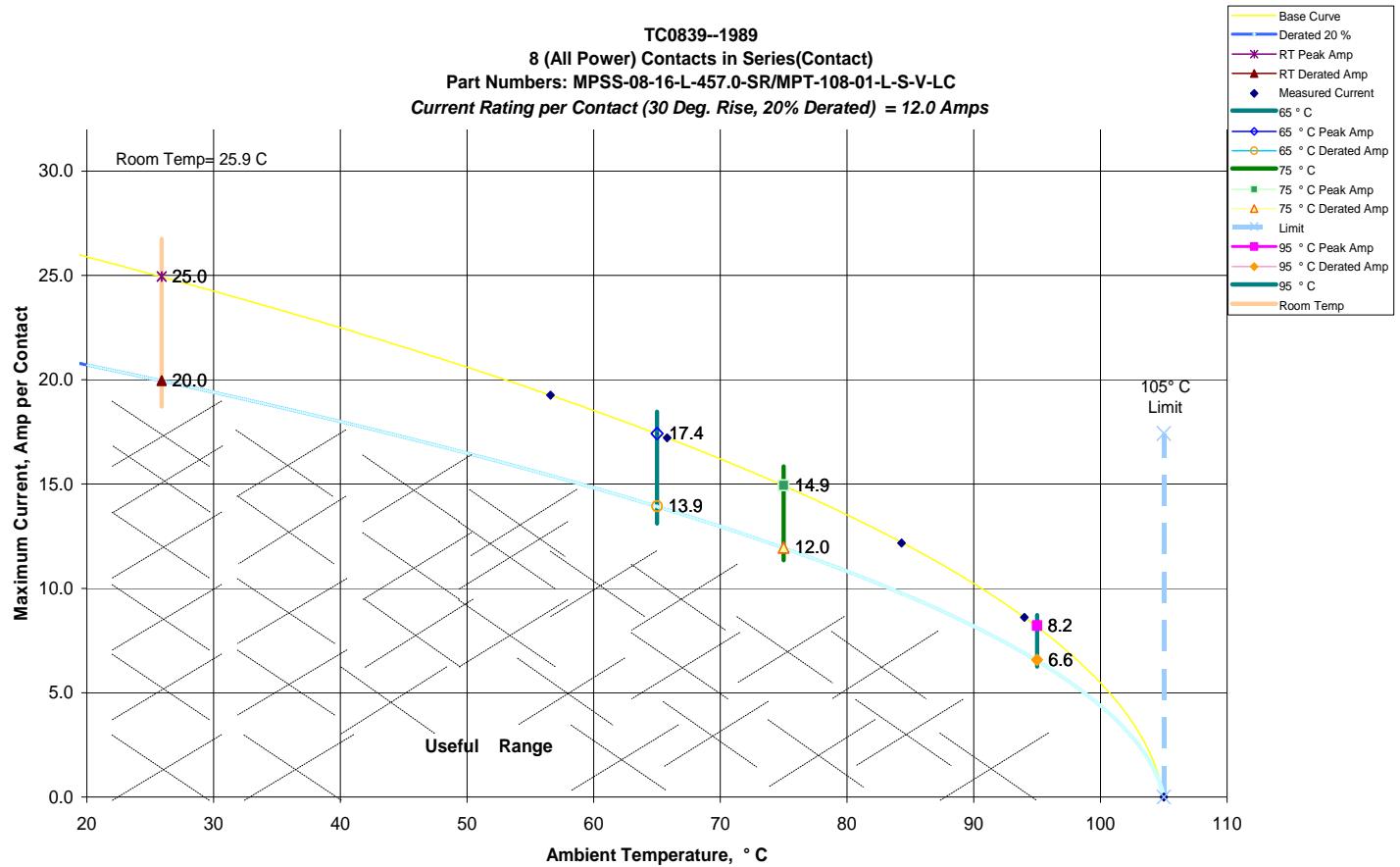
TEMPERATURE RISE (Current Carrying Capacity, CCC):

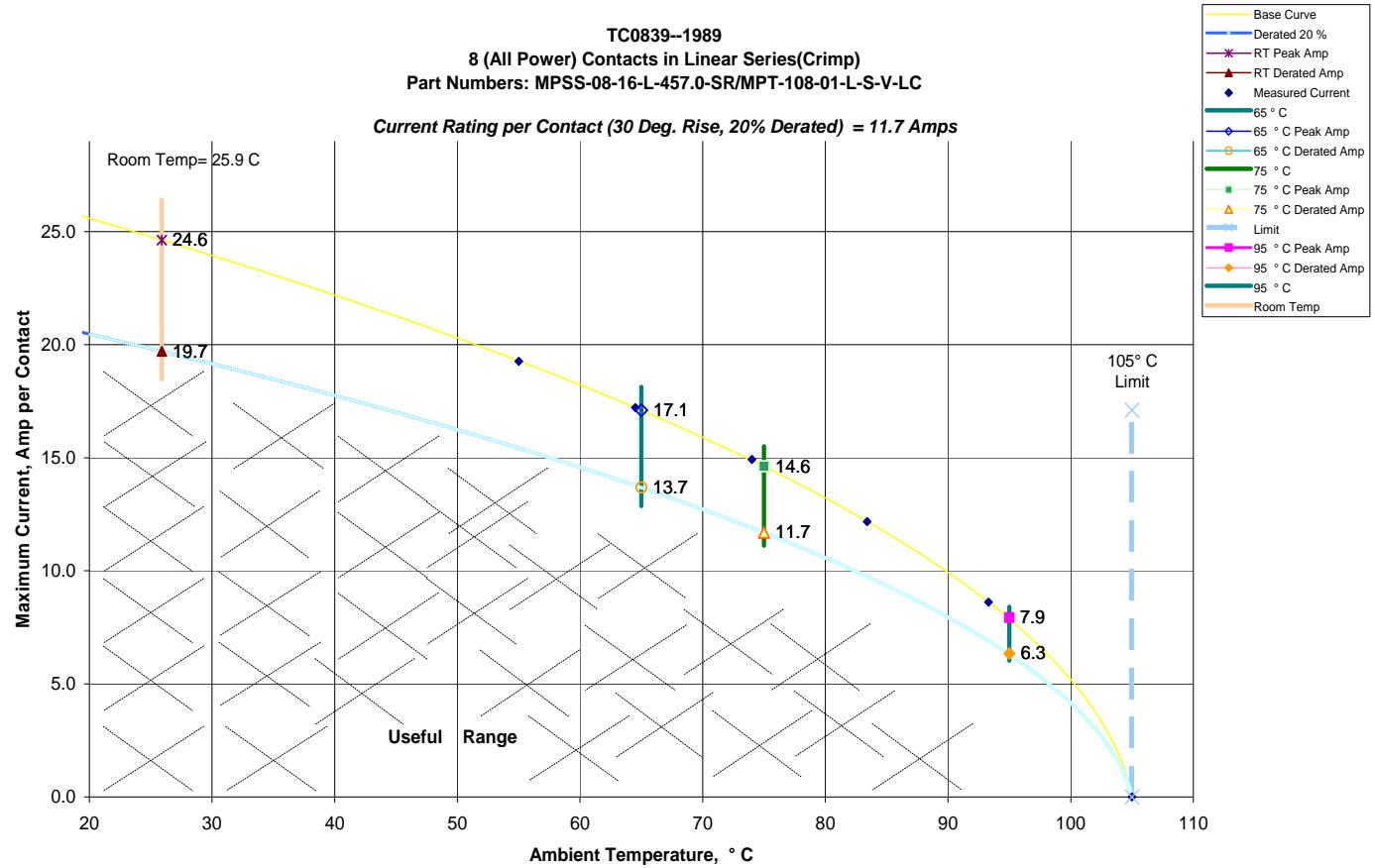

- 1) High quality thermocouples whose temperature slopes track one another were used for temperature monitoring.
- 2) The thermocouples were placed at a location to sense the maximum temperature generated during testing.
- 3) Temperature readings recorded are those for which three successive readings, 15 minutes apart, differ less than 1° C (computer controlled data acquisition).
- 4) Adjacent contacts were powered:

14 Gage Wire


- a. Linear configuration with all contacts powered (Thermocouple placed in the cable)


b. Linear configuration with all contacts powered (Thermocouple placed in the contact)


c. Linear configuration with all contacts powered (Thermocouple placed in the crimp)


d. Linear configuration with all contacts powered (Thermocouple placed in the cable)

e. Linear configuration with all contacts powered (Thermocouple placed in the contact)

f. Linear configuration with all contacts powered (Thermocouple placed in the crimp)

DATA SUMMARIES Continued

CONTACT GAPS:

MPSS

Initial		After 100 Cycles		After Thermal		After Humidity	
Measured in mm		Measured in mm		Measured in mm		Measured in mm	
Minimum	1.341	Minimum	1.362	Minimum	1.366	Minimum	1.367
Maximum	1.514	Maximum	1.522	Maximum	1.556	Maximum	1.527
Average	1.452	Average	1.454	Average	1.471	Average	1.468
St. Dev.	0.038	St. Dev.	0.033	St. Dev.	0.030	St. Dev.	0.029
Count	80	Count	80	Count	80	Count	80

MPT

Initial		After 100 Cycles		After Thermal		After Humidity	
Measured in mm		Measured in mm		Measured in mm		Measured in mm	
Minimum	1.848	Minimum	1.832	Minimum	1.780	Minimum	1.728
Maximum	1.974	Maximum	1.944	Maximum	1.884	Maximum	1.842
Average	1.932	Average	1.901	Average	1.838	Average	1.796
St. Dev.	0.024	St. Dev.	0.023	St. Dev.	0.022	St. Dev.	0.024
Count	80	Count	80	Count	80	Count	80

MATING/UNMATING:

Initial		After 100 Cycles	
Mating		Mating	
Force (Oz)	Force (Lbs)	Force (Oz)	Force (Lbs)
Minimum	65.8	4.1	59.9
Maximum	78.6	4.9	87.0
Average	72.9	4.6	76.7
			4.8
After Thermal		After Humidity	
Mating		Mating	
Force (Oz)	Force (Lbs)	Force (Oz)	Force (Lbs)
Minimum	54.7	3.4	56.8
Maximum	71.4	4.5	70.7
Average	65.4	4.1	64.4
			4.0

DATA SUMMARIES Continued

NORMAL FORCE (FOR CONTACTS TESTED IN THE HOUSING):

- 1) Calibrated force gauges are used along with computer controlled positioning equipment.
- 2) For Normal force 8-10 measurements are taken and the averages reported.

Initial	Deflections in inches, Forces in Grams										
	Sample #	0.0013	0.0026	0.0039	0.0052	0.0065	0.0078	0.0091	0.0104	0.0117	0.0130
1	45.9	88.8	130.9	172.4	213.3	253.8	293.6	333.4	371.9	388.8	0.0007
2	65.6	116.7	168.7	221.8	272.0	321.8	370.7	418.1	468.5	465.4	0.0011
3	60.3	108.8	155.5	202.8	248.9	294.9	342.0	389.4	438.7	440.6	0.0008
4	83.8	164.0	232.6	294.6	355.3	417.3	482.7	545.6	608.9	600.0	0.0017
5	66.9	134.2	197.8	260.1	317.4	376.0	440.7	508.0	576.0	568.3	0.0009
6	51.9	100.6	149.7	198.4	243.8	285.7	327.0	367.2	405.3	417.7	0.0008

After Thermal	Deflections in inches, Forces in Grams										
	Sample #	0.0013	0.0026	0.0039	0.0052	0.0065	0.0078	0.0091	0.0104	0.0117	0.0130
1	31.0	44.8	74.9	119.8	166.5	216.4	276.9	350.4	431.7	541.9	0.0033
2	68.1	127.3	177.8	221.8	267.8	315.5	361.2	408.3	458.3	511.6	0.0019
3	86.8	174.5	262.9	348.1	436.4	526.7	625.3	727.3	848.5	956.3	0.0009
4	65.9	132.0	198.1	262.5	331.3	408.0	493.1	575.9	657.0	737.2	0.0017
5	67.5	117.5	155.8	181.2	198.9	242.8	345.7	461.1	577.3	696.8	0.0052

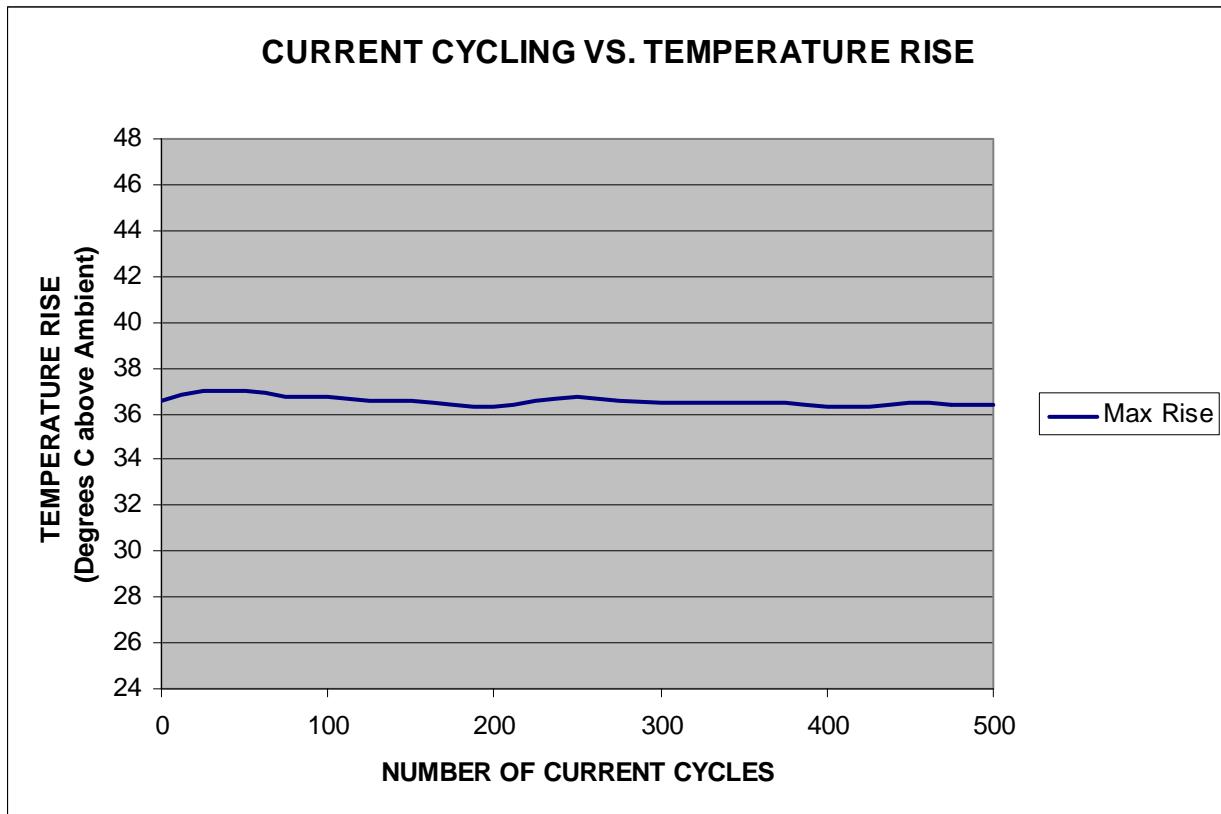
DATA SUMMARIES Continued**INSULATION RESISTANCE (IR):**

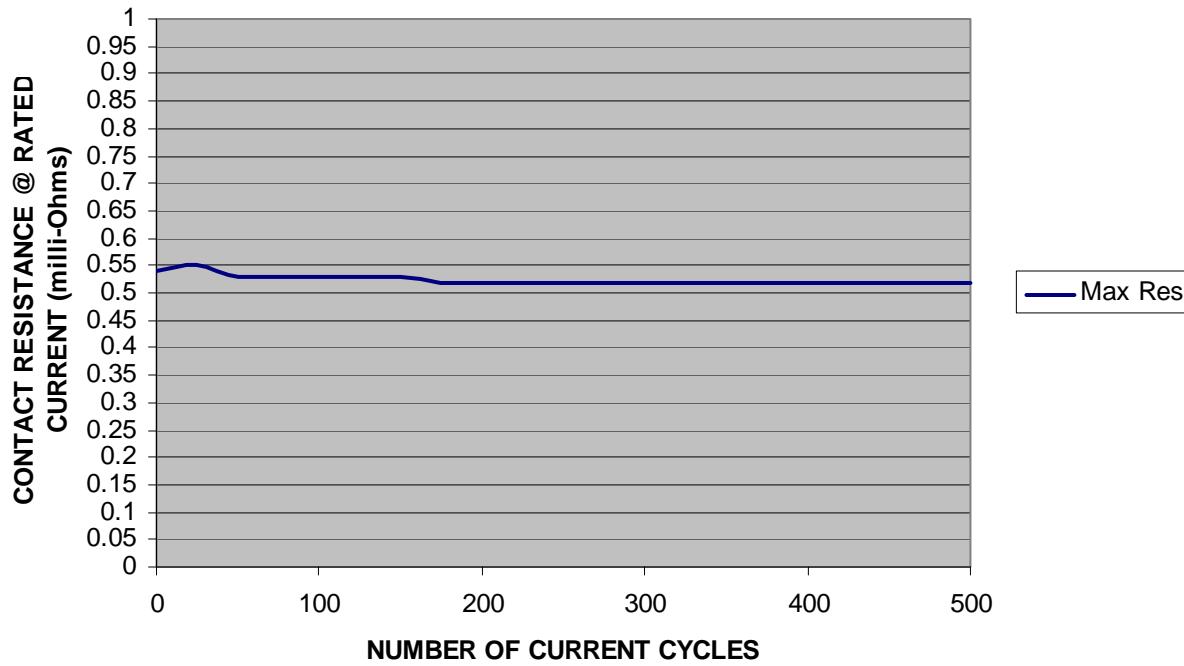
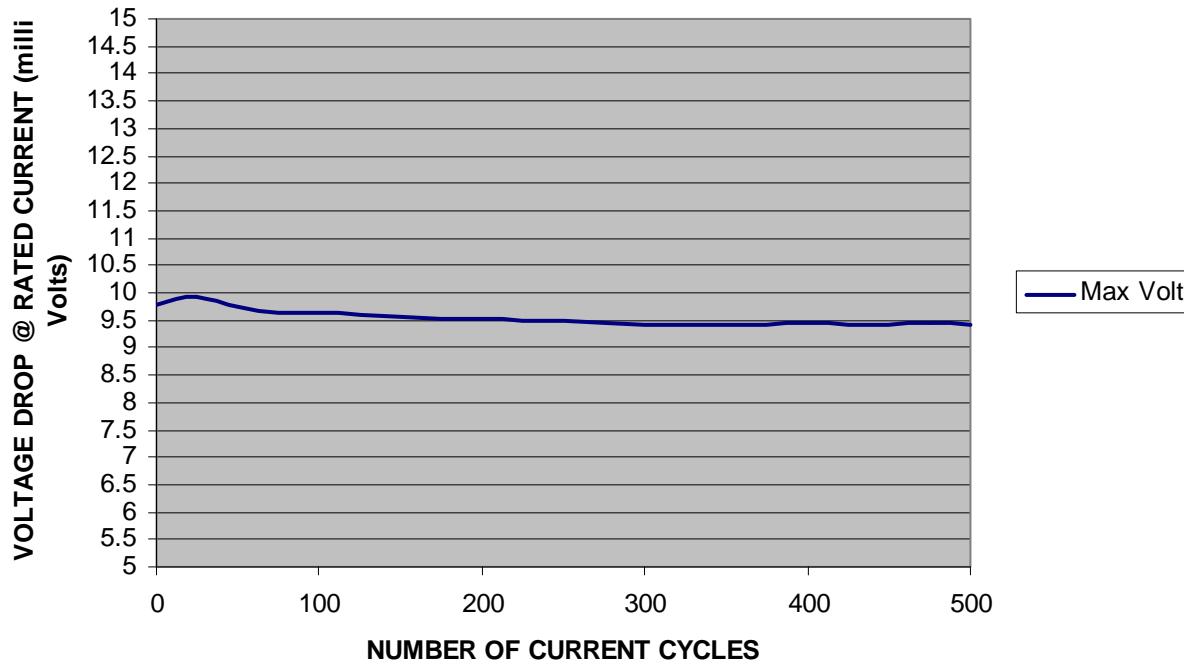
Pin-Pin		
	Mated	Unmated
Minimum	MPSS/MPT	MPSS
Initial	100000	100000
Thermal	100000	100000
Humidity	100000	100000

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

Pin-Pin		
	Mated	Unmated
Minimum	MPSS/MPT	MPSS
Breakdown Voltage	Initial	3000
	Thermal	2800
	Humidity	2400
DWV	Initial	2250
	Thermal	2100
	Humidity	1800
Working Voltage	Initial	750
	Thermal	700
	Humidity	600

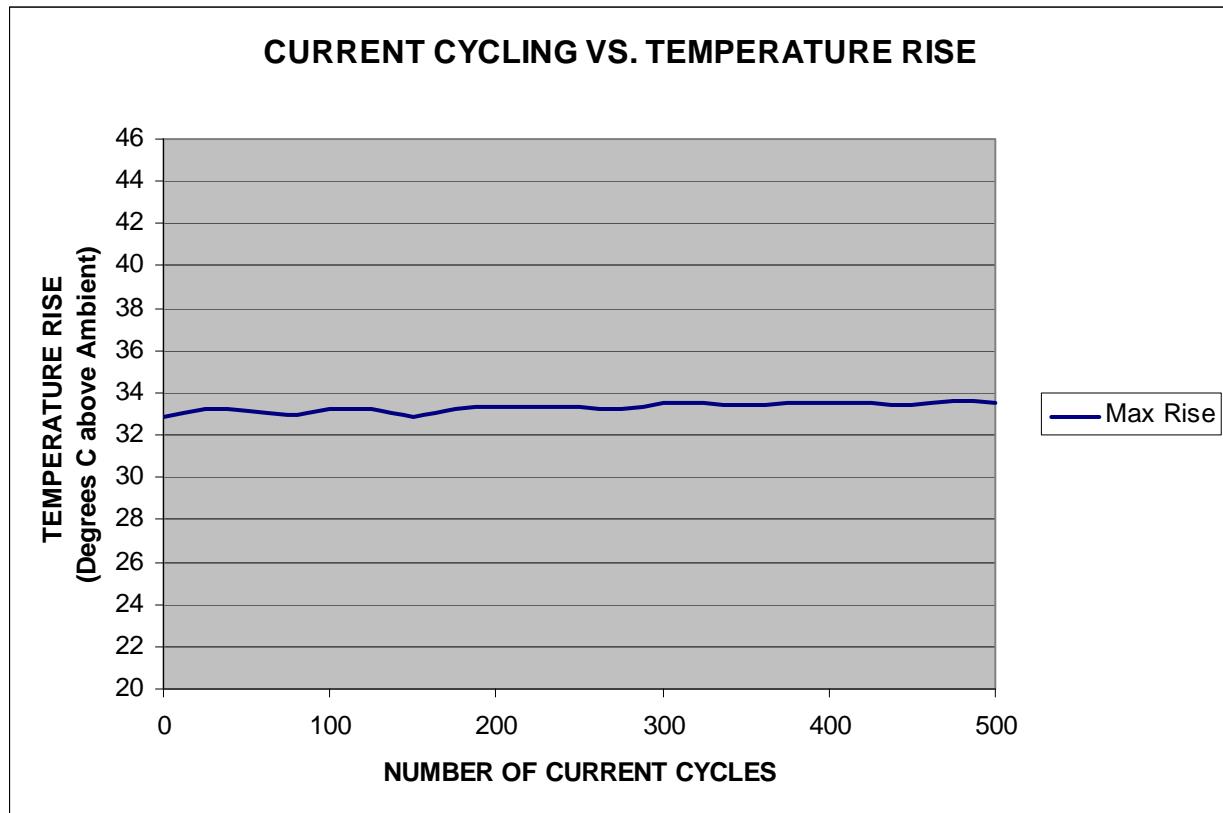
DATA SUMMARIES Continued

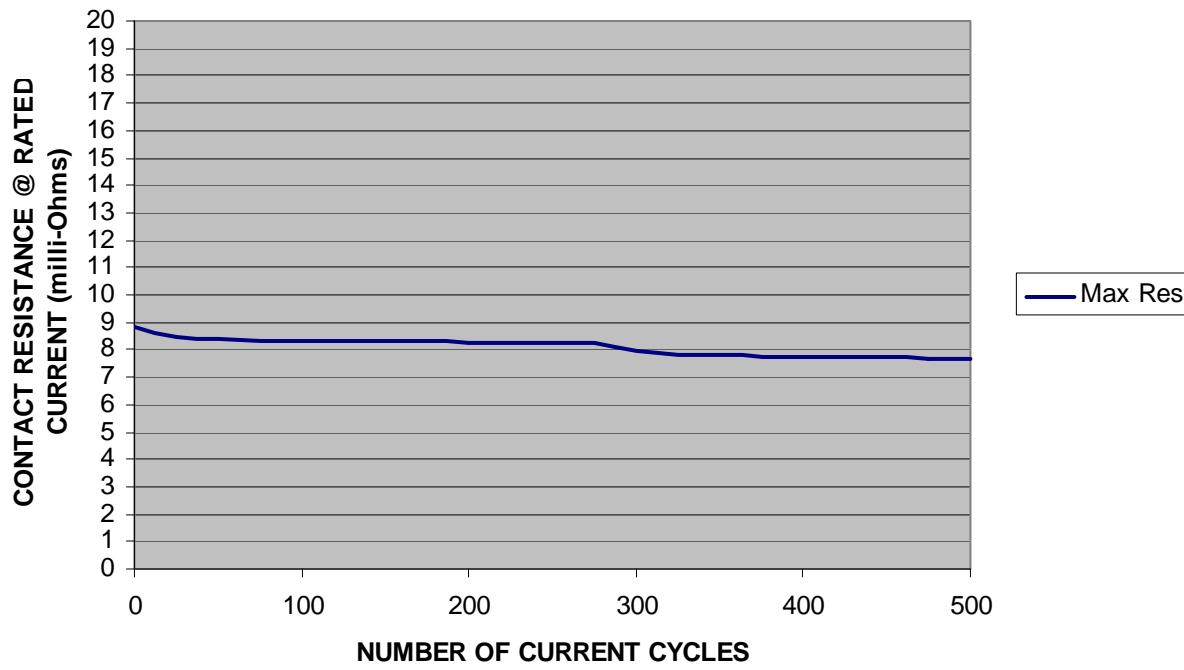
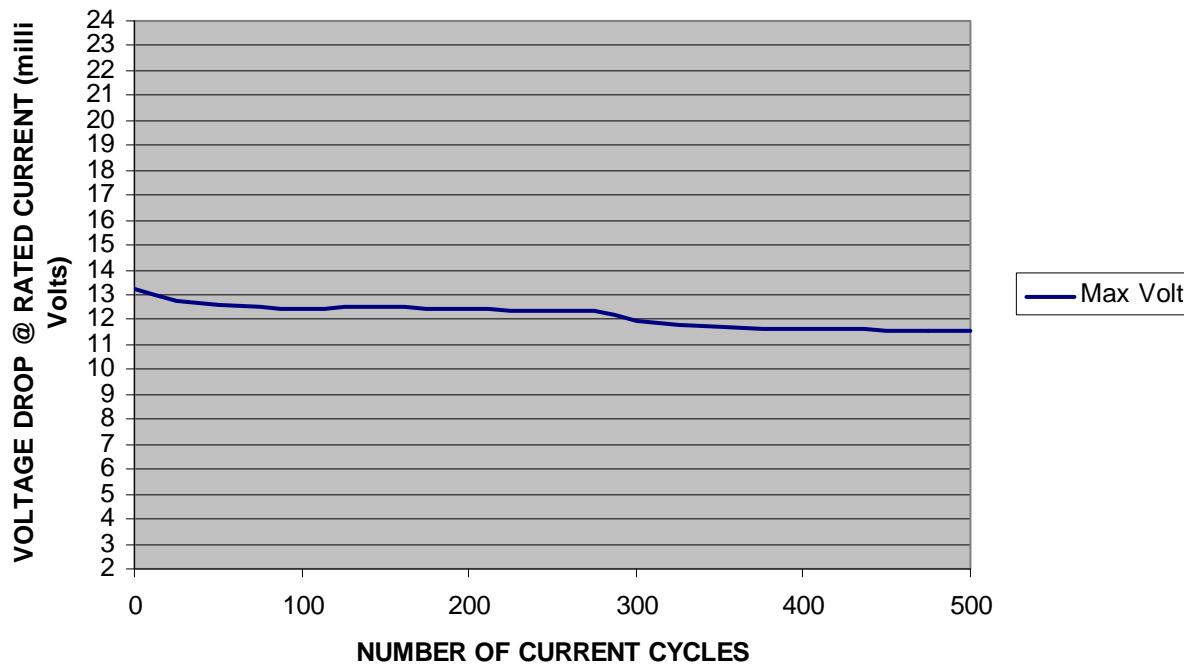

LLCR:



- 1) A total of 80 points were measured.
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. <= +5.0 mOhms: ----- Stable
 - b. +5.1 to +10.0 mOhms: ----- Minor
 - c. +10.1 to +15.0 mOhms: ----- Acceptable
 - d. +15.1 to +50.0 mOhms: ----- Marginal
 - e. +50.1 to +2000 mOhms ----- Unstable
 - f. >+2000 mOhms: ----- Open Failure

	Date	Jan. 15 2009	Jan. 15 2009	Jan. 26 2009	Feb. 06 2009
Room Temp C		23	24	23	25
RH		22%	20%	25%	27%
Name		Marshall	Marshall	RILEY	Marshall
mOhm values		Actual Initial	Delta 100 Cycles	Delta Thermal	Delta Humidity
Average		0.9	0.1	0.2	0.3
St. Dev.		0.1	0.2	0.2	0.7
Min		0.8	-0.2	-0.1	-0.6
Max		1.5	0.7	1.1	5.2
Count		80	80	80	80

DATA SUMMARIES Continued**SUPPLEMENTAL TESTS****CURRENT CYCLING:**


Product was operated at 125% of recommended level



14 Gage Wire

DATA SUMMARIES Continued**CURRENT CYCLING VS. CONTACT RESISTANCE****CURRENT CYCLING VS. VOLTAGE DROP**

DATA SUMMARIES Continued**CURRENT CYCLING:**

Product was operated at 125% of recommended level

16 Gage Wire

DATA SUMMARIES Continued**CURRENT CYCLING VS. CONTACT RESISTANCE****CURRENT CYCLING VS. VOLTAGE DROP**

DATA

CONTACT GAPS:

MPSS

Initial											
Measured in mm											
Pos.#	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	
1	1.454	1.428	1.424	1.472	1.496	1.452	1.462	1.468	1.458	1.46	
2	1.452	1.484	1.484	1.484	1.482	1.478	1.454	1.494	1.47	1.486	
3	1.476	1.484	1.452	1.414	1.448	1.342	1.406	1.452	1.512	1.47	
4	1.484	1.446	1.452	1.38	1.468	1.498	1.474	1.468	1.46	1.468	
5	1.388	1.372	1.49	1.476	1.341	1.341	1.434	1.382	1.466	1.452	
6	1.428	1.452	1.454	1.47	1.448	1.414	1.416	1.48	1.482	1.434	
7	1.43	1.476	1.46	1.464	1.468	1.432	1.342	1.514	1.47	1.462	
8	1.422	1.47	1.494	1.454	1.468	1.48	1.46	1.468	1.45	1.47	
After 100 Cycles											
Measured in mm											
Pos.#	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	
1	1.4281	1.4661	1.4901	1.4621	1.4601	1.4961	1.4441	1.4681	1.4481	1.4841	
2	1.4221	1.4701	1.4541	1.4401	1.4281	1.4361	1.3981	1.4861	1.4601	1.4741	
3	1.3761	1.4381	1.4501	1.4781	1.3621	1.4321	1.4121	1.4781	1.4861	1.4261	
4	1.4801	1.4061	1.4801	1.4761	1.4301	1.3781	1.4821	1.3781	1.4681	1.4561	
5	1.4501	1.4681	1.4761	1.4001	1.4341	1.4861	1.4601	1.4881	1.4541	1.4721	
6	1.4501	1.4761	1.4401	1.4241	1.4861	1.3661	1.4061	1.4321	1.5221	1.4641	
7	1.4541	1.4841	1.4921	1.4781	1.4901	1.4861	1.4501	1.4841	1.4921	1.4701	
8	1.4561	1.4241	1.4421	1.4741	1.4881	1.4501	1.4261	1.4541	1.4641	1.4801	
After Thermal											
Measured in mm											
Pos.#	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	
1	1.454	1.472	1.43	1.484	1.492	1.456	1.47	1.482	1.458	1.432	
2	1.47	1.486	1.5	1.502	1.472	1.502	1.462	1.508	1.488	1.486	
3	1.422	1.458	1.458	1.444	1.504	1.442	1.454	1.484	1.532	1.442	
4	1.49	1.436	1.476	1.412	1.438	1.508	1.486	1.432	1.468	1.556	
5	1.494	1.47	1.5	1.492	1.488	1.41	1.48	1.474	1.484	1.476	
6	1.466	1.488	1.472	1.484	1.388	1.482	1.434	1.444	1.498	1.484	
7	1.48	1.49	1.47	1.458	1.47	1.476	1.366	1.492	1.462	1.502	
8	1.486	1.44	1.512	1.478	1.488	1.506	1.464	1.466	1.454	1.46	
After Humidity											
Measured in mm											
Pos.#	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	
1	1.46558	1.48082	1.52654	1.46812	1.4859	1.4986	1.45288	1.47828	1.46304	1.4859	
2	1.45034	1.49352	1.4732	1.46304	1.45288	1.44526	1.36652	1.5113	1.46812	1.48082	
3	1.42748	1.4732	1.46304	1.50114	1.3843	1.45288	1.44272	1.48844	1.49098	1.43764	
4	1.49098	1.42494	1.49606	1.49352	1.4732	1.40716	1.50114	1.41986	1.47066	1.46812	
5	1.49098	1.4732	1.4732	1.42494	1.45288	1.49352	1.46812	1.4986	1.47066	1.48082	
6	1.4732	1.48844	1.45542	1.43764	1.50876	1.43002	1.42494	1.4351	1.5113	1.4732	
7	1.4732	1.49352	1.49352	1.49098	1.4732	1.4859	1.47574	1.49352	1.48844	1.4732	
8	1.4859	1.43256	1.4351	1.49098	1.49352	1.44526	1.45288	1.47574	1.47828	1.44526	

DATA Continued**MPT**

Initial										
Measured in mm										
Pos.#	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10
1	1.96	1.926	1.934	1.928	1.966	1.972	1.922	1.96	1.902	1.944
2	1.924	1.9	1.898	1.912	1.934	1.96	1.946	1.938	1.908	1.906
3	1.926	1.912	1.936	1.954	1.948	1.966	1.934	1.91	1.876	1.948
4	1.928	1.92	1.974	1.954	1.948	1.918	1.938	1.964	1.848	1.932
5	1.948	1.928	1.926	1.954	1.952	1.928	1.96	1.938	1.866	1.93
6	1.94	1.934	1.932	1.946	1.904	1.952	1.924	1.908	1.928	1.928
7	1.942	1.9	1.96	1.942	1.93	1.92	1.912	1.914	1.95	1.936
8	1.93	1.892	1.934	1.968	1.946	1.886	1.944	1.956	1.944	1.928
After 100 Cycles										
Measured in mm										
Pos.#	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10
1	1.8941	1.9021	1.8981	1.8901	1.9161	1.9221	1.8721	1.9141	1.8941	1.9221
2	1.8321	1.8961	1.8721	1.8521	1.8981	1.9261	1.9081	1.9101	1.8901	1.8701
3	1.8681	1.8961	1.9021	1.9221	1.9301	1.9441	1.8961	1.8881	1.8781	1.9261
4	1.8841	1.9061	1.9421	1.9241	1.9281	1.8941	1.9141	1.9261	1.8561	1.9041
5	1.9241	1.9161	1.8961	1.9421	1.9401	1.9061	1.9281	1.8801	1.8781	1.9061
6	1.9041	1.9221	1.8961	1.9241	1.8801	1.9101	1.8941	1.8721	1.9081	1.8801
7	1.8941	1.8821	1.9261	1.9101	1.8981	1.8821	1.8661	1.8781	1.9181	1.9161
8	1.8701	1.8701	1.8941	1.9381	1.9081	1.8521	1.9001	1.9161	1.9301	1.8841
After Thermal										
Measured in mm										
Pos.#	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10
1	1.854	1.876	1.822	1.84	1.872	1.84	1.82	1.83	1.828	1.85
2	1.822	1.858	1.824	1.824	1.832	1.824	1.85	1.832	1.814	1.83
3	1.844	1.874	1.828	1.864	1.848	1.836	1.83	1.804	1.864	1.826
4	1.844	1.884	1.874	1.836	1.836	1.832	1.86	1.834	1.824	1.798
5	1.854	1.844	1.838	1.858	1.872	1.822	1.852	1.798	1.848	1.784
6	1.866	1.874	1.828	1.858	1.828	1.82	1.814	1.784	1.822	1.86
7	1.854	1.852	1.866	1.844	1.838	1.84	1.78	1.84	1.858	1.842
8	1.822	1.83	1.836	1.852	1.842	1.812	1.81	1.852	1.832	1.842
After Humidity										
Measured in mm										
Pos.#	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10
1	1.792	1.788	1.776	1.84	1.828	1.814	1.786	1.826	1.794	1.818
2	1.802	1.78	1.7541	1.782	1.78	1.822	1.802	1.81	1.792	1.792
3	1.808	1.792	1.78	1.784	1.806	1.808	1.79	1.786	1.778	1.82
4	1.824	1.814	1.826	1.816	1.81	1.784	1.802	1.818	1.73	1.798
5	1.802	1.806	1.798	1.778	1.842	1.776	1.808	1.8	1.762	1.798
6	1.804	1.83	1.78	1.802	1.748	1.794	1.774	1.786	1.8	1.808
7	1.784	1.8	1.826	1.738	1.788	1.77	1.728	1.8	1.818	1.81
8	1.826	1.766	1.794	1.786	1.808	1.748	1.764	1.822	1.824	1.82

DATA Continued**MATING/UNMATING:**

	Initial	After 100 Cycles	After Thermal	After Humidity
Sample#	<u>Mating</u>	<u>Mating</u>	<u>Mating</u>	<u>Mating</u>
1	4.11	4.56	4.13	4.07
2	4.64	4.70	4.12	4.42
3	4.79	4.64	4.20	4.23
4	4.92	5.08	4.25	3.68
5	4.62	4.76	4.15	3.90
6	4.71	4.93	4.21	4.18
7	4.23	3.74	3.42	3.80
8	4.48	5.44	4.26	4.18
9	4.41	5.33	4.46	4.23
10	4.63	4.77	3.66	3.55

DATA Continued**NORMAL FORCE (FOR CONTACTS TESTED IN THE HOUSING):**

Initial	Deflections in inches Forces in Grams										
	0.0013	0.0026	0.0039	0.0052	0.0065	0.0078	0.0091	0.0104	0.0117	0.0130	<i>SET</i>
Averages	62.40	118.85	172.53	225.02	275.12	324.92	376.12	426.95	478.22	480.13	0.0010
Min	45.90	88.80	130.90	172.40	213.30	253.80	293.60	333.40	371.90	388.80	0.0007
Max	83.80	164.00	232.60	294.60	355.30	417.30	482.70	545.60	608.90	600.00	0.0017
St. Dev	13.231	26.892	36.894	44.841	52.376	61.074	72.036	83.014	94.780	85.042	0.0004
Count	6	6	6	6	6	6	6	6	6	6	6

Initial	Deflections in inches Forces in Grams										
	0.0013	0.0026	0.0039	0.0052	0.0065	0.0078	0.0091	0.0104	0.0117	0.0130	<i>SET</i>
Averages	63.86	119.22	173.90	226.68	280.18	341.88	420.44	504.60	594.56	688.76	0.0026
Min	31.00	44.80	74.90	119.80	166.50	216.40	276.90	350.40	431.70	511.60	0.0009
Max	86.80	174.50	262.90	348.10	436.40	526.70	625.30	727.30	848.50	956.30	0.0052
St. Dev	20.257	46.973	68.283	85.938	108.052	127.268	138.696	149.685	168.651	178.145	0.0017
Count	5	5	5	5	5	5	5	5	5	5	5

DATA Continued**INSULATION RESISTANCE (IR):**

Pin-Pin		
	Mated	Unmated
Sample 1	Sample 2	
Minimum	MPSS/MPT	MPSS
Initial	100000	100000
Thermal	100000	100000
Humidity	100000	100000

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

Pin-Pin		
	Mated	Unmated
Sample 1	Sample 2	
	MPSS/MPT	MPSS
Initial	3000	3800
Thermal	2800	3700
Humidity	2400	3800

DATA Continued**LLCR:**

	mOhm values	Actual	Delta	Delta	Delta
Board	Position	Initial	100 Cycles	Thermal	Humidity
1	P1	0.9	0.2	0.2	0.2
1	P2	0.9	0.0	0.1	0.2
1	P3	1.0	0.0	0.1	0.0
1	P4	0.9	0.0	0.2	0.2
1	P5	0.9	-0.1	0.2	0.1
1	P6	0.9	-0.1	0.0	0.1
1	P7	1.0	-0.1	0.0	0.3
1	P8	0.9	0.0	0.4	0.1
2	P1	1.0	0.4	0.3	0.7
2	P2	0.9	0.0	0.1	0.3
2	P3	0.9	0.3	0.4	0.3
2	P4	0.8	0.0	0.0	0.1
2	P5	0.9	0.0	0.2	0.0
2	P6	0.9	0.3	0.5	0.4
2	P7	1.0	0.2	0.2	0.2
2	P8	0.9	0.7	0.9	1.2
3	P1	0.9	0.5	0.5	0.2
3	P2	0.9	0.2	0.2	0.0
3	P3	0.9	0.0	0.1	0.0
3	P4	1.0	0.2	0.1	0.1
3	P5	0.9	0.2	0.2	0.2
3	P6	0.8	0.1	0.0	0.0
3	P7	1.1	0.0	0.0	-0.2
3	P8	0.8	0.1	0.2	0.2
4	P1	0.8	0.2	0.2	0.9
4	P2	1.0	0.1	0.1	0.1
4	P3	0.9	0.1	0.0	0.1
4	P4	1.0	-0.2	-0.1	0.0
4	P5	0.9	0.1	0.1	1.0
4	P6	1.0	-0.1	0.0	0.7
4	P7	0.9	0.0	0.0	0.0
4	P8	1.5	0.2	0.5	-0.6
5	P1	0.9	-0.1	0.1	0.0
5	P2	0.9	0.0	0.1	0.0
5	P3	1.0	0.1	0.3	0.0
5	P4	0.9	0.0	0.1	0.0
5	P5	0.9	0.3	0.3	0.2
5	P6	1.0	-0.1	0.0	-0.1
5	P7	1.0	0.0	0.1	-0.1
5	P8	0.9	0.0	0.1	0.0
6	P1	0.8	0.2	0.3	0.3

6	P2	0.9	0.0	0.1	0.0
6	P3	0.9	0.0	0.0	0.0
6	P4	0.9	-0.1	0.0	0.0
6	P5	0.9	0.0	0.0	0.0
6	P6	0.9	0.0	0.2	0.1
6	P7	0.9	-0.1	0.1	0.0
6	P8	0.9	0.1	0.2	0.2
7	P1	0.8	0.1	1.1	5.2
7	P2	0.8	0.0	1.1	2.2
7	P3	0.8	0.0	0.2	1.1
7	P4	0.8	0.0	0.4	2.8
7	P5	0.9	0.0	0.0	0.0
7	P6	0.9	-0.1	0.0	0.0
7	P7	0.9	0.0	0.1	0.1
7	P8	0.9	0.0	0.2	0.7
8	P1	0.9	0.4	0.3	0.3
8	P2	0.8	0.0	0.0	0.0
8	P3	0.9	0.2	0.2	0.3
8	P4	1.1	-0.1	-0.1	0.0
8	P5	1.0	0.0	0.0	0.0
8	P6	0.9	0.1	0.1	0.3
8	P7	1.0	-0.1	0.0	0.2
8	P8	0.9	0.1	0.6	0.5
9	P1	0.9	0.2	0.2	0.1
9	P2	1.0	0.2	0.3	0.4
9	P3	0.9	0.0	0.0	0.0
9	P4	0.9	0.2	0.1	0.2
9	P5	1.0	-0.1	-0.1	-0.1
9	P6	1.0	-0.2	-0.1	-0.1
9	P7	0.9	0.3	0.1	0.5
9	P8	0.9	0.1	0.3	0.2
10	P1	0.9	0.1	0.4	0.1
10	P2	0.9	-0.1	0.1	0.4
10	P3	0.9	0.3	0.4	0.2
10	P4	0.8	-0.1	0.0	0.0
10	P5	0.8	0.0	0.0	0.0
10	P6	0.8	0.6	1.0	0.5
10	P7	0.8	0.0	0.1	0.1
10	P8	0.9	-0.1	0.3	0.5

EQUIPMENT AND CALIBRATION SCHEDULES

Equipment #: MV-05**Description:** 6" x 6" Video Measuring Machine**Manufacturer:** Micro-Vu**Model:** M3010838**Serial #:** V9344**Accuracy:** See Manual

... Last Cal: 02/10/2009, Next Cal: 02/10/2010

Equipment #: TCT-04**Description:** Dillon Quantrol TC21 25-1000 mm/min series test stand**Manufacturer:** Dillon Quantrol**Model:** TC2 I series test stand**Serial #:** 04-1041-04**Accuracy:** Speed Accuracy: +/- 5% of indicated speed; Speed Accuracy: +/- 5% of indicated speed;

... Last Cal: 05/18/2008, Next Cal: 05/18/2009

Equipment #: LC-100N-2**Description:** 100 N icell load cell for Dillon Test Stand**Manufacturer:** Mecmesin (Dillon/Quantrol)**Model:** ILC**Serial #:** 07-0217-10**Accuracy:** .10% of Capacity

... Last Cal: 02/15/2009, Next Cal: 02/15/2010

Equipment #: OV-03**Description:** Cascade Tek Forced Air Oven**Manufacturer:** Cascade Tek**Model:** TFO-5**Serial #:** 0500100**Accuracy:** Temp. Stability: +/- .1C/C change in ambient

... Last Cal: 06/26/08, Next Cal: 06/26/09

Equipment #: TCT-03**Description:** Dillon Quantrol TC2 Test Stand**Manufacturer:** Dillon Quantrol**Model:** TC2**Serial #:** 02-1033-03**Accuracy:** Speed Accuracy: +/- 5% of indicated speed; Displacement: +/- 5 micrometers.

... Last Cal: 5/06/08, Next Cal: 05/06/09

Equipment #: MO-03**Description:** Multimeter /Data Acquisition System**Manufacturer:** Keithley**Model:** 2700**Serial #:** 0791975**Accuracy:** See Manual

... Last Cal: 06/17/08, Next Cal: 06/17/09

Equipment #: HPM-01**Description:** Hipot Megommeter**Manufacturer:** Hipotronics**Model:** H306B-A**Serial #:** M9905004**Accuracy:** 2 % Full Scale Accuracy 2 % Full Scale Accuracy

... Last Cal: 06/22/08, Next Cal: 06/22/09

Equipment #: STG-01**Description:** Hipot Megommeter Safety Test Cage**Manufacturer:** Hipotronics**Model:** TC-25**Serial #:** M9910141**Accuracy:** N/A

... Last Cal: No Calibration Required

Equipment #: MO-06**Description:** Micro-Ohmeter**Manufacturer:** Keithley**Model:** 580**Serial #:** 1110525**Accuracy:** See Manual

... Last Cal: 06/17/2008, Next Cal: 06/17/2009

Equipment #: MO-07**Description:** Multimeter / Data Acquistion System**Manufacturer:** Keithley**Model:** 2700**Serial #:** 1116559**Accuracy:** See Manual

... Last Cal: 6/17/2008, Next Cal: 6/17/2009

Equipment #: MO-01**Description:** Micro-Ohmeter**Manufacturer:** Keithley**Model:** 580**Serial #:** V9344**Accuracy:** See Manual

... Last Cal: 06/17/08, Next Cal: 06/17/09

Equipment #: MO-03**Description:** Multimeter /Data Acquisition System**Manufacturer:** Keithley**Model:** 2700**Serial #:** 0791975**Accuracy:** See Manual

... Last Cal: 06/17/08, Next Cal: 06/17/09