

Project Number: Design Qualification Test Report	Tracking Code: TC1037--3506_Report_Rev_1		
Requested by: Hardy Tain	Date: 12/01/2010	Product Rev: 0	
Part #: SIBF-30-F-S-AD\Mating Card	Lot #:1	Tech: Kason He	Eng: Vico Zhao
Part description: SIBF		Qty to test:40	
Test Start: 09/15/2010		Test Completed: 10/11/2010	

Design Qualification Test Report

SIBF

SIBF-30-F-S-AD\Mating Card

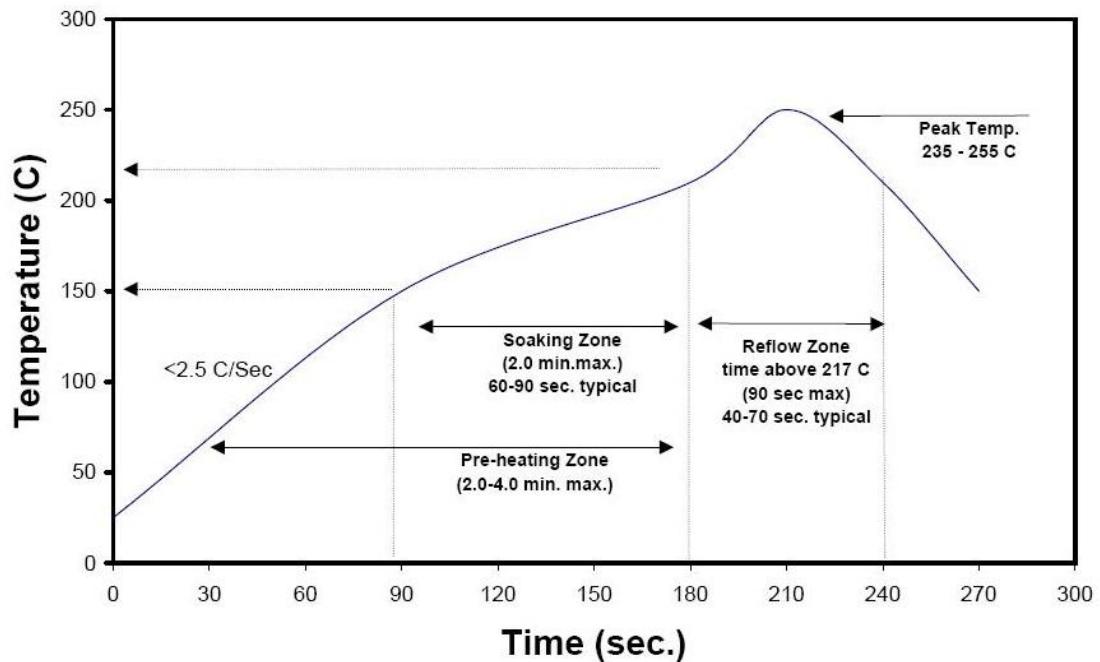
Tracking Code: TC1037--3506 Report Rev 1	Part #: SIBF-30-F-S-AD\Mating Card
	Part description: SIBF

CERTIFICATION

All instruments and measuring equipment were calibrated to National Institute for Standards and Technology (NIST) traceable standards according to ISO 10012-1 and ANSI/NCSL 2540-1, as applicable.

All contents contained herein are the property of Samtec. No portion of this report, in part or in full shall be reproduced without prior written approval of Samtec.

SCOPE


To perform the following tests: Design Qualification Test, Please see test plan

APPLICABLE DOCUMENTS

Standards: EIA Publication 364

TEST SAMPLES AND PREPARATION

- 1) All materials were manufactured in accordance with the applicable product specification.
- 2) All test samples were identified and encoded to maintain traceability throughout the test sequences.
- 3) After soldering, the parts to be used for LLCR and DWV/IR testing were cleaned according to TLWI-0001.
- 4) Either an automated cleaning procedure or an ultrasonic cleaning procedure may be used.
- 5) The automated procedure is used with aqueous compatible soldering materials.
- 6) Parts not intended for testing LLCR and DWV/IR are visually inspected and cleaned if necessary.
- 7) Any additional preparation will be noted in the individual test sequences.
- 8) Solder Information: Lead free
- 9) Re-Flow Time/Temp: See accompanying profile.
- 10) Samtec Test PCBs used: PCB-102669-TST\ CB-102668-TST\ CB-102669-TST

TYPICAL OVEN PROFILE (Soldering Parts to Test Boards)**Kester Lead Free Reflow Profile**
Alloys: Sn96.5/Ag3.0/Cu0.5 and Sn96.5/Ag3.5

FLOWCHARTS

Gas Tight

TEST STEP	GROUP A 192 Points
01	LLCR-1
02	Gas Tight
03	LLCR-2

Gas Tight = EIA-364-36A

LLCR = EIA-364-23, LLCR

use Keithley 580 in the dry circuit mode, 10 mA Max

Normal Force/Deflection Force

TEST STEP	GROUP B1 Individual Contacts (8-10 min)	GROUP B2 Individual Contacts (8-10 min)
01	Setup Approved	Setup Approved
02	Normal Force (in the body and soldered on PCB unless otherwise specified)	Thermal Aging (Mated)
03		Normal Force (in the body and soldered on PCB unless otherwise specified)

Thermal Aging = EIA-364-17, Test Condition 4 (105 °C)

Time Condition 'B' (250 hours)

Humidity = EIA-364-31, Test Condition B (240 Hours)

and Method III (+25 °C to +65 °C @ 90%RH to 98% RH)

ambient pre-condition and delete steps 7a and 7b

Mating/Un-Mating Forces = EIA-364-13

Normal Force = EIA-364-04

(Perpendicular) displacement Force = 12.7 mm/min +/- 6 mm/min

Spec is 50 N @ 1 mm displacement

Contact Gaps/Height - No standard method. Usually measured optically

FLOWCHARTS Continued

Durability/Thermal Age/Cyclic Humidity

TEST STEP	GROUP A 192 Points 100 Cycles
01	LLCR-1
02	100 Cycles
03	Clean Mating Interface
04	LLCR-2
05	Thermal Age (Mated and undisturbed)
06	LLCR-3
07	Cyclic Humidity (Mated and undisturbed)
08	LLCR-4

Thermal Aging = EIA-364-17, Test Condition 4, 105 deg C;

Time Condition 'B' (250 hours)

Humidity =EIA-364-31, Test Condition B (240 Hours)

and Method III (+25 ° C to +65 ° C @ 90%RH to 98% RH)

ambient pre-condition and delete steps 7a and 7b

LLCR = EIA-364-23, LLCR

use Keithley 580 in the dry circuit mode, 10 mA Max

FLOWCHARTS Continued**IR & DWV**

TEST STEP	GROUP A1 2 Mated Sets Break Down - Pin to Pin	GROUP A2 2 Unmated of Part # Being Tested Break Down - Pin to Pin	GROUP A3 2 Unmated of Mating Part # Break Down - Pin to Pin	GROUP B 2 Mated Sets Pin to Pin
01	DWV/Break Down Voltage	DWV/Break Down Voltage	DWV/Break Down Voltage	IR & DWV at test voltage (on both mated sets and on each connector unmated)
02				Thermal Aging (both sets unmated)
03				IR & DWV at test voltage (on both mated sets and on each connector unmated)
04				Cyclic Humidity (both sets unmated)
05				IR & DWV at test voltage (on both mated sets and on each connector unmated)

* - DWV on group B to be performed at Test Voltage

DWV test voltage is equal to 75% of the lowest break down voltage from group A1, A2 or A3

Thermal Aging = EIA-364-17, Test Condition 4 (105 °C)

Time Condition 'B' (250 hours)

Humidity = EIA-364-31, Test Condition B (240 Hours)

and Method III (+25° C to +65° C @ 90%RH to 98% RH)

ambient pre-condition and delete steps 7a and 7b

IR = EIA-364-21

DWV = EIA-364-20, Test Condition 1

Current Carrying Capacity

TEST STEP	GROUP A 3 Mated Assemblies 1 CONTACT POWERED	GROUP B 3 Mated Assemblies 2 CONTACTS POWERED	GROUP C 3 Mated Assemblies 3 CONTACTS POWERED	GROUP D 3 Mated Assemblies 4 CONTACTS POWERED	GROUP E 3 Mated Assemblies ALL CONTACTS POWERED
01	CCC	CCC	CCC	CCC	CCC

(TIN PLATING) - Tabulate calculated current at RT, 65° C, 75° C and 95° C

after derating 20% and based on 105° C

(GOLD PLATING) - Tabulate calculated current at RT, 85° C, 95° C and 115° C

after derating 20% and based on 125° C

CCC, Temp rise = EIA364-70

ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

THERMAL:

- 1) EIA-364-17, *Temperature Life with or without Electrical Load Test Procedure for Electrical Connectors*.
- 2) Test Condition 4 at 105° C.
- 3) Test Time Condition B for 250 hours.
- 4) All test samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

HUMIDITY:

- 1) Reference document: EIA-364-31, *Humidity Test Procedure for Electrical Connectors*.
- 2) Test Condition B, 240 Hours.
- 3) Method III, +25° C to + 65° C, 90% to 98% Relative Humidity excluding sub-cycles 7a and 7b.
- 4) All samples are pre-conditioned at ambient.
- 5) All test samples are exposed to environmental stressing in the mated condition.

NORMAL FORCE (FOR CONTACTS TESTED IN THE HOUSING):

- 1) Reference document: EIA-364-04, *Normal Force Test Procedure for Electrical Connectors*.
- 2) The contacts shall be tested in the connector housing.
- 3) If necessary, a “window” shall be made in the connector body to allow a probe to engage and deflect the contact at the same attitude and distance (plus 0.05 mm [0.002”]) as would occur in actual use.
- 4) The connector housing shall be placed in a holding fixture that does not interfere with or otherwise influence the contact force or deflection.
- 5) Said holding fixture shall be mounted on a floating, adjustable, X-Y table on the base of the Dillon TC², computer controlled test stand with a deflection measurement system accuracy of 5.0 μ m (0.0002”).
- 6) The nominal deflection rate shall be 5 mm (0.2”)/minute.
- 7) Unless otherwise noted a minimum of five contacts shall be tested.
- 8) The force/deflection characteristic to load and unload each contact shall be repeated five times.
- 9) The system shall utilize the TC² software in order to acquire and record the test data.
- 10) The permanent set of each contact shall be measured within the TC² software.
- 11) The acquired data shall be graphed with the deflection data on the X-axis and the force data on the Y-axis and a print out will be stored with the Tracking Code paperwork.

ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

TEMPERATURE RISE (Current Carrying Capacity, CCC):

- 1) EIA-364-70, *Temperature Rise versus Current Test Procedure for Electrical Connectors and Sockets*.
- 2) When current passes through a contact, the temperature of the contact increases as a result of I^2R (resistive) heating.
- 3) The number of contacts being investigated plays a significant part in power dissipation and therefore temperature rise.
- 4) The size of the temperature probe can affect the measured temperature.
- 5) Copper traces on PC boards will contribute to temperature rise:
 - a. Self heating (resistive)
 - b. Reduction in heat sink capacity affecting the heated contacts
- 6) A de-rating curve, usually 20%, is calculated.
- 7) Calculated de-rated currents at three temperature points are reported:
 - a. Ambient
 - b. 80°C
 - c. 95°C
 - d. 115°C
- 8) Typically, neighboring contacts (in close proximity to maximize heat build up) are energized.
- 9) The thermocouple (or temperature measuring probe) will be positioned at a location to sense the maximum temperature in the vicinity of the heat generation area.
- 10) A computer program, *TR 803.exe*, ensures accurate stability for data acquisition.
- 11) Hook-up wire cross section is larger than the cross section of any connector leads/PC board traces, jumpers, etc.
- 12) Hook-up wire length is longer than the minimum specified in the referencing standard.

INSULATION RESISTANCE (IR):

To determine the resistance of insulation materials to leakage of current through or on the surface of these materials when a DC potential is applied.

- 1) PROCEDURE:
 - a. Reference document: EIA-364-21, *Insulation Resistance Test Procedure for Electrical Connectors*.
 - b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Electrification Time 2.0 minutes
 - iii. Test Voltage (500 VDC) corresponds to calibration settings for measuring resistances.
- 2) MEASUREMENTS:
- 3) When the specified test voltage is applied (VDC), the insulation resistance shall not be less than 5000 megohms.

ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

To determine if the sockets can operate at its rated voltage and withstand momentary over potentials due to switching, surges, and other similar phenomenon. Separate samples are used to evaluate the effect of environmental stresses so not to influence the readings from arcing that occurs during the measurement process.

1) PROCEDURE:

- a. Reference document: EIA-364-20, *Withstanding Voltage Test Procedure for Electrical Connectors*.
- b. Test Conditions:
 - i. Between Adjacent Contacts or Signal-to-Ground
 - ii. Barometric Test Condition 1
 - iii. Rate of Application 500 V/Sec
 - iv. Test Voltage (VAC) until breakdown occurs

2) MEASUREMENTS/CALCULATIONS

- a. The breakdown voltage shall be measured and recorded.
- b. The dielectric withstand voltage shall be recorded as 75% of the minimum breakdown voltage.
- c. The working voltage shall be recorded as one-third (1/3) of the dielectric withstand voltage (one-fourth of the breakdown voltage).

LLCR:

- 1) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
 - a. $\leq +5.0$ mOhms: ----- Stable
 - b. $+5.1$ to $+10.0$ mOhms: ----- Minor
 - c. $+10.1$ to $+15.0$ mOhms: ----- Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: ----- Marginal
 - e. $+50.1$ to $+2000$ mOhms: ----- Unstable
 - f. $>+2000$ mOhms: ----- Open Failure

ATTRIBUTE DEFINITIONS

The following is a brief, simplified description of attributes.

GAS TIGHT:

To provide method for evaluating the ability of the contacting surfaces in preventing penetration of harsh vapors which might lead to oxide formation that may degrade the electrical performance of the contact system.

- 1) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 2) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 3) The following guidelines are used to categorize the changes in LLCR as a result from stressing
 - a. <= +5.0 mOhms: ----- Stable
 - b. +5.1 to +10.0 mOhms: ----- Minor
 - c. +10.1 to +15.0 mOhms: ----- Acceptable
 - d. +15.1 to +50.0 mOhms: ----- Marginal
 - e. +50.1 to +2000 mOhms: ----- Unstable
 - f. >+2000 mOhms: ----- Open Failure
- 4) Procedure:
 - a. Reference document: EIA-364-36, *Test Procedure for Determination of Gas-Tight Characteristics for Electrical Connectors, Sockets and/or Contact Systems*.
 - b. Test Conditions:
 - i. Class II--- Mated pairs of contacts assembled to their plastic housings.
 - ii. Reagent grade Nitric Acid shall be used of sufficient volume to saturate the test chamber
 - iii. The ratio of the volume of the test chamber to the surface area of the acid shall be 10:1.
 - iv. The chamber shall be saturated with the vapor for at least 15 minutes before samples are added.
 - v. Exposure time, 55 to 65 minutes.
 - vi. The samples shall be no closer to the chamber walls than 1 inches and no closer to the surface of the acid than 3 inches.
 - vii. The samples shall be dried after exposure for a minimum of 1 hour.
 - viii. Drying temperature 50° C
 - ix. The final LLCR shall be conducted within 1 hour after drying.

RESULTS

Temperature Rise, CCC at a 20% de-rating

- CCC for a 30°C Temperature Rise ----- 2.5A per contact with 1 adjacent contacts powered
- CCC for a 30°C Temperature Rise ----- 2.2A per contact with 2 adjacent contacts powered
- CCC for a 30°C Temperature Rise ----- 2.1A per contact with 3 adjacent contacts powered
- CCC for a 30°C Temperature Rise ----- 1.6A per contact with 4 adjacent contacts powered
- CCC for a 30°C Temperature Rise ----- 0.9A per contact with all adjacent contacts powered

Normal Force at 0.90 mm deflection

- Initial
 - Min ----- 52.06 gf Set ----- 0.0100 mm
 - Max ----- 54.63 gf Set ----- 0.0200 mm
- Thermal
 - Min ----- 53.30 gf Set ----- 0.0000 mm
 - Max ----- 55.20 gf Set ----- 0.0300 mm

Insulation Resistance minimums, IR

- Initial
 - Mated ----- 10000Meg Ω ----- Pass
 - Unmated ----- 10000Meg Ω ----- Pass
- Thermal
 - Mated ----- 10000Meg Ω ----- Pass
 - Unmated ----- 10000Meg Ω ----- Pass
- Humidity
 - Mated ----- 10000Meg Ω ----- Pass
 - Unmated ----- 10000Meg Ω ----- Pass

Dielectric Withstanding Voltage minimums, DWV

Breakdown ----- 620VAC
 DWV ----- 465VAC
 Working voltage ----- 155VAC

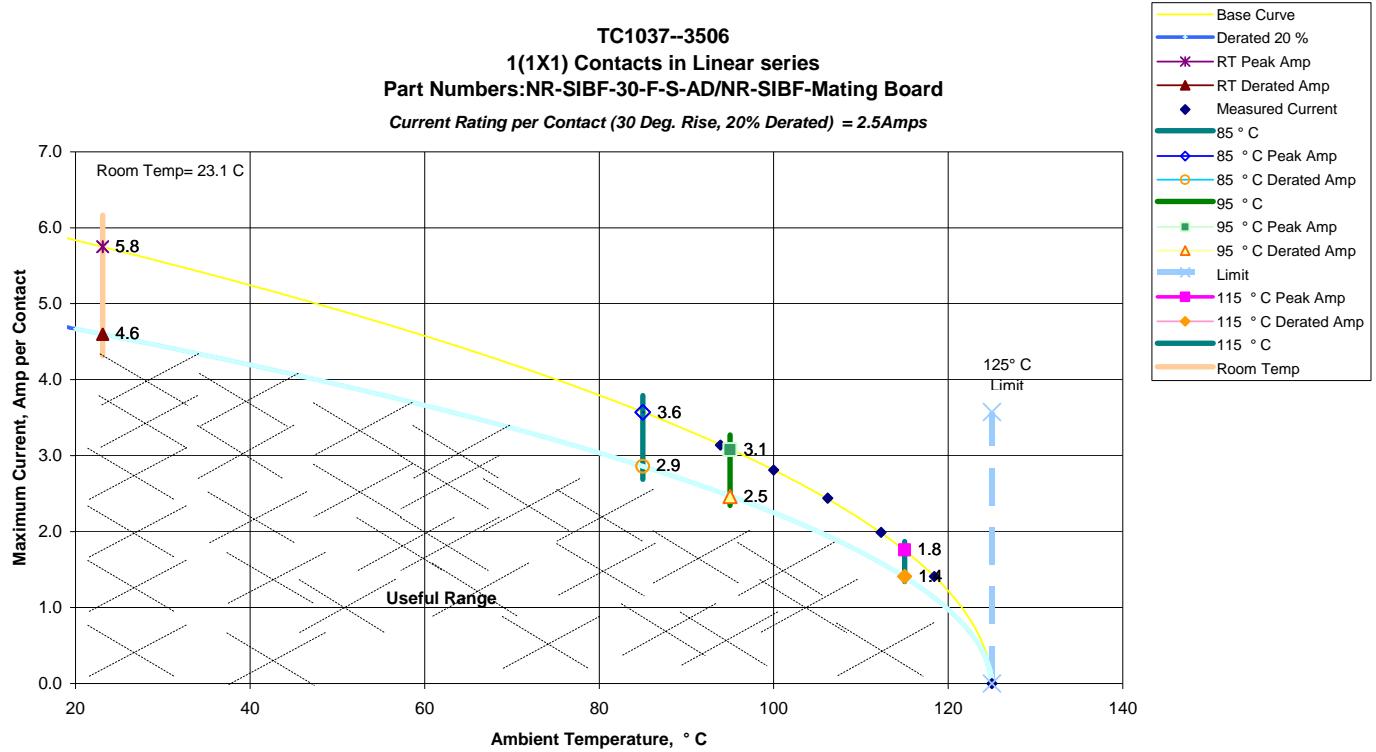
Initial ----- Passed
 Thermal ----- Passed
 Humidity ----- Passed

RESULTS Continued

LLCR Durability (192 LLCR test points)

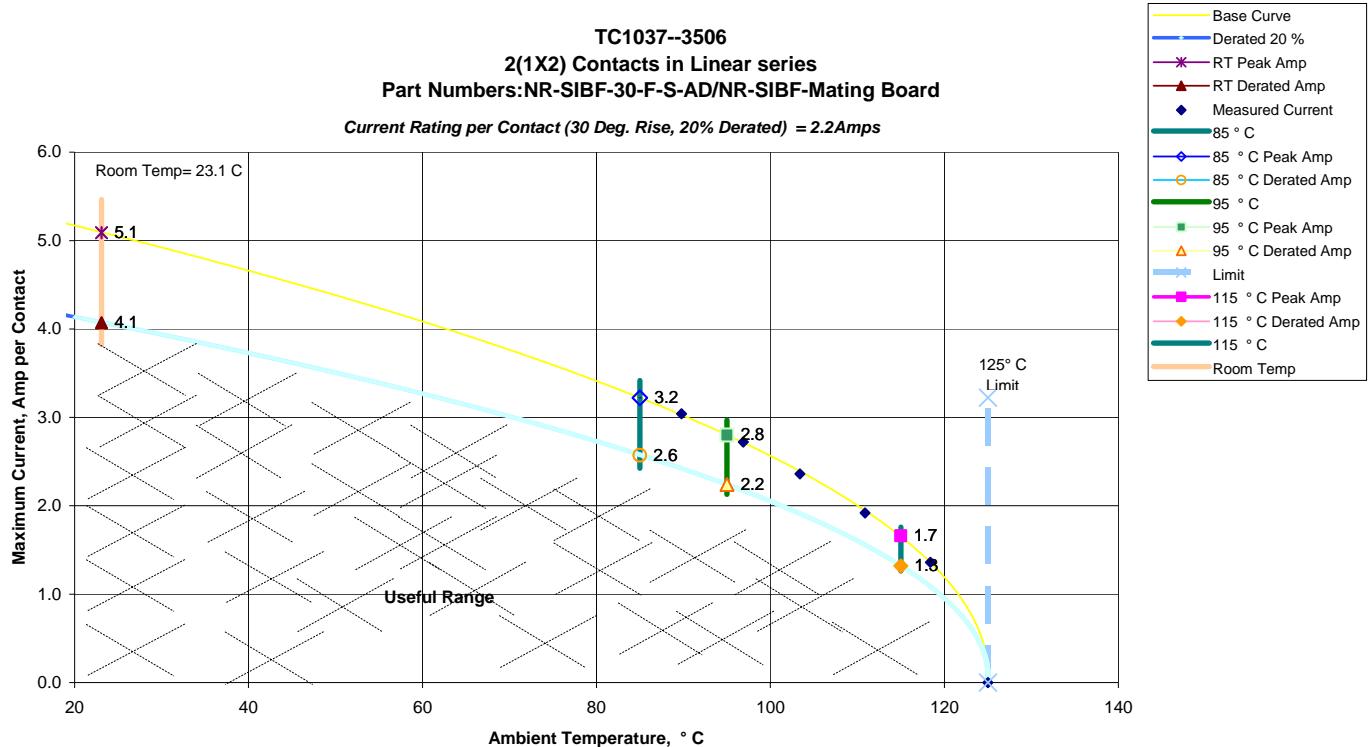
- Initial ----- **26.2mOhms Max**
- Durability, 100 Cycles
 - <= +5.0 mOhms ----- **192 Points** ----- Stable
 - +5.1 to +10.0 mOhms ----- **0 Points** ----- Minor
 - +10.1 to +15.0 mOhms ----- **0 Points** ----- Acceptable
 - +15.1 to +50.0 mOhms ----- **0 Points** ----- Marginal
 - +50.1 to +2000 mOhms----- **0 Points** ----- Unstable
 - >+2000 mOhms ----- **0 Points** ----- Open Failure
- Thermal
 - <= +5.0 mOhms ----- **129 Points** ----- Stable
 - +5.1 to +10.0 mOhms ----- **63 Points** ----- Minor
 - +10.1 to +15.0 mOhms ----- **0 Points** ----- Acceptable
 - +15.1 to +50.0 mOhms ----- **0 Points** ----- Marginal
 - +50.1 to +2000 mOhms----- **0 Points** ----- Unstable
 - >+2000 mOhms ----- **0 Points** ----- Open Failure
 -
- Humidity
 - <= +5.0 mOhms ----- **170 Points** ----- Stable
 - +5.1 to +10.0 mOhms ----- **20 Points** ----- Minor
 - +10.1 to +15.0 mOhms ----- **2 Points** ----- Acceptable
 - +15.1 to +50.0 mOhms ----- **0 Points** ----- Marginal
 - +50.1 to +2000 mOhms----- **0 Points** ----- Unstable
 - >+2000 mOhms ----- **0 Points** ----- Open Failure

LLCR Gas Tight (192 LLCR test points)

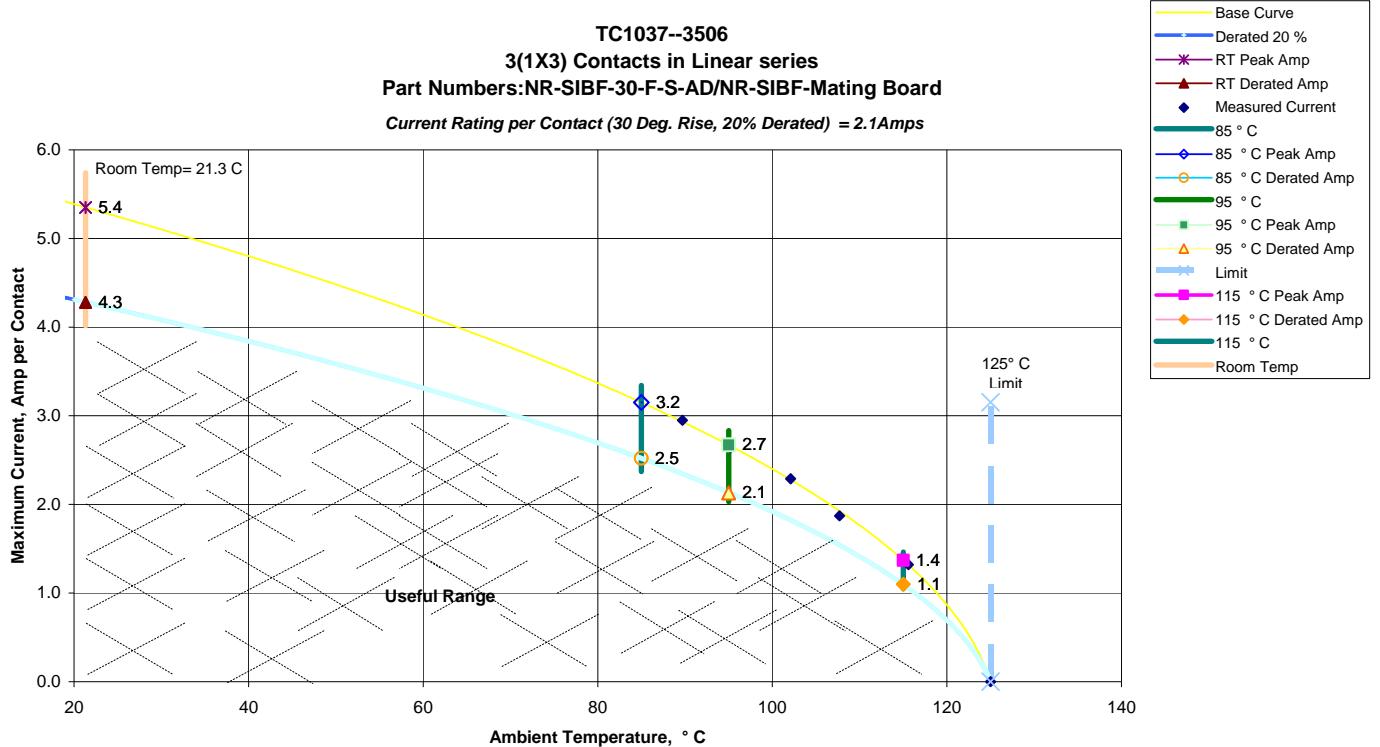

- Initial ----- **26.8mOhms Max**
- Gas-Tight
 - <= +5.0 mOhms ----- **192 Points** ----- Stable
 - +5.1 to +10.0 mOhms ----- **0 Points** ----- Minor
 - +10.1 to +15.0 mOhms ----- **0 Points** ----- Acceptable
 - +15.1 to +50.0 mOhms ----- **0 Points** ----- Marginal
 - +50.1 to +2000 mOhms----- **0 Points** ----- Unstable
 - >+2000 mOhms ----- **0 Points** ----- Open Failure

DATA SUMMARIES

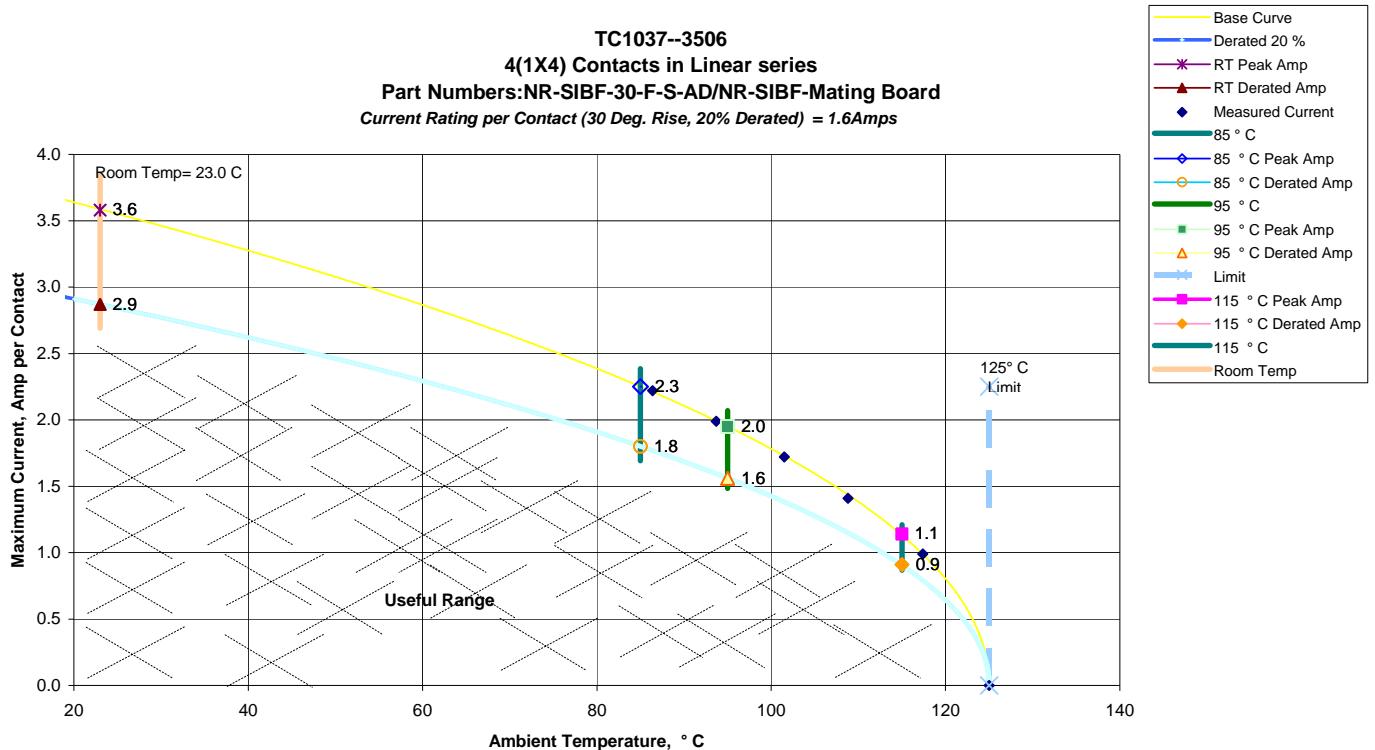
TEMPERATURE RISE (Current Carrying Capacity, CCC):


- 1) High quality thermocouples whose temperature slopes track one another were used for temperature monitoring.
- 2) The thermocouples were placed at a location to sense the maximum temperature generated during testing.
- 3) Temperature readings recorded are those for which three successive readings, 15 minutes apart, differ less than 1° C (computer controlled data acquisition).
- 4) Adjacent contacts were powered:

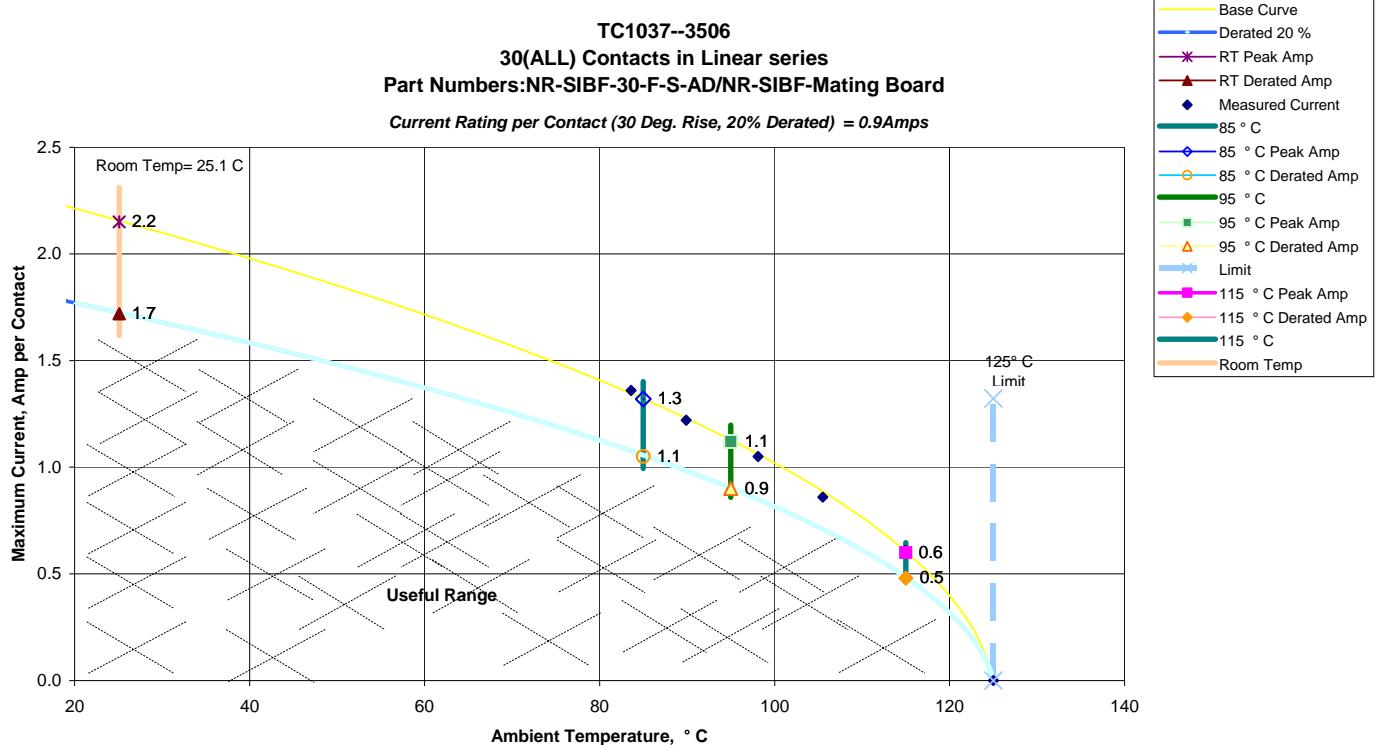
- a. Linear configuration with 1 adjacent conductors /contacts powered


DATA SUMMARIES Continued

b. Linear configuration with 2 adjacent conductors /contacts powered


DATA SUMMARIES Continued

c. Linear configuration with 3 adjacent conductors/contacts powered


DATA SUMMARIES Continued

d. Linear configuration with 4 adjacent conductors/contacts powered

DATA SUMMARIES Continued

e. Linear configuration with all adjacent conductors/contacts powered

DATA SUMMARIES

NORMAL FORCE (FOR CONTACTS TESTED IN THE HOUSING):

- 1) Calibrated force gauges are used along with computer controlled positioning equipment.
- 2) For Normal force 8-10 measurements are taken and the averages reported.

Initial	Deflections in mm Forces in Grams			
	<u>0.500</u>	<u>0.800</u>	<u>0.900</u>	<u>SET</u>
Averages	44.50	51.40	53.11	0.0138
Min	43.11	50.11	52.06	0.0100
Max	46.61	52.73	54.63	0.0200
St. Dev	0.93	0.84	0.72	0.0051
Count	13	13	13	13

Thermal	Deflections in mm, Forces in Grams			
	<u>0.500</u>	<u>0.800</u>	<u>0.900</u>	<u>SET</u>
Averages	45.25	52.06	54.10	0.0102
Min	44.20	50.10	53.30	0.0000
Max	47.00	53.60	55.20	0.0300
St. Dev	0.75	1.12	0.65	0.0076
Count	13	13	13	13

INSULATION RESISTANCE (IR):

	Pin to Pin		
	Mated	Unmated	Unmated
Minimum	SIBF/Card	SIBF	Card
Initial	10000	10000	10000
Thermal	10000	10000	10000
Humidity	10000	10000	10000

DIELECTRIC WITHSTANDING VOLTAGE (DWV):

Voltage Rating Summary	
Minimum	SIBF/Card
Break Down Voltage	620
Test Voltage	465
Working Voltage	155

Pin to Pin	
Initial Test Voltage	Passed
After Thermal Test Voltage	Passed
After Humidity Test Voltage	Passed

DATA SUMMARIES Continued

LLCR:

- 1) A total of 192 points were measured.
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. <= +5.0 mOhms: ----- Stable
 - b. +5.1 to +10.0 mOhms: ----- Minor
 - c. +10.1 to +15.0 mOhms: ----- Acceptable
 - d. +15.1 to +50.0 mOhms: ----- Marginal
 - e. +50.1 to +2000 mOhms ----- Unstable
 - f. >+2000 mOhms: ----- Open Failure

Date	Sep. 15 2010	Sep. 16 2010	Sep. 28 2010	Oct. 11 2010
	Room Temp C	26	23	25
RH	54%	54%	64%	66%
	Kason	Kason He	Kason	Kason
mOhm values	Actual Initial	Delta 100 Cycles	Delta Thermal	Delta Humidity
Average	22.3	-0.6	4.1	2.2
St. Dev.	1.1	1.4	2.2	2.5
Min	20.2	-4.8	-1.1	-1.8
Max	26.2	4.5	9.4	10.9
Count	192	192	192	192

How many samples are being tested?

8

How many contacts are on each board?

24

	Stable	Minor	Acceptable	Marginal	Unstable	Open
100 Cycles	192	0	0	0	0	0
Thermal	129	63	0	0	0	0
Humidity	170	20	2	0	0	0

DATA SUMMARIES Continued

GAS TIGHT:

- 1) A total of 192 points were measured.
- 2) EIA-364-23, *Low Level Contact Resistance Test Procedure for Electrical Connectors and Sockets*.
- 3) A computer program, *LLCR 221.exe*, ensures repeatability for data acquisition.
- 4) The following guidelines are used to categorize the changes in LLCR as a result from stressing.
 - a. $\leq +5.0$ mOhms: ----- Stable
 - b. $+5.1$ to $+10.0$ mOhms: ----- Minor
 - c. $+10.1$ to $+15.0$ mOhms: ----- Acceptable
 - d. $+15.1$ to $+50.0$ mOhms: ----- Marginal
 - e. $+50.1$ to $+2000$ mOhms: ----- Unstable
 - f. $>+2000$ mOhms: ----- Open Failure

	Date	Sep. 15 2010	Sep. 16 2010
Room Temp C	23	23	
RH	59%	54%	
Name	Kason	Kason	
mOhm values		Actual Initial	Delta Gas Tight
Average	22.3	-0.1	
St. Dev.	1.1	1.0	
Min	20.4	-4.4	
Max	26.8	4.4	
Count	192	192	

How many samples are being tested?

8

How many contacts are on each board?

24

	Stable	Minor	Acceptable	Marginal	Unstable	Open
Gas Tight	192	0	0	0	0	0

DATA**INSULATION RESISTANCE (IR):**

Initial Insulation Resistance			
Measured In Meg Ohms			
Sample#	Pin to Pin		
	Mated	Unmated	
	x	x	x
SIBF/Card	SIBF	Card	
1	10000	10000	10000
2	10000	10000	10000

Thermal Insulation Resistance			
Measured In Meg Ohms			
Sample#	Pin to Pin		
	Mated	Unmated	
	x	x	x
SIBF/Card	SIBF	Card	
1	10000	10000	10000
2	10000	10000	10000

Humidity Insulation Resistance			
Measured In Meg Ohms			
Sample#	Pin to Pin		
	Mated	Unmated	
	x	x	x
SIBF/Card	SIBF	Card	
1	10000	10000	10000
2	10000	10000	10000

DATA Continued**DIELECTRIC WITHSTANDING VOLTAGE (DWV):**

Initial Breakdown Voltage			
Test Voltage Until Breakdown Occurs			
Pin to Pin			
Mated		Unmated	
X			
Sample#	SIBF/Card	SIBF	Card
1	620	750	870
2	750	870	870

Initial DWV			
Test Voltage= 465			
Pin to Pin			
Mated		Unmated	
Sample#	SIBF/Card	SIBF	Card
1	465	465	465
2	465	465	465

Thermal Test Voltage			
Test Voltage= 465			
Pin to Pin			
Mated		Unmated	
Sample#	SIBF/Card	SIBF	Card
1	465	465	465
2	465	465	465

Humidity Test Voltage			
Test Voltage= 465			
Pin to Pin			
Mated		Unmated	
Sample#	SIBF/Card	SIBF	Card
1	465	465	465
2	465	465	465

DATA Continued**NORMAL FORCE:****Initial**

Initial	Deflections in mm Forces in Grams			
	Sample #	0.500	0.800	0.900
1	45.73	51.20	53.24	0.01000
2	44.86	52.08	53.29	0.01000
3	43.54	51.86	52.72	0.02000
4	44.20	52.73	53.25	0.01000
5	43.98	52.08	54.63	0.02000
6	43.98	52.51	54.21	0.02000
7	46.61	51.20	52.79	0.01000
8	44.20	50.11	52.39	0.01000
9	44.64	51.86	53.34	0.01000
10	43.98	50.55	53.11	0.01000
11	43.11	50.33	52.06	0.02000
12	45.08	50.76	53.16	0.02000
13	44.64	50.98	52.25	0.01000

After thermal

Thermal	Deflections in mm Forces in Grams			
	Sample #	0.500	0.800	0.900
1	46.20	51.40	53.80	0.03000
2	44.90	53.60	53.80	0.02000
3	44.20	50.10	53.30	0.01000
4	45.70	53.00	53.50	0.01000
5	45.10	52.70	54.20	0.00800
6	45.30	50.50	54.20	0.00500
7	45.70	53.20	55.20	0.00500
8	44.60	51.20	54.10	0.01000
9	45.10	52.30	55.00	0.01000
10	47.00	52.50	54.90	0.00400
11	44.60	53.20	54.50	0.01000
12	44.90	51.00	53.40	0.00000
13	44.90	52.10	53.40	0.01000

DATA Continued**LLCR:**

	mOhm values	Actual	Delta	Delta	Delta
Board	Position	Initial	100 Cycles	Thermal	Humidity
1	P1	23.8	-2.0	4.7	4.8
1	P2	21.1	0.0	4.5	1.3
1	P3	21.5	-0.6	3.7	0.5
1	P4	20.9	0.0	4.5	0.9
1	P5	21.4	-1.3	2.1	0.0
1	P6	22.1	-1.5	2.1	3.6
1	P7	20.3	0.5	4.9	2.5
1	P8	22.9	-2.3	4.0	1.5
1	P9	21.7	-1.5	1.9	1.3
1	P10	21.3	-0.4	5.0	3.2
1	P11	23.4	-2.7	1.6	3.1
1	P12	21.3	-0.9	5.1	2.4
1	P13	21.3	-1.1	5.4	4.9
1	P14	20.9	-0.5	4.3	4.8
1	P15	21.5	-0.5	3.2	3.4
1	P16	22.0	-0.7	3.7	0.9
1	P17	23.1	-2.5	2.1	1.7
1	P18	21.9	-1.4	3.1	1.9
1	P19	22.5	-2.2	2.6	6.1
1	P20	22.6	-1.5	3.8	9.5
1	P21	22.8	-1.8	6.4	10.6
1	P22	22.6	-1.4	2.6	8.5
1	P23	21.5	-0.5	4.5	4.2
1	P24	22.2	-0.8	3.4	1.0
2	P1	21.2	0.1	1.7	0.8
2	P2	21.5	0.0	2.5	1.7
2	P3	21.8	-0.9	0.7	0.4
2	P4	21.2	0.1	6.4	4.7
2	P5	20.2	0.5	3.1	2.8
2	P6	21.0	-0.8	3.2	3.6
2	P7	20.9	-0.4	1.6	1.0
2	P8	21.2	-0.4	3.1	1.2
2	P9	21.1	-0.2	9.0	2.8
2	P10	21.1	-0.5	8.1	3.7
2	P11	20.9	-0.1	6.4	1.2
2	P12	21.6	-0.4	9.4	1.1
2	P13	21.4	-0.7	9.3	1.3
2	P14	21.5	-0.8	7.2	1.6
2	P15	22.2	-1.1	4.4	0.6
2	P16	21.2	0.4	5.8	0.7
2	P17	22.4	-1.1	6.2	1.2
2	P18	22.4	-1.1	7.6	-0.1
2	P19	21.6	-0.2	2.6	1.0

2	P20	21.5	-0.4	3.7	3.3
2	P21	22.9	-1.2	7.0	0.0
2	P22	22.4	-0.9	2.2	3.6
2	P23	21.9	-0.8	2.7	7.1
2	P24	22.5	-0.4	6.7	1.5
3	P1	21.6	1.4	4.7	0.6
3	P2	20.8	0.1	1.1	1.9
3	P3	22.3	1.0	8.3	1.8
3	P4	21.4	0.2	6.0	2.4
3	P5	23.0	1.1	5.2	1.9
3	P6	22.2	-0.1	7.5	0.1
3	P7	21.1	1.5	5.4	1.5
3	P8	22.3	4.0	4.0	1.7
3	P9	22.0	0.7	1.7	1.3
3	P10	22.9	0.4	2.7	-0.1
3	P11	21.7	2.8	2.8	3.4
3	P12	21.4	3.6	6.2	2.6
3	P13	21.8	4.5	4.0	1.0
3	P14	21.9	2.4	4.7	1.8
3	P15	22.1	2.6	3.1	1.6
3	P16	23.3	1.4	3.4	2.9
3	P17	21.5	3.1	4.0	3.3
3	P18	22.1	0.7	3.3	1.7
3	P19	22.1	2.2	3.5	0.2
3	P20	22.5	1.9	2.5	2.5
3	P21	23.6	-1.0	2.0	0.1
3	P22	23.4	-0.1	2.0	1.9
3	P23	21.8	2.8	4.6	1.5
3	P24	23.7	1.1	4.1	-1.4
4	P1	24.0	-2.7	-0.1	-1.8
4	P2	21.2	-0.3	1.8	0.6
4	P3	21.6	-0.7	1.7	0.6
4	P4	21.9	-1.2	3.0	1.0
4	P5	22.7	-0.7	5.8	0.7
4	P6	21.4	-0.5	3.0	0.6
4	P7	20.9	0.3	6.6	1.4
4	P8	22.7	-1.0	2.4	-0.4
4	P9	21.2	0.5	2.8	2.0
4	P10	22.1	-0.9	3.1	1.7
4	P11	23.7	-2.3	4.9	0.6
4	P12	25.1	-4.1	1.9	0.3
4	P13	22.8	-1.0	1.6	0.8
4	P14	22.0	-0.2	7.3	1.4
4	P15	23.2	-0.2	3.7	1.7
4	P16	21.9	-0.1	7.2	0.4
4	P17	22.9	-0.2	5.8	1.2
4	P18	22.6	-0.2	5.6	2.1
4	P19	22.3	0.5	6.8	4.2
4	P20	23.3	-0.9	1.5	0.9

4	P21	22.3	-0.5	1.9	1.5
4	P22	20.5	2.3	4.7	2.5
4	P23	23.4	-0.7	2.6	1.1
4	P24	22.2	0.1	7.8	1.9
5	P1	22.1	-1.0	7.4	1.3
5	P2	21.7	-0.9	3.8	0.6
5	P3	22.5	-1.3	2.8	1.6
5	P4	21.4	-0.9	4.8	1.0
5	P5	21.4	-0.6	5.2	2.5
5	P6	24.7	-2.7	0.1	-1.3
5	P7	20.3	0.4	8.1	2.6
5	P8	22.3	-0.7	2.1	1.0
5	P9	24.6	-3.3	3.0	0.5
5	P10	22.9	-1.3	6.7	4.1
5	P11	22.3	-1.3	5.5	0.4
5	P12	22.2	-1.0	6.4	3.0
5	P13	22.2	-0.9	5.4	2.1
5	P14	25.9	-3.9	3.4	-1.5
5	P15	21.7	-0.6	5.9	1.1
5	P16	26.1	-3.7	2.3	0.5
5	P17	23.0	-1.2	5.6	1.7
5	P18	25.8	-4.3	2.1	-0.4
5	P19	25.8	-4.8	2.8	-1.6
5	P20	22.8	-1.9	4.8	-0.6
5	P21	22.2	-0.3	4.4	0.8
5	P22	24.4	-2.3	4.2	0.6
5	P23	25.3	-3.6	3.6	1.5
5	P24	21.4	0.7	7.2	2.9
6	P1	23.3	-1.3	2.3	-0.5
6	P2	21.8	-0.7	3.2	1.0
6	P3	23.8	-2.0	1.8	-0.4
6	P4	24.9	-3.1	0.6	-1.8
6	P5	22.5	-0.7	5.0	2.1
6	P6	23.8	-2.2	2.2	1.9
6	P7	23.1	-2.2	-1.1	-1.0
6	P8	21.6	0.1	3.0	1.1
6	P9	22.4	-1.0	1.9	1.5
6	P10	22.8	-0.9	9.4	2.2
6	P11	22.2	-0.5	4.5	3.3
6	P12	22.7	0.2	6.6	4.7
6	P13	22.2	-0.2	6.3	3.3
6	P14	22.3	0.4	5.3	7.7
6	P15	22.5	-0.1	5.4	10.9
6	P16	21.6	1.0	6.9	4.8
6	P17	22.0	-0.1	5.1	4.9
6	P18	22.1	-1.5	2.2	4.0
6	P19	22.0	0.3	4.0	2.1
6	P20	22.7	-1.1	3.4	3.3
6	P21	22.4	-1.0	1.7	1.1

6	P22	23.4	-1.7	5.5	3.1
6	P23	22.2	-0.9	2.8	3.3
6	P24	22.4	-0.6	3.5	3.8
7	P1	21.4	-0.2	1.6	0.1
7	P2	21.1	-0.3	4.1	4.4
7	P3	21.6	-0.1	1.0	2.1
7	P4	21.7	0.2	1.0	0.8
7	P5	21.8	-0.6	7.1	7.8
7	P6	22.2	-0.4	3.4	9.5
7	P7	21.8	-0.2	7.3	1.9
7	P8	21.4	0.2	3.1	2.6
7	P9	21.2	0.0	2.8	2.4
7	P10	22.2	-0.8	6.4	6.5
7	P11	21.5	-0.6	6.4	6.3
7	P12	21.8	-0.2	6.3	7.2
7	P13	21.7	-0.6	6.9	8.7
7	P14	22.0	-0.7	5.6	9.5
7	P15	21.4	0.1	5.0	8.2
7	P16	24.4	-2.5	2.3	5.1
7	P17	21.7	-0.8	6.2	6.4
7	P18	21.2	0.3	7.2	5.9
7	P19	22.8	-0.5	5.6	8.0
7	P20	22.1	-0.5	4.5	2.6
7	P21	21.8	-1.0	6.2	3.1
7	P22	22.1	-0.2	6.6	7.3
7	P23	21.3	-0.6	8.1	4.2
7	P24	22.8	-0.7	7.1	5.7
8	P1	22.8	-1.4	2.3	-0.3
8	P2	22.0	-1.7	-0.3	-0.8
8	P3	22.0	-0.7	0.4	0.7
8	P4	21.9	-1.2	0.9	0.4
8	P5	22.3	-1.7	1.4	-1.4
8	P6	22.4	-1.3	0.9	-0.7
8	P7	22.2	-1.4	2.4	0.7
8	P8	22.6	-1.4	1.2	-1.3
8	P9	21.6	-0.4	1.7	-0.1
8	P10	22.3	-0.9	3.4	0.6
8	P11	22.8	-1.8	2.4	-0.4
8	P12	23.7	-3.2	4.1	0.9
8	P13	23.2	-3.2	3.1	3.4
8	P14	21.6	-0.8	2.6	0.3
8	P15	22.1	-1.4	3.0	-0.4
8	P16	22.4	-1.7	2.4	-0.1
8	P17	22.9	-2.4	2.6	0.3
8	P18	21.9	-0.8	1.5	0.3
8	P19	22.2	-1.5	2.8	0.0
8	P20	26.0	-4.7	3.9	0.9
8	P21	25.9	-2.2	6.5	3.0
8	P22	26.2	-1.5	1.6	3.5

Tracking Code: TC1037--3506 Report Rev 1	Part #: SIBF-30-F-S-AD\Mating Card
Part description: SIBF	

8	P23	21.2	3.6	6.2	5.0
8	P24	22.1	0.4	4.1	5.9

DATA Continued**GAS TIGHT**

	mOhm values	Actual	Delta
Board	Position	Initial	Gas Tight
1	P1	21.2	-0.3
1	P2	20.4	-0.1
1	P3	21.6	-0.4
1	P4	21.1	-0.1
1	P5	21.4	-0.4
1	P6	21.3	-0.2
1	P7	20.8	-0.5
1	P8	21.8	-0.3
1	P9	22.3	-0.4
1	P10	21.5	-0.8
1	P11	21.5	-0.6
1	P12	21.7	-0.6
1	P13	20.7	0.1
1	P14	21.0	-0.4
1	P15	21.8	-0.3
1	P16	21.7	-0.1
1	P17	21.9	-0.9
1	P18	22.3	0.0
1	P19	22.3	-1.0
1	P20	21.9	-0.6
1	P21	21.3	-0.3
1	P22	21.7	-0.2
1	P23	22.0	-0.1
1	P24	23.1	-1.2
2	P1	24.3	1.6
2	P2	21.5	1.5
2	P3	22.9	-0.3
2	P4	21.8	0.0
2	P5	22.5	-0.8
2	P6	22.6	-0.5
2	P7	22.3	-0.8
2	P8	23.0	-0.8
2	P9	22.3	-1.1
2	P10	21.7	0.7
2	P11	21.3	-0.3
2	P12	22.0	-0.2
2	P13	22.1	-0.7
2	P14	23.8	-0.5
2	P15	21.5	-0.5
2	P16	21.8	-0.4
2	P17	21.6	0.0
2	P18	22.6	-0.9

2	P19	21.9	-0.4
2	P20	23.9	-1.2
2	P21	23.0	-0.8
2	P22	22.7	-0.5
2	P23	23.7	-0.9
2	P24	26.3	-1.4
3	P1	21.9	0.0
3	P2	21.2	0.0
3	P3	21.0	0.9
3	P4	20.9	0.5
3	P5	21.7	0.2
3	P6	21.2	0.3
3	P7	21.5	0.0
3	P8	22.3	-0.3
3	P9	22.7	-1.0
3	P10	21.7	0.0
3	P11	22.2	0.0
3	P12	24.7	-2.3
3	P13	24.9	-3.1
3	P14	22.1	-0.5
3	P15	22.6	-0.2
3	P16	22.2	0.6
3	P17	24.4	-1.4
3	P18	22.8	0.5
3	P19	23.3	-1.5
3	P20	22.2	-0.4
3	P21	21.5	0.3
3	P22	22.8	-0.9
3	P23	22.3	-0.5
3	P24	22.7	0.0
4	P1	26.8	-4.4
4	P2	25.7	-1.4
4	P3	25.1	-2.2
4	P4	20.8	-0.4
4	P5	22.0	0.2
4	P6	23.0	-1.3
4	P7	22.7	-1.8
4	P8	23.3	-2.5
4	P9	24.5	-2.4
4	P10	22.8	-1.2
4	P11	22.0	0.1
4	P12	22.6	0.0
4	P13	22.3	0.9
4	P14	21.6	0.3
4	P15	21.8	-0.2
4	P16	22.7	0.2
4	P17	21.6	-0.1
4	P18	21.9	-0.2
4	P19	20.8	-0.4

4	P20	21.6	0.2
4	P21	22.0	0.6
4	P22	21.6	1.0
4	P23	21.8	0.5
4	P24	21.4	-0.5
5	P1	21.4	-0.1
5	P2	21.0	0.4
5	P3	21.8	0.4
5	P4	21.4	-0.5
5	P5	24.1	-1.2
5	P6	21.9	-0.3
5	P7	21.9	-0.3
5	P8	21.1	0.0
5	P9	21.4	0.4
5	P10	21.8	0.7
5	P11	21.1	0.9
5	P12	21.1	0.3
5	P13	21.6	1.1
5	P14	22.0	0.3
5	P15	21.2	0.3
5	P16	21.4	0.5
5	P17	22.4	1.3
5	P18	21.7	1.2
5	P19	21.5	2.5
5	P20	21.6	0.6
5	P21	21.4	0.9
5	P22	21.8	1.6
5	P23	21.3	0.6
5	P24	21.7	1.1
6	P1	25.1	0.9
6	P2	22.0	1.0
6	P3	23.3	1.1
6	P4	21.6	0.7
6	P5	23.9	0.1
6	P6	21.4	0.1
6	P7	21.4	1.8
6	P8	23.0	-0.8
6	P9	25.3	2.2
6	P10	25.4	2.1
6	P11	22.8	1.7
6	P12	22.5	1.0
6	P13	22.1	0.8
6	P14	24.9	-0.9
6	P15	22.8	0.6
6	P16	22.3	0.2
6	P17	22.9	0.0
6	P18	22.4	0.7
6	P19	21.7	0.9
6	P20	22.4	0.6

6	P21	21.8	-0.5
6	P22	24.0	0.9
6	P23	21.8	0.8
6	P24	21.0	4.4
7	P1	22.3	-0.1
7	P2	22.0	1.0
7	P3	21.3	-0.1
7	P4	23.7	0.7
7	P5	22.5	0.3
7	P6	22.8	1.2
7	P7	21.9	-0.4
7	P8	21.5	-0.2
7	P9	21.6	0.5
7	P10	22.1	-0.4
7	P11	22.1	0.3
7	P12	22.4	-0.1
7	P13	22.8	0.4
7	P14	22.6	-0.3
7	P15	21.1	0.2
7	P16	22.5	0.3
7	P17	21.7	0.3
7	P18	21.7	0.3
7	P19	23.2	0.0
7	P20	23.0	0.5
7	P21	22.4	-0.1
7	P22	22.3	0.4
7	P23	23.1	0.0
7	P24	22.5	0.1
8	P1	23.3	0.4
8	P2	21.1	-0.6
8	P3	21.8	-0.4
8	P4	20.9	-0.1
8	P5	21.4	-0.1
8	P6	21.3	-0.4
8	P7	21.8	-0.6
8	P8	22.4	-0.3
8	P9	22.2	-0.6
8	P10	22.4	-0.8
8	P11	21.5	-0.3
8	P12	25.9	-2.4
8	P13	21.9	-0.4
8	P14	22.0	-0.9
8	P15	22.3	-0.7
8	P16	22.7	-0.4
8	P17	22.9	-0.6
8	P18	22.6	-1.3
8	P19	21.6	-0.7
8	P20	22.1	-0.5
8	P21	21.9	-0.5

Tracking Code: TC1037--3506 Report Rev 1	Part #: SIBF-30-F-S-AD\Mating Card
Part description: SIBF	

8	P22	23.2	-0.9
8	P23	24.0	0.7
8	P24	21.5	-0.3

Tracking Code: TC1037--3506 Report Rev 1	Part #: SIBF-30-F-S-AD\Mating Card
	Part description: SIBF

EQUIPMENT AND CALIBRATION SCHEDULES

Equipment #: HZ-MO-03

Description: Micro-ohmmeter

Manufacturer: Keithley

Model: 580

Serial #: 297288

Accuracy: Last Cal: 2010-8-06, Next Cal: 2011-8-05

Equipment #: HZ-TCT-01

Description: Normal force analyzer

Manufacturer: Mecmesin Multitester

Model: Mecmesin Multitester 2.5-i

Serial #: 08-1049-04

Accuracy: Last Cal: 2010-4-28, Next Cal: 2011-4-27

Equipment #: HZ-OV-01

Description: Oven

Manufacturer: Huida

Model: CS101-1E

Serial #: CS101-1E-B

Accuracy: Last Cal: 2009-12-15, Next Cal: 2010-12-14

Equipment #: HZ-THC-01

Description: Humidity transmitter

Manufacturer: ThermoTron

Model: HMM30C

Serial #: D0240037

Accuracy: Last Cal: 2010-3-3, Next Cal: 2011-3-2

Equipment #: HZ-OGP-01

Description: Video measurement system

Manufacturer: OGP

Model: SMARTSCOPE FLASH 200

Serial #: SVW2003632

Accuracy: Last Cal: 2010-6-10, Next Cal: 2011-6-9

Equipment #: HZ-MO-01

Description: Micro-ohmmeter

Manufacturer: Keithley

Model: 2700

Serial #: 1199807

Accuracy: Last Cal: 2010-4-28, Next Cal: 2011-4-27

Tracking Code: TC1037--3506 Report Rev 1	Part #: SIBF-30-F-S-AD\Mating Card
Part description: SIBF	

EQUIPMENT AND CALIBRATION SCHEDULES

Equipment #: HZ-PS-01

Description: Power Supply

Manufacturer: Agilent

Model: 6031A

Serial #: MY41000982

Accuracy: Last Cal: 2010-4-28, Next Cal: 2011-4-27